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Synthetic Micrographs of Bacteria (SyMBac) 
allows accurate segmentation of bacterial cells 
using deep neural networks
Georgeos Hardo, Maximilian Noka and Somenath Bakshi* 

Abstract 

Background:  Deep-learning–based image segmentation models are required for accurate processing of high-
throughput timelapse imaging data of bacterial cells. However, the performance of any such model strictly depends 
on the quality and quantity of training data, which is difficult to generate for bacterial cell images. Here, we present a 
novel method of bacterial image segmentation using machine learning models trained with Synthetic Micrographs of 
Bacteria (SyMBac).

Results:  We have developed SyMBac, a tool that allows for rapid, automatic creation of arbitrary amounts of train-
ing data, combining detailed models of cell growth, physical interactions, and microscope optics to create synthetic 
images which closely resemble real micrographs, and is capable of training accurate image segmentation models. 
The major advantages of our approach are as follows: (1) synthetic training data can be generated virtually instantly 
and on demand; (2) these synthetic images are accompanied by perfect ground truth positions of cells, meaning no 
data curation is required; (3) different biological conditions, imaging platforms, and imaging modalities can be rapidly 
simulated, meaning any change in one’s experimental setup no longer requires the laborious process of manu-
ally generating new training data for each change. Deep-learning models trained with SyMBac data are capable of 
analysing data from various imaging platforms and are robust to drastic changes in cell size and morphology. Our 
benchmarking results demonstrate that models trained on SyMBac data generate more accurate cell identifications 
and precise cell masks than those trained on human-annotated data, because the model learns the true position of 
the cell irrespective of imaging artefacts. We illustrate the approach by analysing the growth and size regulation of 
bacterial cells during entry and exit from dormancy, which revealed novel insights about the physiological dynamics 
of cells under various growth conditions.

Conclusions:  The SyMBac approach will help to adapt and improve the performance of deep-learning–based image 
segmentation models for accurate processing of high-throughput timelapse image data.

Keywords:  Image analysis, High-throughput imaging, Microfluidics, Timelapse microscopy, Bacterial cell imaging, 
Deep-learning, Synthetic images, Cell segmentation
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Background
High-throughput time-resolved imaging of bacterial cells 
has revolutionised the fields of systems and synthetic 
microbiology [1–7]. Deep-learning–based approaches 
are rapidly gaining popularity for automated process-
ing of such high volumes of data [8–13]. The perfor-
mance of such deep-learning algorithms is fundamentally 
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dependent on the quality and quantity of the training 
data provided to it [14]. However, the task of generat-
ing training data with accurate ground truth is not only 
slow and difficult but a near-impossible one for images 
of micron-sized bacterial cells. The comparable size of 
the point spread function (PSF) of the microscope cor-
rupts the images of bacterial cells, blurring them to the 
extent that neither expert users nor traditional compu-
tational segmentation programs can accurately annotate 
the correct pixels. Additionally, geometric effects in the 
microscopic 2D projection of 3D objects in an image lead 
to inaccuracies in contrast-based segmentation by both 
humans and computational programs (Additional file  1, 
Section  1, [15, 16]). Inaccuracies in the ground truth of 
training data cause deep-learning models to misinterpret 
the relations between the object and its image, resulting 
in systematically artefactual mask predictions. This limits 
one’s ability to infer a cell’s true size and shape and con-
founds the analysis.

To address these limitations, we have developed a new 
approach of image segmentation of bacterial cells, where 
deep-learning networks are trained entirely on synthetic 
data. The main challenge here is to generate synthetic 
data that accurately reflects the object-to-image relations 
in a diverse range of imaging modalities and platforms. 
To tackle this, we have created SyMBac (Synthetic Micro-
graphs of Bacteria), a tool to generate realistic synthetic 
images of bacteria in a wide range of experimental set-
tings. SyMBac combines detailed models of cell growth 
and morphology, its position and interaction with the 
imaging platform, and the microscope’s optics to ren-
der synthetic images capable of training highly accurate 
segmentation networks without human-annotated data. 
A neural network trained on this synthetic data can pre-
cisely learn about the corruption modes introduced dur-
ing image formation and, as a result, output accurate cell 
masks. This not only greatly speeds up the process of 
image segmentation (because no human annotation is 
necessary), but most importantly generates more accu-
rate masks of cells, enabling precise analysis of size reg-
ulation and growth dynamics. Using our method, given 
any change in experimental settings, it becomes trivial 
to generate high volumes of new synthetic images and 
ground truths to retrain segmentation models and rap-
idly analyse new data. This also addresses the robustness 
and reproducibility problems of image processing using 
deep-learning because models can now be easily adapted 
and benchmarked, since synthetic data can be gener-
ated at any desired spatial and temporal resolution with 
known parameters.

In this paper, we show that SyMBac can be used to 
generate synthetic micrographs for linear or monolayer 
colonies of bacteria in microfluidic devices or agar pads. 

While SyMBac can be easily used with fluorescence 
images, we primarily focus on the more challenging task 
of tackling phase-contrast images of bacteria in these 
platforms. This is because phase-contrast imaging can 
be used ubiquitously for all microbes since it does not 
require any kind of labelling and also because it poses a 
more difficult challenge for segmentation algorithms, as 
the images contain the structures of the imaging plat-
form, making it difficult to separate them from the cells. 
This problem is most severely felt in microfluidic linear 
colonies (mother machine [17]) and single-cell chemo-
stats [18], where the microfluidic device’s features are 
comparable to the size and refractive index of the cells 
which they trap, giving them similar contrast. However, 
microfluidic linear colonies are also of major interest 
to quantitative microbiologists, as they are able to pro-
vide the highest throughput and most precise control of 
growth conditions [3, 7, 19]. This has recently revolution-
ised research in quantitative single-cell bacterial physi-
ology [17, 20–23]. Accurate segmentation of individual 
cells in these platforms is sorely needed for further and 
deeper investigations into single-cell physiology. Our 
results show SyMBac can be used to rapidly generate 
realistic training data for these platforms, which is capa-
ble of training accurate segmentation models. Machine 
learning models trained with SyMBac data is highly 
accurate in cell identification and produce more precise 
masks of cells in these platforms compared to models 
trained on data generated or curated by humans. This 
enabled precise analysis of cell size and shape regula-
tion along changing conditions in a growing bacterial cell 
culture, revealing novel insights about the physiological 
dynamics of individual bacterial cells during entry and 
exit from dormancy.

Results
SyMBac allows for generation of realistic synthetic data 
in a variety of experimental conditions
In Fig. 1b, we show the overall process of generating syn-
thetic training data for bacterial cells growing in micro-
fluidic linear colonies, which is SyMBac’s primary use in 
this paper. A rigid body physics simulation is combined 
with an agent-based model of bacterial cell growth to 
generate model scenes of cells growing in these devices 
(details of the model parameters and implementation 
are provided in Additional file  1, Section  2, [24]). The 
output position and geometry of this combined model 
are then used to produce synthetic micrographs and 
the corresponding ground truths through the following 
steps. First, properties from the simulation are extracted 
and used to render an optical path length (OPL) image 
that signifies the relative phase shift in the image—
observed as as a change in intensity—due to the local 
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Fig. 1  The synthetic image generation process: a Schematic of linear colonies of cells in a microfluidic device known colloquially as the mother 
machine. b Synthetic image generation pipeline: rigid body physics simulations are combined with agent-based modelling to simulate bacterial 
growth in the device. These simulations are convolved with the microscope’s point spread function, which is generated using known parameters of 
the objective lens. This output image is then further optimised to match real images. Scale bar = 1 μm. c Synthetic data can be adapted to different 
biological conditions, variations in microfluidic designs, and imaging modalities. With real data, many experiments would need to be conducted 
to generate training data with the same kind of coverage. Scale bar = 1 μm. d Typical timescales for individual steps in the generation of training 
data. e Humans annotating images had variable performances and consistently undersegmented cells, especially in small stationary phase cells. f 
SyMBac is approximately 10,000× faster than a human at generating training data (10,000 images in less than 10 min)
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refractive index (Fig. S3.1 in Additional file 1). To gener-
ate micrographs, this OPL image is then convolved with 
the microscope’s point spread function (PSF) which can 
be generated using known parameters of the objective 
lens and phase ring/annulus (Additional file 1, Section 4 
[25–27]). These properties are easy to find and thus any 
change in microscope optics can be readily simulated. 
SyMBac offers 2D approximations to microscope optics, 
but also has an option for 3D optical models, allowing the 
user to trade image accuracy for simulation speed. Next, 
users have an option to add a camera model  (if the user 
knows the properties of their camera) to simulate the 
image capture process. Finally, the intensity distribution 
and noise spectrum of the resultant image are then fur-
ther optimised in order to maximise its similarity to the 
real images (Additional file 1, Sections 7 and 8).

Synthetic images generated by SyMBac can be tuned 
according to variations in biology (cell size, shape, etc.), 
the imaging platform (microfluidic device architecture, 
agar pad), optics (magnification, numerical aperture, and 
additional properties of the objective lens), and whether 
the experiment is phase contrast or fluorescence (Fig. 1c). 
The physics back-end of SyMBac can be adapted to model 
alternative imaging platforms, to generate synthetic 
training data for imaging experiments of both 1D and 
2D colonies (Additional file 1, Section 13). Put together, 
this enables us to produce realistic phase-contrast and 
fluorescence images of bacterial cells in microfluidic plat-
forms and on agar pads (Figs. 1c, 2, and 6). In Fig. 2a, we 
demonstrate the use of SyMBac to generate synthetic 
phase-contrast images for the microfluidic turbidostat 
devices described in [28]. Comparison of the close-ups 
from the synthetic image and the real image from such 
devices reveals the similarities in texture and contrast, 
which are crucial to ensure that the synthetic training 
data is realistic enough for models trained with it to per-
form well on real data (as shown in Fig. 6). Similarly, it is 
possible to generate synthetic micrographs of timelapse 
experiments of the growth of monolayer colonies on agar 
pads. The close-ups of the synthetic images show that the 
model captures all the relevant details: background tex-
ture from agar imperfections, contrast shade-off effects 
near the centre of the monolayer colony, and background 
halo and darker cells near the edge of the colony (Fig. 2b 
and Additional file 1, Section 13).

SyMBac data also provides an excellent opportunity for 
benchmarking the performance, speed, and accuracy of 
human annotators and traditional thresholding-based 
computational segmentation approaches, as perfect 
ground truth is available for each image (Additional file 1, 
Section  1). Our benchmarking experiments show that 
human annotators are not only slow, but generated inac-
curate training data (Fig. 1f, e), being unable to maintain 

consistency or accuracy in correctly identifying pixels at 
the cell boundary. Additionally, we found that annota-
tion results were highly variable across growth regimes, 
with the error rate in annotating small cells from the sta-
tionary phase being higher (Additional file 1, Section 1). 
While better than human-annotated training data, we 
also find that the unsupervised approaches using Otsu, 
local thresholding, and membrane dye images still suffer 
from bias and lack of robustness towards size variation 
(Figs. S1.2, S1.3, and S1.4, in Additional file 1). This sug-
gests that these traditional approaches are not suitable 
when accurate cell masks are desired and would not be 
suitable for generating training data required for train-
ing ML algorithms to accurately segment data. SyMBac 
addresses this critical issue, since the synthetic images 
from SyMBac are accompanied with perfect ground truth 
information of cell shape and position. Models trained 
on our data therefore ensure the neural network learns 
the true relation between object and its corresponding 
image.

SyMBac takes advantage of multiprocessing, and 
where possible offloads array operations onto the GPU, 
which allows it to be approximately 10,000×  faster than 
a human at generating training data (and if deployed on 
computing clusters, this could be extended by a further 
order of magnitude). Typical timescales of generating 
synthetic images are shown in Fig.  1d. The entire pro-
cess of generating synthetic data has been made simple 
through the creation of example Jupyter notebooks with 
interactive widgets, which guide the user through the 
entire process. The output format of the training data 
(synthetic images and ground truth) can be chosen as 
single frames or tiles, depending on the segmentation 
network of choice. We provide example notebooks of 
training deep-learning segmentation networks, such as 
DeLTA and Omnipose with SyMBac data, and notebooks 
for using one’s trained models for image segmentation. 
This information is kept up to date online through brows-
able documentation.

SyMBac enables easy training of existing deep‑learning 
segmentation models
Once synthetic images are generated, a segmentation 
network (e.g. U-net [29]) is trained. This network learns 
the relation between the synthetic image and ground 
truth pair to infer image-to-object relationships in real 
experimental images (Fig.  3a). We evaluated the use-
fulness of synthetic data for this purpose by applying it 
two popular methods: (1) DeLTA, an implementation of 
U-net [30] for analysing images of cells in linear colonies, 
and (2) OmniPose [31], a deep neural network for mor-
phologically robust segmentation of bacteria. For DeLTA, 
since the output from the U-net is only a probabilistic 
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mask, a correct probability threshold must be deter-
mined to compute accurate binary masks. To calculate 
the optimal probabilistic threshold value, we developed 
a validation mechanism which utilises synthetic data to 
estimate the optimal mask pixel probability threshold by 
passing an independent set of synthetic validation data 
through the trained model and thresholding the out-
put until the masks are maximally similar to the ground 
truth masks. Two metrics can be used to evaluate the 
optimal mask threshold, one is the Jaccard index, which 
is a pixelwise measure of the difference between the 
true masks and the target thresholded masks. The other 

measure involves maximising the cumulative intersection 
between the length and width distributions of cells in the 
true masks with those in the target thresholded masks. 
We show that, for these experiments, these independ-
ent metrics produce the same optimal mask threshold 
(Fig. S9.1a in Additional file  1). Omnipose, the second 
network we tested, does not require any thresholding 
of the masks by the user. Additionally, training data for 
Omnipose differs from training data for DeLTA in that 
cell masks are allowed to touch in the Omnipose model, 
whereas DeLTA requires the computation of weightmaps 
around the edges of cells. Omnipose is therefore easier to 

Fig. 2  Different synthetic image modalities: a Synthetic data can be generated for microfluidic devices that produce monolayer colonies, in 
this case the microfluidic turbedostat described in [28] (real image courtesy of Elf Lab, Uppsala University). Scale bar = 2 μm b SyMBac can also 
generate timelapse image data for the growth of monolayer colonies on agar pads. Scale bar = 2 μm
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train, output masks require no thresholding, and masks 
are allowed to touch, as Omnipose returns an instance 
segmentation. While the published pretrained Omnipose 
model is already robust for most applications, it is unsuit-
able for use with microfluidic devices and produces arte-
facts (Fig. 3b). We retrained Omnipose with SyMBac data 
and the resultant model produced morphologically accu-
rate masks of cells in microfluidic devices and still main-
tained good performance in other imaging platforms.

Since SyMBac uses synthetic data for training, valida-
tion data is not available in the traditional sense. Instead, 
the model is evaluated automatically epoch-by-epoch in 
terms of cell identification errors, and the model with the 
lowest error is kept (Fig. S9.1b in Additional file 1). Auto-
matic identification error rate calculations are possible 
without validation data due to the predictable nature of 
bacterial growth in linear colonies (detailed in Additional 
file 1, Section 9). In general, 100 epochs were enough to 
drive the identification error below 0.5% with DeLTA. Up 
to 400 epochs were necessary to achieve less than 0.2% 
error. The Omnipose model was trained for 4000 epochs 
and was able to achieve < 0.1% error. Typical timescales 
for model training and segmentation are shown in Fig. 3c.

Models trained on synthetic data show superior 
performance and precision compared to those trained 
on human‑annotated data
SyMBac-trained models produce more consistent, less 
flawed, and visually more “natural” cell mask shapes 

compared to models trained with user-annotated data 
(Fig. 4a, b). This is because masks from synthetic data 
are never corrupted by changes in the images from 
which they come and are accompanied with per-
fect ground truth. To perform a rigorous comparison 
between synthetic data and human-generated data, 
we generated a synthetic dataset based on reference 
images from the original DeLTA paper’s dataset using 
SyMBac. We then trained two models, one on SyM-
Bac data and one on the training data provided in the 
DeLTA paper [30]. In the DeLTA paper, a semi-auto-
matic tool was used to generate training data, which 
involves subjectivity in the choice of thresholding 
parameters and morphological operators. This results 
in training data with oddly shaped masks, which are 
consequently learned and then reproduced by the net-
work during training and prediction (Fig. 4a, Additional 
file 1, Part 10). The networks trained with SyMBac pro-
duce far more realistic and consistent mask predictions 
compared with models trained with human-curated 
training data (dataset from Lugagne et  al. [30]) while 
maintaining almost the same accuracy (Table  1). Fur-
thermore, we observe that the DeLTA model trained 
with SyMBac shows much higher temporal coherence 
when compared to models trained on human-annotated 
data. Output masks from the DeLTA model trained 
with human-curated training data showed unrealistic 
fluctuations in cell width from frame to frame, while 
SyMBac-trained models did not (Fig. 4b).

Fig. 3  Model training, evaluation, and timing benchmarks: a Schematic of the U-net model being trained using synthetic data and then 
segmenting real data to produce accurate masks. b SyMBac can retrain generalised models, such as Omnipose (a derivative of Cellpose, allowing 
for mask reconstruction from arbitrary morphologies). Because Omnipose was not trained on any microfluidic device images, it fails to properly 
segment the image, attaching masks to the mother machine trench geometry (though it admirably segments cells within the trench). Retraining 
Omnipose with SyMBac’s synthetic data results in near perfect segmentation, with no more trench artefacts. c A typical time to train the network, 
either Omnipose or DeLTA (on 2000 images) and segment approximately one million images (Nvidia GeForce 1080Ti)
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DeLTA models trained with SyMBac data were able 
to achieve comparable identification accuracy (table in 
Table  1 as the model trained on human-annotated and 
human-curated data, which is remarkable, since it shows 
that SyMBac is able to generate realistic training data from 
just the reference images. Notably, the true advantage 
of SyMBac is in its ability to generalise to experimental 
variations where pretrained models fail. When we tested 
against a data set collected with a 60× air objective, the 
pretrained DeLTA model could not produce any masks, 
and therefore, we could not quantify the error. Conversely, 
SyMBac can generate similar images and ground truth 
pairs, and DeLTA models trained with this data produced 

highly accurate segmentation with an identification error 
rate of 0.36% (Table 1) and high-quality cell masks (exam-
ples in Fig.  4c and Additional file  1, Section  11). Precise 
segmentation of images from low NA air objective has 
been a major challenge, and this capability opens up pos-
sibilities of analysing high-throughput experiments con-
ducted with such objectives, due to their large field of view 
and fast scan speed. DeLTA trained with SyMBac data 
also gave 18× better identification accuracy compared 
to pretrained DeLTA models for a separate 100× dataset 
(experiments detailed in Bakshi et  al. [3]). Interestingly, 
Omnipose models trained with SyMBac produced higher 
identification accuracies under all imaging conditions 
tested here. The possible explanations are Omnipose’s 
robustness to morphological variations and being able to 
segment very closely packed cells due to its mask recon-
struction algorithm. Omnipose models trained on SyMBac 
data also yielded much more realistic cell masks compared 
to Omnipose models trained on human-annotated train-
ing data (dataset from Lugagne et al. [30]).

Models trained with synthetic data are robust to changes 
in experimental conditions
Segmentation algorithms (both ML and non-ML) 
face an even harder challenge when the data type 

Fig. 4  Model quality and segmentation precision: a The masks from SyMBac-trained models are truer to the geometry of the cells, displaying no 
aberration when compared to model outputs trained on human-annotated data. b The masks also maintain a narrow distribution of widths, while 
the masks from DeLTA trained with human-annotated data display a wide variation with the peak shifted to lower values and show 2.5× higher 
variation in cell width. c Examples of the type of data which can be segmented using a single SyMBac-trained model. In this case, we show the 
performance of a single DeLTA model trained on combination data across 3 different cell sizes. Scale bar = 2 μm d The SyMBac-trained model 
produces masks with precisions of 40 nm for length and 19 nm for width. This is calculated by fitting a line to the length and width trace of cells in 
the stationary phase

Table 1  Performance (cell identification error) benchmarking of 
DelTA trained with SyMBac. Models trained with SyMBac perform 
well for both oil and air objectives and outperform models 
trained with user-generated training data

Dataset DeLTA 
(pretrained)

DeLTA 
(SyMBac 
trained)

Omnipose 
(SyMBac 
trained)

100×, oil, NA 1.45, [30] 0.93% 1.1% 0.25%

100×, oil, NA 1.49 [3] 1.8% 0.47% 0.12%

60×, air, NA 0.95 [3] N/A 0.35% 0.28%
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itself changes during the experiment, for exam-
ple, cells changing size, shape, and intensity along 
a growth-curve experiment as they transition from 
exponential to stationary phase and back (Fig.  5a) 
[3]. Since cells in the stationary phase are very small, 
the relative annotation error grows (as shown in 
our benchmarking results in Fig.  S1.1 in Additional 
file  1) and compromises the performance of the ML 
algorithm. On the other hand, non-ML methods 
suffer from changes in object size, as algorithmic 
parameters need to be retuned when large changes 
are observed in the image (for example, morpho-
logical operators need to have their window size 
changed to account for differently sized cells). SyM-
Bac can address this issue by generating high-quality 
training datasets for cells at any size (Fig.  1c), pro-
ducing accurate cell masks throughout the experi-
ment (Fig.  4c and Fig.  S11.2 in Additional file  1). 
While models trained with small cell training data 
perform well in the stationary phase, this comes 
at the cost of reduced accuracy in the exponential 
phase, and the converse is also true (table in Table 2); 
however, this effect is much less pronounced when 
training Omnipose models. Instead, a complete data-
set, which combines synthetic images of both types, 
leads to an overall better performance in identifi-
cation accuracy and highly precise masks for esti-
mating cell length and width (Table  2). The models 
trained on combination datasets are robust to large 
variations in cell size (Additional file 1, Section 11), 
while maintaining the ability to detect very small 
variations in size due to the segmentation precision. 
This opens up possibilities of deeper investigations 
into cell size and shape regulation, as cell width can 
now be accurately characterised.

Precision of synthetic data trained models reveals novel 
width regulation in E. coli exiting stationary phase
As a proof-of-principle application, we have used SyM-
Bac-trained models to analyse a timelapse experiment 
(1800 frames) of 4500 mother cells growing in linear 
colonies under changing growth conditions, whereby the 
cells undergo a feast famine cycle [3]. The segmentation 
network maintained high identification accuracy and 
produced visually accurate masks of cells throughout the 
experiment (Fig.  4c). To estimate the size and shape of 
individual cells from these accurate masks, we used coli-
coords, a python package for generating cell coordinates 
from segmentation outputs ([16]).

The precise estimates of cell size from the segmentation 
outputs enabled us to compute single-cell growth rates 
during the exponential phase, along the entry and exit 
from the stationary phase along a growth curve (Fig. 5d), 
and at different points within the stationary phase 
(Fig. 5e–i). During exponential growth, cells elongate at a 
mean rate of 2.6 volume doublings per hour, which drops 
to 1.7 volume doublings per hour as cells begin to enter 
the stationary phase, and then asymptotically decreases as 
cells progress deeper into the stationary phase. Notably, a 
small residual, but detectable growth rate is maintained 
(0.029 volume doublings per hour), which is approxi-
mately 100 times slower than the exponential growth rate 
(Fig. 5f–h). When fresh media are introduced to the deep 
stationary phase cell culture, cells recover their growth 
rates as they re-enter exponential growth (Fig. 5i). Since 
the cells almost stop growing in the deep stationary phase, 
the fluctuations in the cell size estimates from the binary 
mask can be used to estimate the precision of segmenta-
tion (Fig. S9.5 in Additional file 1). We estimated the pre-
cision of the output from SyMBac models to be 40  nm 
along the length and 19 nm along the width (Fig. 4d).

Table 2  Comparison of DeLTA and Omnipose trained on 3 types of synthetic training data: data containing large cells only, data 
containing small cells only, and the combination of these two cell types to produce a combined dataset. As expected, specialist 
models tend to perform better when segmenting their own data type, and worse when segmenting unseen data types. A model 
trained on a combination of the two datasets provides a good compromise, not needing to train multiple models, while retaining 
good performance across the entire dataset. Interestingly, the Omnipose model trained on combination data performed as well 
on exponentially growing cells as the same model trained only on large cell synthetic data, implying that the network has residual 
capacity to learn. This was also noted in the original Cellpose paper [32]

Dataset Model: DeLTA Model: Omnipose

Training data Training data

Large Small Combined Large Small Combined

Exponential [3] 0.10% 2.4% 0.14% 0.09% 0.37% 0.09%

Stationary [3] 1.6% 0.40% 0.80% 0.89% 0.12% 0.20%

Full growth curve [3] 0.95% 1.4% 0.47% 0.45% 0.25% 0.12%
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Fig. 5  a Models trained with SyMBac were used to segment single-cell data throughout all growth curve regimes (colour-coded and used 
throughout the figure). b Example kympgraphs of 100× data showing cells in a variety of states (exponential growth, stationary phase, 
filamenting) with accompanying masks, highlighting the robustness of the model trained on mixed data to segment cells of multiple cell sizes 
and morphologies. c An example output showing the coordinate system applied to a cell mask, generated by Colicoords [16], allowing for highly 
accurate length and width prediction. d Example time series of the size of a single cell going through an entire growth curve. The inset shows cell 
length changes during the stationary phase. e–i During the exponential phase, cells exponentially increase their size with a mean growth rate of 
2.6 volume doublings per hour, which is equivalent to a population doubling time of 23 min, consistent with the bulk growth measurements of 
cells in this richly defined medium [3]. The distribution of growth rates shifts to the left as cells enter the stationary phase (orange and green phase) 
and eventually stops 6 h into the stationary phase (pink). For all growth rates, corresponding standard deviations are also reported. j Cells show 
a wide distribution of lengths during the exponential phase which narrows greatly during entry to the stationary phase, as cells are “locked in” to 
their width. Interestingly, while the mean width decreases in the stationary phase, the variability in cell widths increases. k Example of a cell exiting 
stationary phase, showing the increase in length and width. l Comparison of initial length and the added length before the first division after exit 
from stationary phase shows that cells are noisy as sizers towards length regulation. m Comparison of the initial width and the added width before 
the division shows that E. coli is an almost perfect width-sizer, dividing only when individual cells reach a critical width
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The highly precise estimates of cell size and shape 
enable us to look at shape regulation at different stages 
of starvation and resuscitation. During the entry to the 
stationary phase, both the length and width of individ-
ual cells drop. The large variability of cell lengths during 
the exponential phase is a result of exponential growth 
between division events, but cell width is tightly regu-
lated in this phase (Fig.  5j). During resuscitation, cells 
increase their width and length and divide once they 
have reached a critical size (Additional file 1, Section 12). 
Upon further investigation, we find that cells are sizers 
in both width and length during exit from the stationary 
phase. Interestingly, cells seem to more strictly regulate 
their width than their length during wake up and each 
cell divides upon reaching a critical width (Fig. 5l vs m). 
Tight regulation of width for size control makes intuitive 
sense, as the volume of a cell has a stronger dependence 
on width (radius) than length ( V = πr2(l − 2

3
r) ). The 

large variability in cell width in the stationary phase cou-
pled with the strict width requirement for initiating cell 
division leads to a strong correlation between the shape 
and size of individual cells and their resuscitation behav-
iour, with important implications for persistence towards 
antibiotics, and population fitness in general.

SyMBac can be used to train accurate segmentation 
models for various imaging platforms and modalities
Finally, while we demonstrated that SyMBac is most 
powerful in its ability to train highly accurate models for 

image segmentation of cells growing in linear colonies, 
we also sought to extend SyMBac to produce synthetic 
micrographs of cells growing in monolayer colonies, 
such as the “biopixel” device [33], 2D turbidostat [28], 
and even colonies growing on agar pads. Models trained 
with this data (DeLTA models) produced accurate seg-
mentation of test images (Fig. 6) (image data generously 
provided by the Elf Lab, Uppsala University). To extend 
the usability of SyMBac to timelapse images collected on 
agar pads, we have also simulated the growth of micro-
colonies in both fluorescence and phase contrast and 
generated corresponding images (Fig.  6) which are very 
similar to real micrographs. Modifications to the simu-
lation, the point spread function, and the segmentation 
pipeline are described in Additional file  1, Section  13. 
These synthetic images were used to train deep-learning 
networks to achieve good segmentation of experimental 
images from corresponding test images and produced 
masks of unprecedented qualities, in terms of the shape 
of individual cells and robustness towards the variation in 
size and contrast.

Discussion
Here, we have demonstrated a new approach of cell 
segmentation using deep-learning models trained 
entirely on synthetic training data. Synthetic data has 
been used previously to aid in segmentation. MiSic [34] 
is a tool for segmenting bacterial micrographs based 
on real training data, but supplements this data with 

Fig. 6  Extensions of SyMBac for cell segmentation in images of linear colonies of B. subtilis (very straight cells, unlike E. coli which have more 
curvature), monolayer colonies in a 2D microfluidic turbidostat chamber (data from [28], kindly provided by the Elf Lab, Uppsala University), growing 
colonies on agar pad, and low-resolution fluorescence snapshots of dense cell clusters on agar pad. Scale bar = 2 μm
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“synthetic” data, which however does not accurately 
reflect the optics, physics, or biology of the experi-
ment which is being analysed, and thus cannot segment 
images based purely on synthetic data. BCM3D [35] is 
a tool used for fluorescence biofilm segmentation; how-
ever,  (1) it is not compatible with linear and monolayer 
colonies  in microfluidic devices that are typically used 
in high-throughput quantitative experiments, and (2) 
its synthetic data is only generated in fluorescence and 
not compatible with phase-contrast images, which are 
ubiquitous in the imaging of bacteria. SyMBac is the 
first tool which can generate realistic synthetic data by 
modelling the entire experimental setup, end-to-end, 
and is compatible with phase-contrast and fluorescence 
images from various imaging platforms, such as micro-
fluidic devices and agar pads. This will provide break-
through advantages for training segmentation models 
for accurate performance in various types of imaging 
experiments.

Training data generated in more traditional ways, 
using various thresholding algorithms, results in variable 
masks for cells of identical shape and size when the cell’s 
pixels have different brightness, illumination profiles, 
etc. (the same cell would be assigned a different training 
mask depending on the preprocessing algorithms and 
parameters used). This introduces uncertainties in the 
assignment of “true pixels” for each cell, which is passed 
on to the model from training data and is propagated 
to the output. On the other hand, while input training 
masks need preprocessing, so do the output masks [12, 
13, 30]. Post-processing these outputs will deform the 
already artifactual cell masks even more and make cell 
morphology analysis highly susceptible to error (both 
systematic and random). Since SyMBac data is accompa-
nied by perfect ground truth information, the resultant 
masks are highly precise and accurate and do not need 
any post-processing. This eliminates user subjectivity 
in data creation, curation, and final analysis, increasing 
reproducibility. The highly accurate masks from models 
trained with SyMBac have revealed novel insights into 
cellular growth and physiology under changing condi-
tions and pave the way for systems-level analysis of the 
underlying factors using such high-throughput data.

Conclusions
In conclusion, SyMBac provides a major technical 
advancement for the easy adoption and robust imple-
mentation of machine learning approaches for analysing 
microscopy data of microbes. Through the rapid and easy 
generation of high-quality synthetic data with large cov-
erage of experimental setups and cellular morphologies, 
SyMBac addresses a critical obstacle in the application of 
machine learning tools for high-throughput single-cell 

image analysis from various platforms and organisms. 
Beyond the compatibility towards variations in cell mor-
phology and imaging platform designs, the microscope 
model in the pipeline is compatible with objectives of 
various resolutions, including low-resolution air objec-
tives. Therefore, SyMBac enables easy creation of train-
ing data for low-resolution microscopy images, which is 
near-impossible for human annotators or contrast-based 
computational programs. This enables high-accuracy 
segmentation from images collected with air objectives 
(Fig. S11.3 in Additional file 1), which will have important 
implications in analysing high-throughput image-based 
screening experiments ([3, 36–38]), where low-resolu-
tion air objectives provide the necessary travel distance, 
speed, and large fields of view. As SyMBac enables the 
easy creation of synthetic training data at any spatiotem-
poral resolution, it also addresses the robustness and 
reproducibility problems with benchmarking machine 
learning (ML) and non-ML approaches for cell segmen-
tation and tracking. Therefore, we believe SyMBac will 
play a critical role in improving the performance of the 
ML algorithms, while also enabling accurate assessments 
of their performance limits.

Methods
Synthetic image generation

Simulation of growth and division of cells and their 
interactions with each other and the microfluidic device
We built an agent-based model (ABM) of cell growth 
and division, taking into account the three size regula-
tion modes of bacteria (adder, sizer, timer), while also 
adding variability to the key parameters governing cell 
division. Cells are agents with properties such as length, 
width, position, and age, and can be customised to 
include new properties such as time-dependent fluo-
rescence intensity. These cell agents exist as dynamic 
objects in a rigid body physics world called a “scene”, 
modelled using Python bindings of the popular physics 
engine Chipmunk (pymunk) [24]. Static objects could 
be added to these scenes which are shaped into micro-
fluidic device geometries, with configurable dimensions. 
A global event loop keeps track of cell growth, divisions, 
inter-cellular collisions, and cell-device collisions at 
each time step. A simple API was created to allow simu-
lations to be run by entering the desired distributions of 
cell lengths and widths by defining the mean and vari-
ance of a cell’s maximum length and average width and 
then selecting the desired trench geometry (Additional 
file 1, Section 2). We also incorporate a cell’s probability 
to lyse at each timepoint, which can be used to simulate 
antibiotic or bacteriophage susceptibility experiments. 
The simulation can also be watched in real time to 
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check that the chosen parameters are valid (Fig. S2.1 in 
Additional file 1).

Extracting geometric information and rendering images 
of the bacteria and device in the scene
Once model scenes are generated from the simulations, 
geometric information about the cell and trench posi-
tions is extracted. This information is the position of each 
cell’s vertices in every timepoint. The cell’s 3D structure is 
a spherocylinder, which affects how light interacts with it, 
yet the simulation engine runs only in 2D. Therefore, to 
render 3D cells, the cell’s vertices are revolved along their 
major axis to generate each cell’s spherocylindrical hull. 
All of these 3D cells are then morphed to simulate cell 
bending and then re-rendered in a 3D scene (Fig. S3.2 in 
Additional file 1). A 2D projection of this 3D array is then 
taken, such that an orthographic projection image is gen-
erated where the intensity in each pixel is proportional to 
the optical path length (OPL) in that region (Fig. S3.1 in 
Additional file 1). The details of this calculation are pro-
vided in Additional file 1, Section 3. This simulated image 
corresponds to what would be seen if a microscope had 
no PSF, and thus induced no diffraction artefacts in an 
image. From the simulated images at this stage, we also 
save the ground truth images of the cell positions, which 
act as the masks in our training data.

Microscope model for generating phase‑contrast 
and fluorescence images
The microscope model generates images from the ortho-
graphic projections by convolving them with PSFs of rel-
evant optics. First, the raw image is rendered at a high 
resolution (typically 3×  the real pixel size) and then 
convolved with either a fluorescence of phase-contrast 
PSF, which is also rendered at a higher resolution. After 
PSF convolution, the image is sub-sampled back to the 
original resolution. Convolution at higher resolution is 
more accurate, because sub-resolution features of the 
PSF (such as the concentric rings) are maintained, and 
propagated to the image; otherwise, the PSF convolu-
tion results would be corrupted by low-resolution arte-
facts. The user can select an ideal fluorescence PSF or 
phase-contrast PSF which is modelled as an Airy disk and 
obscured Airy disk [25] respectively (Additional file  1, 
Section 4). Additionally, a 3D fluorescence PSF can also 
be selected for full 3D convolution of the cell volumes. 
The 3D PSF is provided based on the model given by [41]. 
A comparison between these two methods is given in 
Additional file 1, Section 5. The PSFs need to be param-
eterised by inputting the microscope objective’s numeri-
cal aperture, refractive index of the medium, emission 
wavelength, camera pixel size, and phase-contrast ring 

and annulus dimensions (details provided in Additional 
file 1, Section 4).

Image optimisation
Next, further optimisation can be used to maximise the 
similarity between the synthetic image and an example 
real microscope image. Multiple image adjustments are 
possible, including intensity histogram matching, noise 
matching, rotational Fourier spectrum matching, cam-
era noise simulation, and even manual intensity correc-
tions. This is done using an interactive IPython Notebook 
interface, where the user is presented with a side-by-side 
comparison of a synthetic image and a real image from 
their experiment. Two plots showing the relative errors 
in intensity and variance between cells, the mother 
machine device, and the space between cells are given so 
that the user can optimise their image to minimise this 
error (Additional file 1, Section 7 and Fig. S7.1 in Addi-
tional file 1) (Note: While examples of black box optimis-
ers for image similarity matching are included, we avoid 
their use for this step due to the very noisy error land-
scape between synthetic and real images. Moreover, we 
were unable to define a perfect objective function which 
guarantees perfect image similarity). Once the optimal 
parameters are identified, large volumes of synthetic 
images are then generated accordingly. These param-
eters can also be varied according to a uniform or Gauss-
ian distribution during the image generation process to 
simulate minor fluctuations in image formation during 
the experiment. This also acts as a form of data augmen-
tation, but occurs during the image generation process, 
which preserves the mapping between object and image. 
The full image generation process is summarised in block 
diagram form in Fig. 7, and other steps are summarised 
below, with all implementation details in the supplemen-
tary information.

After image optimisation, training samples are gener-
ated according to the optimised parameters. We however 
can simulate uncertainty in an optical system by sam-
pling random deviations in these parameters, such as the 
level of defocus, the apodisation, and noise levels. This is 
not data augmentation as it is traditionally understood, 
as we are simulating mechanistic changes in the image 
formation process. For the training data generated in this 
paper, we uniformly sampled ±5% around the chosen 
parameters.

Extension to 2D growth
We have extended the use of SyMBac beyond experi-
ments with microfluidic linear colonies, to include 
growing monolayer colonies in microfluidic devices and 
agar pads. For this purpose, the cell simulator back-end 
was switched from our custom implementation (which 



Page 13 of 16Hardo et al. BMC Biology          (2022) 20:263 	

is optimised for 1D growth in linear colonies) to CellM-
odeller [42], a more general cell simulator for 2D colo-
nies. Scenes are redrawn in the same way as previously 
described, and either phase-contrast or fluorescence 
PSFs are convolved to generate respective image types. 
The main difference here is the addition of additional 
phase objects to simulate other microfluidic geometries 
(shown in Fig. 6), and pseudorandom (Perlin [43]) noise 
to simulate the textures seen in typical phase-contrast 
images of microcolonies on agar pads (Fig.  S13.3 in 
Additional file  1). Additionally, the point spread func-
tion was adjusted by adding a very small constant offset 
to modulate the amount of shade-off and halo effects 
which are characteristic of phase-contrast images 
(Fig. S13.2 in Additional file 1). The details of this pro-
cess are described in Additional file 1, Section  13. For 
2D geometries, on average, 20 CellModeller simula-
tions were run starting from a single cell, generating 
in total approximately 1000 unique cell images. This 
was further augmented by sampling a large variety of 
parameters, which ensures training samples have vari-
able background noises, shade-off and halo amounts, 
and cell positions. This can be considered a form of 
data augmentation, but this step is performed before 
training the model, rather than during, and is based on 
the type of image one wants to segment. In total, each 
model is trained on 5000 unique synthetic images.

Model training
We utilised two segmentation models in this work, 
DeLTA [30] (which is a U-net implementation) and 
Omnipose [31], an extension to Cellpose [32] allowing 
for the reconstruction of masks of arbitrary morphology.

The training protocol for each model is different. 
DeLTA was trained using pairs of synthetic images and 
ground truth masks for single colonies, but also required 
the calculation of weightmaps. These weightmaps are 
images with regions of high intensity corresponding to 
areas where masks are close to touching. During training, 
U-net pays additional attention to these regions to bet-
ter learn segmentation of nearby, nearly touching objects. 
Therefore, if training DeLTA, SyMBac always gener-
ates binary masks which are not touching. Additionally, 
images and their masks need to be resized in order to 
fit within DeLTA’s architecture for training. This pro-
duces a model which accepts images of a certain dimen-
sion only. DeLTA was always trained with 4000 images of 
single trenches, for 400 epochs. We provide interactive 
notebooks to preprocess, train, and segment data with 
DeLTA.

Omnipose is trained differently. Omnipose can accept 
images of any size, and so we generated tiled images of 
40 trenches at a time. This increased efficiency of train-
ing and allowed more total cells to be seen by the net-
work. Additionally, when training Omnipose, masks are 

Fig. 7  Block diagram of the image generation pipeline. The cell spherocylinder image is first morphed using the roll function and multiplied by 
Ic , the empirical cell intensity. To this image is added the trench OPL image, which is multiplied by It , the empirical trench intensity. Finally, the 
media image is added with those pixels being multiplied by Im , the empirical media intensity. These steps are described in detail in Additional 
file 1, Section 3. The PSF, which has been altered by Gaussian apodisation, and simulated defocus is then convolved over the image. The precise 
implementation of the PSF and its modifications are described in Additional file 1, Section 4. The camera-modelled shot noise and read noise 
are then added to the image (implementation details in Additional file 1, Section 6 [39], with optional Fourier and intensity matching occurring 
after (Additional file 1, Section 7, [40]). Combined, this produces a synthetic image realistic enough to train highly accurate models for image 
segmentation of real data
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labelled, producing an instance segmentation. This allows 
masks to touch, which is beneficial in the segmentation 
of dense or closely packed bacteria. It is also beneficial in 
the segmentation of small cells, because no empty border 
needs to be created around each touching mask, which 
would be a significant fraction of the area of a small 
cell. Omnipose was always trained on 100 images of 40 
trenches, for 4000 epochs. We provide notebooks for 
training and segmenting Omnipose based on the exam-
ples given from the original paper.

In both models’ cases, we opted to disable data aug-
mentation, as we already sample mechanistic changes 
in the image formation process. Data augmentation can 
corrupt the image-object relation with unrealistic trans-
formations. The only augmentations we allow are rota-
tions and flipping of the data.

For mother machine experiments, we tested SyM-
Bac against 4 datasets, which have their details given in 
Table 3. Three of the datasets are images of E. coli grow-
ing in a mother machine, taken with a 100× oil objective, 
and one dataset was imaged with a 40× air objective, 
using a 1.5× post-magnification lens, giving an effective 
magnification of 60×. Synthetic images for this dataset 
were still generated according to the optics of the 40× 
objective and then scaled to the appropriate pixel size.

Training data which contains a large variety of cell sizes 
can also be generated, with very small and very large cells 
being sampled. It is important to note that the model 
performance does not scale with the number of images 
of each cell type it sees, but rather by the raw cell count 
in each image. Therefore, if generating training data with 
a mixture of large and small cells, one should have fewer 
images of small cells, as they will contain more cells per 
image.

Model evaluation
Because the training data is purely synthetic, valida-
tion data in the traditional sense does not exist. For this 
reason, during segmentation with either Omnipose or 
DeLTA, we saved the model after every epoch and evalu-
ated performance through the analysis of growth data. 
Bacterial growth in the microfluidic linear colonies traces 
out a predictable sawtooth wave (Fig. S9.2 in Additional 

file  1). The first derivative of these sawtooth waves was 
analysed for spurious peaks, which are the signature of 
over- and under-segmentation errors (Fig. S9.3 in Addi-
tional file  1). The identification error rate is therefore 
the percentage of timepoints which contain a spurious 
peak. If a cell is mis-segmented between frames, it will 
appear as though a cell’s length sharply decreases then 
increases or sharply increases then decreases. These 
can be detected with a simple peak-finding algorithm, 
with a detailed discussion included in Additional file  1, 
Section 9.

Segmentation analysis
The output from a U-net is a probabilistic threshold 
image. This image needs to be converted into a binary 
mask by thresholding pixel values between 0 and 1. 
Thresholds close to 0 will generate larger, connected 
masks, and thresholds close to 1 will generate smaller 
less connected masks. In order to identify the opti-
mal threshold value which generates the most accurate 
masks, an independent set of synthetic data is segmented 
using the neural network, and the probability thresholds 
are adjusted to maximise the Jaccard index between the 
ground truth and the model output (Fig. S9.1b in Addi-
tional file 1). Depending on the type of dataset, this value 
can range between 0.6 and 0.99. If the thresholding value 
is low (around 0.6), then masks will be connected. To 
alleviate this, we use seeded watershed segmentation 
to cut masks appropriately. Seeds are generated by first 
thresholding masks at very high probabilities ( P > 0.999 ) 
and performing the watershed on the optimal probability 
binary mask. The output from Omnipose is an instance 
segmentation and requires no thresholding. It must be 
noted that we do not perform any post-processing on the 
training data or the segmentation results which would 
affect the shape of the mask.

In order to analyse segmentation precision, we 
looked at cell width and length. A single cell’s width is 
not expected to change drastically during growth. We 
tracked single cell width variation of models trained 
on Lugagne et al.’s human-annotated dataset, and syn-
thetic data and plotted width distributions and time 
series to assess the difference in precision between the 

Table 3  Datasets analysed using SyMBac

Dataset Optics Biology Notable features

Lugagne et al. (exponential) 100× oil E. coli in balanced growth Poor contrast data

Bakshi et al. (exponential) 100× oil (NA = 1.30) E. coli in balanced growth High contrast data

Bakshi et al. (stationary) 100× oil (NA = 1.30) E. coli in stationary phase Small stacked cells

Bakshi et al. 60× (exponential) 40× air + 1.5× post mag (NA = 
0.95)

E. coli in balanced growth Low resolution + 
non-uniform illumi-
nation
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two models. This also gave a qualitative intuition of the 
temporal coherence of the models, as high variability 
will result in high temporal decoherence (Fig. S10.1 in 
Additional file 1). The cell length is expected to remain 
constant during the deep stationary phase. Using the 
dataset from Bakshi et al., we plotted each cell’s length 
during the stationary phase, and fitted a quadratic, tak-
ing the standard deviation of the residuals as our preci-
sion (Fig. S9.5 in Additional file 1).

After generation of the masks, information on cell cur-
vature, radius (width), and length are calculated using 
the Colicoords Python library [16], with an example of 
the output coordinate system shown in Fig.  5c. While 
this analysis is slow (analysis of 1 million cells from the 
100× Bakshi et al. dataset taking more than 48 h to com-
plete on an AMD Ryzen 7 5800X with 16 CPU threads), 
the accuracy and performance of this type of analysis 
are unmatched when compared to the more commonly 
used functions for morphological analysis, such as fitting 
ellipses using regionprops from MATLAB or Scikit-
image. The length and width of mothers can then be plot-
ted over time from the output data.
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