Table 5.
Model 4/5/6 | Model 7/8/9 | |
---|---|---|
Layers | Parameters | Parameters |
Layer 1—FullyConnected | Input layer | Input layer |
Layer 2—GRU/LSTM/BILSTM | 50 | 50 |
Layer 3—GRU/LSTM/BILSTM | 20 | 20 |
Layer 4—FullyConnected | 2 | 10 |
Layer 5—FullyConnected | – | 5 |
Layer 6—FullyConnected | – | 2 |
The number of layers and the number of neurons in each layer can vary. Moreover, the hyper-parameters can be tuned to improve the final performance. The number of trainable and non-trainable layers can vary, but transfer learning does not perform well if all layers are trainable and the performance is improved