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Abstract

With the development of novel prognostic tools derived from omics technologies, transplant 

medicine is entering the era of precision medicine. Currently, there are no established predictive 

biomarkers for post-transplant kidney function. A total of 270 deceased donor pretransplant kidney 

biopsies were collected and posttransplant function was prospectively monitored. This study first 

assessed the utility of pretransplant gene expression profiles in predicting 24-month outcomes 

in a training set (n=174). Nearly 600 differentially expressed genes were associated with 24-
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month graft function. Grafts that progressed to low function at 24-months exhibited upregulated 

immune responses and downregulated metabolic processes at pre-transplantation. Using penalized 

logistic regression modeling, a 55 gene model AUROC for 24-month graft function was 0.994. 

Gene expression for a subset of candidate genes was then measured in an independent set of 

pretransplant biopsies (n=96) using qPCR. The AUROC when using 13 genes with 3 donor 

characteristics (age, race, BMI) was 0.821. Subsequently, a risk score was calculated using this 

combination for each patient in the validation cohort, demonstrating the translational feasibility 

of using gene markers as prognostic tools. These findings support the potential of pretransplant 

transcriptomic biomarkers as novel instruments for improving posttransplant outcome predictions 

and associated management.

Introduction

Kidney transplantation (KT) significantly improves overall quality-of-life and survival for 

patients with end-stage renal disease (ESRD), however, sustaining long-term allograft 

survival remains an ongoing challenge.1 The donor organ shortage has resulted in the 

increased use of marginal donor kidneys, further complicating the evaluation of organ 

quality without objective markers.2–4

Currently, the evaluation of donor organ quality largely depends on the Kidney Donor 

Profile Index (KDPI), a numerical score that combines 10 donor characteristics, and on 

histological evaluations of core biopsies collected prior to transplantation.5,6 The use of 

histology to predict short-term function was introduced nearly two decades ago when 

investigators reported that severe glomerulosclerosis increases the risk of delayed graft 

function (DGF) and poor 6-month outcomes.7 However, histological scores at transplant 

time showed no correlation to long-term allograft survival. Histological evaluation has 

been widely disputed due to concerns related to bias and inter-observer discrepancies, yet 

this practice continues to be a standard of care in most US medical centers.6 Thus far, 

clinical characteristics and histological findings have not allowed for the robust prediction of 

post-transplant function.2,5–8

Recent advancements in transcriptomic technology have improved the diagnosis and 

management of human diseases, presenting a unique opportunity for molecular evaluations 

to assist in KT outcome prediction. A transcriptomic profile serves as a snapshot of the 

temporary cell state and thus, its analysis can provide detailed and personalized information 

on the biological responses to injury.9

There is a critical need for molecular tools that can accurately predict functional 

outcomes for kidney transplant patients.8 Over the past decade, many teams have explored 

differentially expressed genes (DEGs) associated with post-transplant events and outcomes, 

with very few reporting predictive scores for direct clinical translation.

This prospective multicenter study developed and validated a multivariable model, 

combining baseline clinical characteristics and transcriptomic (biological) data, that 

predicts post-transplant function and can be easily transferred to clinical settings. The 

prediction of long-term outcomes has the potential to allow for early interventions to 
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prevent or ameliorate progression to graft dysfunction, revealing a critical opportunity for 

transcriptomics to become a canon of contemporary transplant medicine.

2. Materials and Methods

2.1. Patients and Samples.

A total of 295 consecutive deceased donor (DD) KT recipients were enrolled from 4 

transplant centers in the US, including 1) Virginia Commonwealth University (VCU) 

Medical Center, 2) University of Virginia (UVA) Medical Center, 3) Montefiore Medical 

Center, and 4) University of Tennessee Health Science Center (UTHSC). The study protocol 

was approved by the Institutional Review Board (IRB #HP-00092097). The clinical and 

research activities being reported are consistent with the Principles of the Declaration of 

Istanbul as outlined in the Declaration of Istanbul on Organ Trafficking and Transplant 
Tourism. Written informed consent was obtained from KT recipients at transplantation time. 

Living donor recipients, re-transplant recipients, pregnant women, recipients <18 years old, 

HIV+ recipients, and recipients with previous history of malignancy were excluded from the 

study.

Tissue was obtained shortly before transplantation (back-bench biopsies) using an 18-gauge 

biopsy needle and immediately suspended in RNAlater (Ambion, Austin, USA). Patients 

received triple immunosuppression with calcineurin inhibitors, mycophenolate mofetil, and 

steroids; as for induction therapies, either anti-thymocyte globulin or basiliximab were 

administered.

Samples collected from UVA and VCU were included as part of the training set, while 

samples collected from Montefiore and UTHSC were included as part of the external 

validation set. Out of the 295 patients enrolled, a total of 25 were excluded due to follow-up 

loss, death with graft function, microarray quality control criteria, and biopsy RNA integrity. 

The patient flow diagram is shown in Figure S1.

2.2. Pre-processing Methods.

Total RNA was isolated from renal biopsies using TRIzol reagent (Invitrogen, Waltham, 

USA). RNA quality and integrity were evaluated using the Agilent RNA 6000 Nano Kit on 

the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, USA). Samples with an 

RNA integrity number of <8 were excluded from the analysis.

Gene expression of biopsies from the training set was measured using Affymetrix GeneChip 

microarrays (HG-U133A 2.0) (access: GSE147451) (Thermo Fisher Scientific, Waltham, 

USA). The Affymetrix Detection Call algorithm was used to determine whether probe sets 

were present, marginally present, or absent in each sample. Quality control was performed 

as previously published.10 To obtain probe set expression summaries, we used the robust 

multiarray average method.11 Prior to statistical analysis, the gene expression data matrix 

was filtered to exclude probe sets called absent in all samples and control probe sets, leaving 

19,380 probe sets remaining for statistical analysis.
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2.3. Study Design.

Estimated Glomerular Filtration Rate (eGFR) was calculated using the abbreviated 

Modification of Diet in Renal Disease (MDRD) formula.12 Study endpoints were defined 

as graft function at 24-months post-transplant (mean=24.3±1.2 months). Categorically, 

patients were considered to have low graft function with a 24-month eGFR <45 

mL/min/1.73m2, while an eGFR of ≥45 mL/min/1.73m2 represented the high function 

group, corresponding to the chronic kidney disease KDIGO guidelines (www.kidney-

international.org). Additionally, patients who experienced graft failure prior to 24-months 

were included in the low-functioning group. Linear mixed-effects models that included 

eGFR recorded at all time points (1-, 6-, 9-, 12-, 18-, 21-, and 24-months post-KT) were 

fit to demonstrate how continuous eGFR differed by this dichotomous categorization. To 

assess long-term outcomes, graft/patient survival was calculated as the time from 24-month 

post-transplant until the date of graft failure or date of death, censoring for those alive 

without graft failure at their last follow-up date. Only patients alive at 24-months were 

included in the survival analysis.

2.4. Statistical Methods.

The Kaplan-Meier method was used to estimate graft/patient survival and the log-rank 

test was used to compare the high vs. low eGFR groups. Descriptive statistics (mean and 

standard deviation (SD)) were applied to summarize continuous variables, while frequencies 

and percentages were used to summarize categorical variables.

To identify differentially expressed genes (DEGs) associated with outcome group, probe 

set level linear models were fit with high vs. low graft function group assignments as 

the predictor variable adjusting for the surrogate variable representing batch effect, using 

the limma Bioconductor package of the open-source R software for statistical computing 

and graphics (R Foundation for Statistical Computing, Vienna, Austria). All resulting p-

values were adjusted for multiple hypothesis testing using Benjamini and Hochberg’s false 

discovery rate (FDR) method.13

Penalized logistic regression models were applied to simultaneously perform automatic 

variable selection and outcome prediction for high-dimensional covariate spaces. First, the 

gene expression data matrix was filtered to retain differentially expressed probe sets having 

an FDR <0.05. Thereafter, repeated 10-fold cross-validation (CV) was used to identify 

the optimal tuning parameters for fitting a penalized logistic regression model predicting 

outcome (high vs. low graft function). The repeated 10-fold CV procedure was performed 

using the caret package14 with glmnet15 in the R programming environment. Gene 

expression data was applied to derive a multivariable model. A grid search was performed 

to optimize the two tuning parameters required by elastic net, the penalty term λ, and the 

proportion of the penalty associated with the LASSO versus ridge regression, αLASSO. The 

combination of DEGs that optimized the area under the receiver operating characteristic 

curve (AUROC) from the repeated 10-fold CV procedure was selected for fitting the 

gene expression model. Significant demographic/clinical characteristics (p-value<0.05) were 

combined with DEGs to develop a gene expression + clinical data model. Two additional 
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models were fit for performance comparison: one using all significant clinical characteristics 

and another that included the patient’s numerical KDPI value as the sole predictor.16

2.5. Pathway Analyses.

GO and KEGG pathway enrichment analyses were performed using enrichGO and 

enrichKEGG functions which adjust the estimated significance level to account for multiple 

hypothesis testing (FDR≤0.05). Finally, Metascape (https://metascape.org) was used for 

functional enrichment, interactome analysis, gene annotation, cell enrichment, and protein-

protein interactions (PPIs).17 The Molecular Complex Detection (MCODE) algorithm was 

applied to the PPI network to identify densely connected networks.

2.6 QPCR Validation.

An initial set of genes was selected for further validation based on i) statistical significance, 

ii) high predictive performance in final models, and iii) association with relevant biological 

pathways. Individual predesigned TaqMan™ assays (ThermoFisher Scientific, Waltham, 

USA) were used for qPCR reactions. Gene expression results were expressed as ΔCt values 

normalized by a dual reference gene combination (ACTB and GAPDH).18 Univariable 

logistic regression models were fit for each gene to identify whether gene expression was 

significantly associated with 24-month outcome. Thereafter, multivariable logistic regression 

models were fit for each gene to determine significance after adjusting for important clinical 

covariates identified in the training set, and the AUROC and associated 95% confidence 

intervals (CI) were estimated.

2.7. Risk Score Equation.

The estimated regression coefficients (b) for each independent variable (X) in the 

multivariable regression model were used to form the linear risk score equation:

Risk score = b0 + b1 X1 + b2 X2 + …bp Xp

The optimal threshold which maximizes both specificity and sensitivity (Youden’s index) 

was used to predict whether the subjects would have low or high eGFR at 24 months. 

Lastly, the linear predictor (risk score) for each patient was converted into a probability scale 

(0.0–1.0) using the following equation:

Probability of low 24−montℎ graft function = e b0 + b1X1 + b2X2 + …

1 + e b0 + b1X1 + b2X2 + …

3. Results

3.1. Clinical markers discriminating 24-month eGFR outcomes.

Among the 174 KT recipients in the training set, 67 (38.5%) subjects had low graft function 

and 107 (61.5%) had high function based on the criteria described in Materials and Methods. 

Clinical characteristics and demographics are shown in Table 1. On average, the high 

functioning group was composed of younger donor kidneys (37±16 years) compared to the 
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low graft function group (48±14 years) (p<0.001). The groups also differed with respect to 

donor race (p=0.006), and BMI (p<0.001). No recipient variables were significantly different 

between groups. A spaghetti plot separated by high vs. low graft function with lowess 

smooths overlaid and the linear mixed-effects model demonstrated the difference between 

the eGFR trajectories over time (Figure S2). Regarding the individual eGFR courses, 

there was a significant difference (p<0.001) between the two groups across each timepoint 

throughout the 24-month period of observation. The high-functioning group showed a stable 

positive eGFR slope of 0.067 ml/min/month (0.81 ml/min/year), while the low-functioning 

group had a negative slope of −0.53 ml/min/month (−6.36 ml/min/year).

Patients with low 24-month graft function experienced significantly poorer long-term 

survival outcomes than patients with high 24-month graft function (p=0.03) (Figure S3). 

Using the combined analytical approaches, it was evident that the two groups were 

significantly different throughout follow-up.

3.2. Molecular markers discriminating 24-month eGFR outcomes.

A total of 595 unique genes (corresponding to 699 probe sets) were differentially expressed 

(FDR<0.05) in pretransplant donor organs, of which 408 were upregulated and 187 were 

downregulated in low function kidneys (Table S1). A volcano plot showing for all DEGs 

is displayed in Figure 1A. A heatmap displaying the top shared and unique pretransplant 

biological pathways in low-function kidneys is depicted in Figure 1B. These pretransplant 

biopsies are highly enriched in genes inducing innate (e.g., ADAM8, C1QA, CCL5, CD68, 
CLEC7A, HLA-F, NCKAP1L TYROBP,) and adaptive (e.g., C1QB, CD3D, CD6, CD48, 
CD84, GPR183, IGLL5, HLA-DQA1, HLA-DQB1, HLA-DQB2, IL7R) immune responses. 

Cell-type enrichment analyses identified dendritic, monocytes, myeloid, and natural killer 

cells as the main cell sources for the upregulated genes in pretransplant biopsies with low 

24-month function (Figure S4). In contrast, downregulated genes such as CTNND1, DLAT, 
ENO1, FH, GOT1, IDH2, PDS5A, RFC3, and PGK1 are involved in metabolic processes 

(carbon/glucose metabolism, TCA cycle), gluconeogenesis, and cell-cell adhesion, and are 

associated with low 24-month function.

The PPIs between down- and up-regulated DEGs are displayed in Figures S5 and S6. 

Kidneys with low 24-month function exhibited many downregulated biological processes 

at pre-transplantation including the metabolism of cholesterol, carbon, and carbohydrates, 

DNA damage recognition, regulation of intrinsic apoptotic signaling, and cell cycle 

regulation (Figure S5). These same kidneys showed upregulated PPI networks related to 

dendritic cell migration, regulation of chemotaxis, interferon gamma (IFN-γ) signaling, and 

the Fc epsilon receptor 1 (FCER1) pathway (Figure S6).

3.3. 24-month multivariable models

(1) Gene Expression (GE) model.—When searching over the grid of parameters, the 

optimal value from our repeated 10-fold CV procedure was λ=0.02 and αLASSO=1. When 

applying gene expression data (FDR≤0.05) to predict 24-month function, there were 55 

significant probe sets in the penalized model. A plot of these 55 probe sets by their variable 

importance is displayed in Figure 2A. The AUROC using gene expression data (55 genes) 
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was 0.994 (95% CI: 0.986, 1.0). When performing N-fold CV on the GE model, the AUROC 

was 0.767 (0.696, 0.838).

(2) Donor Characteristics (DC) model.—Donor age, race, and BMI were the only 

clinical characteristics significantly different when comparing the high vs. low eGFR groups 

(p<0.05) (Table 1). Parameter estimates, standard errors, and p-values from the DC logistic 

regression model are shown in Table S2. The AUROC for the training data using the 3 

characteristics with statistical significance (donor age, race, BMI) was 0.754 (95% CI: 

0.680, 0.828). The N-fold CV for the donor age, race, and BMI model is 0.727 (0.649, 

0.805).

(3) Gene Expression + Donor Characteristics (G+D) model.—When searching 

over the grid of parameters, the optimal values from our repeated 10-fold CV procedure 

were also λ=0.02 and αLASSO=1. When fitting the model there were 49 probe sets in the 

final model when donor age, race, and BMI were included. A plot of the 52 variables (49 

probe sets and 3 donor characteristics) in order of their variable importance is displayed 

in Figure 2B. The AUROC for the G+D model was 0.996 (95% CI: 0.990, 1.0). When 

performing the N-fold CV the AUROC was 0.809 (0.744, 0.875).

(4) KDPI model.—The KDPI for each patient was calculated using 10 donor 

characteristics (donor age, height, weight, race, cause of death, HCV status, serum 

creatinine, DCD criteria, history of hypertension, and history of diabetes). Resulting 

numerical KDPI scores were used for the predictive model. The AUROC for the training 

data was 0.718 (95% CI: 0.642, 0.794). The AUROC for the N-fold CV is 0.705 (0.627, 

0.782).

The respective AUROC curves for the 4 models in the training set are shown in Figure 3.

3.4. External Validation using qPCR.

The validation set included 96 KT recipients, of which 36 (37.5%) had low eGFR and 

60 (62.5%) had high eGFR at 24-months post-transplant (Table 2). The AUROC for the 

donor characteristics model (age, BMI, race) is 0.691 (95% CI: 0.584–0.797). The KDPI 

model calculated using 10 donor characteristics yielded the same point estimate for AUROC 

= 0.691 (95% CI: 0.585–0.797). The 13 genes that were validated from the final models 

(GE and G+D) included BCHE, FKBP4, GYPC, HLA-DQB1, HNRNPH3, IGHD, NUDT4, 
RBM8A, RHOQ, SQLE, STK24, TRADD, and ZNF185 (assay IDs provided in Table S3). 

The combined model (13 genes + 3 donor characteristics) showed an AUROC of 0.821 (95% 

CI: 0.733, 0.909) for 24-month function. The respective AUROC curves for the 4 models 

after the 10-fold CV procedure are shown in Figure 4.

3.5. Risk Score Calculation.

A 24-month graft function risk score was calculated for each patient in the independent 

validation cohort (n=96) based on the combined model (13 genes + 3 donor characteristics). 

Regression coefficients, confidence intervals, and p-values are described in Table 3. Gene 

Archer et al. Page 7

Am J Transplant. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expression values and donor characteristics were linearly combined into a risk score as 

follows:

Risk score = −4.544 + 0.29 (ΔCt BCHE) + 0.023 (ΔCt FKBP4) − 0.981 (ΔCt 

GYPC) − 0.105 (ΔCt HLA-DQB1) − 0.327 (ΔCt HNRNPH3) + 0.039 (ΔCt IGHD) 

+ 0.975 (ΔCt NUDT4) + 0.717 (ΔCt RBM8A) − 2.182 (ΔCt RHOQ) + 0.112 (ΔCt 

SQLE) + 1.073 (ΔCt STK24) + 0.171 (ΔCt TRADD) + 0.378 (ΔCt ZNF185) + 

0.057 (donor age) + 0.004 (donor BMI) + 0.586 (donor race indicator variable).

Donor race was converted to a dichotomous variable, with Caucasian = 0 and all other races 

= 1. The risk equation was then converted to a probability scale (0.0–1.0). The probability 

of low-graft function for each patient is plotted in Figure 5A and the KDPI score for each 

patient is plotted in Figure 5B. Youden’s index was calculated for both the probability score 

and the KDPI, with y=0.306 and y=52 as the respective thresholds that maximize specificity 

and sensitivity for the validation set. When using KDPI to predict low 24-month function, 

the sensitivity was 80.6% and the specificity was 53.3%. When using the risk probability 

score, the sensitivity was 88.9% and the specificity was 66.6% (Figure 5C).

4. Discussion

The field of transplantation is in critical need of more accurate tools to predict allograft 

outcomes.19–21 Current in-use clinical scores and histological assessments have only 

demonstrated modest predictive accuracy for short-term outcomes.22–25 Over the last 

decade, transcriptomic profiling has emerged as a powerful approach for revealing unbiased 

biological information useful for posttransplant management.

Our study represents the largest high-throughput transcriptomic analysis of pretransplant 

donor kidneys predicting 24-month outcomes. Herein, we present a predictive risk score, 

which combines donor age, race, BMI, and donor quality gene markers, that can be 

calculated prior to transplantation to predict graft function. We also identified differential 

pretransplant transcriptional profiles between kidneys with low and high function at 24-

months, providing a deeper insight into the early biological processes leading to graft 

dysfunction.

This prospective study has three critical features to consider: i) the inclusion of 270 patients 

from 4 transplant centers, ii) high-throughput genome-wide approaches, and iii) a well-

characterized external validation cohort. Furthermore, our unique patient cohort includes a 

broad spectrum of kidney donor organs (i.e., aged, DCD, HCV+, pumped, and AKI donors), 

and a significant number of African American recipients (70.8%).

Thus far, a limited number of peer-reviewed pretransplant kidney gene expression 

studies have been conducted in the field.26–34 Of these studies, only 2 evaluated graft 

outcomes beyond 1 year (both of which had small sample sizes and used targeted gene 

approaches).30,34 Critically, none of the previous studies included external validations, 

which are necessary to determine the reproducibility and generalizability of results in 

different patient populations.
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Additionally, the majority of predictive transcriptomic studies in kidney transplantation have 

focused on delayed graft function (DGF) as a surrogate marker, without being able to predict 

longer-term outcomes (>12 months).28,29,31–36 We found that DGF was not significantly 

associated with 24-month function (p=0.238), explaining why gene sets associated with 

DGF have poor predictive value.8,37 Furthermore, most transcriptomic studies have utilized 

post-reperfusion biopsies, which are less likely to capture intrinsic organ quality due to 

the ‘transcriptional noise’ induced by reperfusion injury, surgical procedures, recipient 

immune infiltration, and immunosuppressive medications.8,28,30,38–40 Our results indicate 

that the use of pre-reperfusion biopsies allows for a more accurate evaluation of donor organ 

quality.8,41–43

Our results showed that grafts with low function at 24 months displayed upregulated innate 

and adaptive immune responses (e.g., B cell proliferation, positive regulation of phagocytes, 

dendritic cell migration) prior to transplantation. This finding is in concordance with our 

previous studies, which reported an upregulated donor immune signature associated with 

short-term graft function.29,31,44 We also recently reported that pretransplant donor biopsies 

from grafts progressing to chronic allograft dysfunction presented differentially methylated 

epigenetic profiles related to an activated immune state.45

Moreover, the downregulation of fundamental biological processes such as metabolic 

function (e.g., metabolism of cholesterol, carbon, and carbohydrates) further exacerbates 

the degree of injury posttransplant in kidneys with low 24-month function. Metabolic 

dysfunction in native kidney tissue (involving oxidative phosphorylation, fatty acid 

oxidation, cellular respiration) is associated with impaired repair mechanisms in kidney 

disease, 46–50 which may contribute to the progressive decline of graft function.

Overall, increased immune responses and decreased metabolic activity prior to 

transplantation disrupt graft homeostasis and result in the gradual loss of kidney function 

over time. These results are independent of cold ischemia time and other pre-/peri-transplant 

factors, reflecting the importance of evaluating the inherent donor mechanisms responsible 

for triggering and likely, sustaining post-transplant injury.

Although many genes have been identified to play important roles in kidney disease 

progression and pathophysiology, they do not inherently serve as reliable predictors of 

post-transplant graft function and disease state.51 This study serves as one of the first 

computational studies to integrate experimental and clinical data to identify novel markers of 

graft function.

All clinical and demographic characteristics from both the donors and recipients were 

analyzed, and statistically significant variables were used to develop a multivariable 

predictive model. As expected, donor age was the most predictive clinical variable, 
8,29 followed by BMI and race. Current models including KDPI use less accessible/

objective donor characteristics such as “history of hypertension” and “history of diabetes.” 

Interestingly, no recipient characteristics (including age, rejection events, or donor-specific 

antibodies) correlated with 24-month outcomes, demonstrating the prevailing importance of 

donor organ quality in predicting graft function.
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We found that 24-month graft function was more accurately predicted by the transcriptomic 

profile of preimplantation biopsies (GE model AUROC = 0.994) than by significant donor 

characteristics (DC model AUROC = 0.754) or by KDPI scores (KDPI model AUROC = 

0.718) (p<0.001). The same was true of the combined gene and donor characteristic (G+D) 

model (AUROC=0.996) (p<0.001).

To confirm the generalizability of these results, a small set of genes from the final models 

were tested in an independent cohort of patients (G+D model AUROC=0.821). This 

model more accurately predicted 24-month function than the KDPI (AUROC=0.691) and 

DC models (AUROC=0.691) (p=0.026). In the same patients, qPCR results and clinical 

characteristics were combined to develop a predictive equation quantifying patient risk for 

decreased 24-month graft function.

Challenges associated with the statistical modeling of biomedical datasets include 

high-dimensionality, incompleteness, bias, heterogeneity, overfitting, and background 

noise.52,53,54,55 However, the use of an external validation set largely mitigates these 

concerns. While our analyses exceed the outcome measurements performed by nearly 

all pretransplant biomarker studies, predictive markers beyond 24-months need to be 

identified.8 Nonetheless, this study lays the groundwork for future clinical trials aiming 

to implement molecular markers in post-transplant management. While this study showed 

high accuracy of outcome prediction using 13 genes, a predesigned 96-well qPCR plate can 

be loaded with all the genes from the final models (GE and G+D models), which will further 

improve the predictive accuracy of this approach.

Defining surrogate endpoints, standards for outcome reporting, and statistical strategies 

to appropriately analyze differences between outcome groups is critical in biomarker 

discovery research.56 Currently, there is a great deal of complexity associated with patient 

classification approaches in kidney transplantation. A reliable classification of kidney 

function and progression is needed but not yet achieved. Thus, when designing this study, 

we considered multiple different patient classification approaches that utilized one or more 

of the following parameters: overall eGFR slope, Y-intercepts, final eGFR as a continuous 

outcome, and multiple eGFR measurements. We chose to analyze eGFR as a dichotomous 

outcome to enable the reporting of clinically meaningful statistics that frequently accompany 

diagnostic/prognostic assays, such as the AUROC. Ultimately, this eGFR categorization 

(supported by significant differences in long-term graft survival) allows for significant 

statistical power to detect important differences across primary endpoints for direct clinical 

translation.56,57

In conclusion, this is the first genome-wide large-cohort study to demonstrate that the 

donor kidney transcriptome, prior to implantation, captures intrinsic organ quality and 

carries significant predictive weight for 24-month transplant function. Our findings shift 

the paradigm of understanding longer-term kidney transplant outcomes away from recipient 

factors/post-transplant events (e.g., DGF) and towards the intrinsic donor organ quality, 

which can be captured by molecular techniques. Notably, we demonstrate that a combined 

predictive equation using both clinical and biological data can more accurately predict 

24-month outcomes as compared to the current established scoring system (KDPI) in an 
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external patient cohort. Such findings transform our understanding of graft quality, relevant 

biological pathways, and potential therapeutic targets, offering more personalized criteria for 

posttransplant management.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A. Volcano plot showing fold changes and the adjusted p-values for all differentially 

expressed genes between groups at pre-transplantation. The red dots represent down-

regulated genes and blue dots represent up-regulated genes in low-functioning kidneys. 

B. Heatmap of top enriched biological pathways in low-functioning kidneys, colored by 

p-values. Grey values indicate no detected expression patterns.
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Figure 2. 
A. Plot of the 55 genes listed by their variable importance in predicting 24-month function 

for the gene expression (GE) model. B. Plot of the 52 variables (49 genes + 3 donor 

characteristics) in order of variable importance used in predicting 24-month function for the 

gene expression + donor characteristics (G+D) model.
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Figure 3. 
Area under the receiver operating characteristic (AUROC) curves for the training data for 

the donor characteristics (DC) model, gene expression (GE) model, gene expression + donor 

characteristics (G+D) model, and the KDPI model in predicting high vs. low eGFR group 

24-months posttransplant. The diagonal line represents performance of a chance model.
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Figure 4. 
Area under the receiver operating characteristic (AUROC) curves for the validation set for 

the KDPI, donor characteristics (age, race, BMI), 14 genes alone, and 14 genes + 3 donor 

characteristics in predicting high vs. low eGFR group 24-months post-transplantation. The 

diagonal line represents performance of a chance model.
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Figure 5. 
A. Probability score (derived from predictive equation) of each patient in the validation set 

(n=96) separated by 24-month outcome group. Dotted horizontal line at 0.306 represents 

Youden’s index. Mean and standard deviation bars displayed. Green represents high and 

red represents low 24-month function. B. KDPI score for each patient in the validation set 

separated by 24-month outcome group. Dotted horizontal line at 52 represents Youden’s 

index (where specificity and sensitivity are maximized). Mean and standard deviation bars 

displayed. C. KDPI and probability score of each patient plotted with Youden’s indices 

depicted for each axis.
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Table 1.

Characteristics of donor and recipients sub-stratified based on eGFR at 24-month post kidney transplant in the 

training set (n=174).

Clinical Characteristic Category High eGFR
(n=107)

Low eGFR
(n=67) p-value

Donor Characteristics 

Donor age, years (avg ± SD) 37.12 ±15.97 48.49 ± 13.79 <0.001

Donor gender n (%)
Male 66 (61.7) 36 (53.7)

0.38
Female 41 (38.3) 31 (46.3)

Donor race n (%)

American Indian 1 (0.9) 0 (0.0)

0.006♦

Asian 2 (1.9) 0 (0.0)

African American 24 (22.4) 30 (44.8)

Caucasian 79 (73.8) 37 (55.2)

Hispanic 1 (0.9) 0 (0.0)

DCD, n (%) 16 (15.0) 12 (17.9) 0.761

Donor cause of death n (%)

Anoxia 33 (30.8) 20 (29.9)

0.113♦
Head trauma 36 (33.6) 13 (19.4)

Stroke 34 (31.8) 32 (47.8)

Other/Unknown 4 (3.7) 2 (3.0)

Delayed graft function n (%) 34 (31.8) 28 (41.8) 0.238

Donor BMI (avg ± SD) 26.57 ±5.83 31.10 ± 9.07 <0.001

CIT, hours (avg ± SD) 19.48 ±9.01 19.73 ± 6.65 0.837

WIT, min (avg ± SD) 30.79 ±7.33 31.79 ± 6.82 0.367

Pump used, n (%) 53 (49.5) 44 (65.7) 0.054

Pump time hours (avg ± SD) 7.05 ± 8.06 7.84 ± 7.16 0.497

Last donor creatinine mg/dL (avg ± SD) 1.24 ±0.87 1.25 ± 0.55 0.903

Donor HBV cAb n (%)

Negative 93 (86.9) 61 (91.0)

0.613♦Positive 9 (8.4) 3 (4.5)

N/A 5 (4.7) 3 (4.5)

Donor HCV Ab n (%) Positive 12 (11.2) 7 (10.4) 1.00

Donor CMV, n (%) Positive 63 (58.9) 42 (62.7) 0.734

KDPI (avg ± SD) 49.46 ± 27.40 69.93 ± 22.00 <0.001

KDRI (avg ± SD) 1.07 ± 0.36 1.34 ± 0.40 <0.001

Histological Evaluation of Pretransplant Biopsies 

Pretransplant glomerulosclerosis (gsc) n (%)

Absent 62 (57.9) 46 (68.6)

0.603♦

Mild 17 (15.9) 8 (11.9)

Moderate 2 (1.9) 1 (1.5)

Severe 0 (0.0) 0 (0.0)

N/A 26 (24.3) 12 (17.9)

Pretransplant interstitial fibrosis (if) n (%) Absent 25 (23.4) 10 (14.9) 0.160♦
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Clinical Characteristic Category High eGFR
(n=107)

Low eGFR
(n=67) p-value

Mild 52 (48.6) 39 (58.2)

Moderate 4 (3.7) 6 (9.0)

Severe 0 (0.0) 0 (0.0)

N/A 26 (24.3) 12 (17.9)

Pretransplant tubular atrophy (ta) n (%)

Absent 46 (43.0) 26 (38.8)

0.263♦

Mild 34 (31.8) 26 (38.8)

Moderate 1 (0.9) 3 (4.5)

Severe 0 (0.0) 0 (0.0)

N/A 26 (24.3) 12 (17.9)

Recipient Characteristics 

Recipient age (avg ± SD) 51.98 ± 12.62 53.09 ± 11.06 0.556

Recipient gender n (%)
Male 64 (59.8) 40 (59.7)

1.00
Female 43 (40.2) 27 (40.3)

Recipient race n (%)

Asian/Pacific Islander 1 (0.9) 0 (0.0)

0.898♦

African American 79 (73.8) 50 (74.6)

Caucasian 22 (20.6) 16 (23.9)

Hispanic 4 (3.7) 1 (1.5)

Other/Unknown 1 (0.9) 0 (0.0)

Recipient BMI, (avg ± SD) 27.92 ± 5.19 28.48 ± 4.86 0.479

Recipient HCV, n (%)
Positive 13 (12.1) 6 (9.0)

0.621♦
Negative 94 (87.9) 61 (91.0)

CMV disease, n (%) Positive 2 (1.9) 4 (6.0) 0.206♦

Recipient CMV n (%) Positive 82 (76.6) 51 (76.1) 1.00

Pretransplant diagnosis n (%)

DM 20 (18.7) 15 (22.4)

0.516♦

DM/HTN 24 (22.4) 8 (11.9)

HTN 37 (34.6) 25 (37.3)

FSGS 8 (7.5) 5 (7.5)

Other 18 (16.8) 14 (20.9)

Matched sex, n (%) 49 (45.8) 41 (61.2) 0.068

Months on dialysis pretransplant (avg ± SD) 40.37 ± 34.62 45.95 ± 37.51 0.333

AR episodes within 12 months posttransplant n (%) 10 (9.3) 10 (14.9) 0.330♦

HLA mismatch (avg ± SD) 4.38 ± 1.33 4.41 ± 1.21 0.768

PRA >80% 30 (28.0) 22 (32.8) 0.501

dnDSA, n (%) Positive 8 (7.5) 10 (14.9) 0.131♦

A two-sample t-test was computed for continuous variables, while categorical variables were compared using a Chi-square test (or Fisher’s exact 
test when there were small cell sizes).

♦
Fisher’s exact test used due to small expected cell sizes.

AR: acute rejection; BMI: body mass index; CIT: cold ischemia time; CMV: cytomegalovirus; DCD: donation after circulatory death; DM: diabetes 
mellitus; dnDSA: de novo donor specific antibody, FSGS: focal segmental glomerulosclerosis; HBV: hepatitis B virus; HCV: Hepatitis C virus; 
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HLA: human leukocyte antigen; HTN: hypertension; KDPI: Kidney Donor Profile Index; KDRI: Kidney Donor Risk Index; SCD: standard criteria 
donor; WIT: warm ischemia time.
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Table 2.

Characteristics of donor and recipients sub-stratified based on eGFR at 24-month post kidney transplant in the 

validation set (n=96).

Clinical Characteristics Category High eGFR
(n=60)

Low eGFR
(n=36) p-value

Donor Characteristics 

Donor age (avg ± SD) 38.22 ±12.65 46.33±13.50 0.004

Donor gender, n (%)

Male 26 (43.3) 15 (41.7)

0.570Female 33 (55.0) 19 (52.8)

Unknown 1 (1.7) 2 (5.6)

Donor race, n (%)

Asian 0 (0.0) 1 (2.8)

0.359

African American 11 (18.3) 7 (19.4)

Caucasian 44 (73.3) 22 (61.1)

Hispanic 3 (5.0) 2 (5.6)

Other 2 (3.3) 4 (11.1)

DCD, n (%) 4 (6.7) 6 (16.7) 0.227

Donor cause of death, n (%)

Anoxia 26 (43.3) 12 (33.3)

0.241
Head trauma 11 (18.3) 6 (16.7)

Stroke 17 (28.3) 17 (47.2)

Other/Unknown 6 (10.0) 1 (2.9)

Delayed graft function, n (%) 26 (43.3) 16 (44.4) 1.000

Donor BMI (avg ± SD) 29.85 (9.06) 36.47 (50.16) 0.320

CIT, hours (avg ± SD) 21.49 ±10.80 20.99 ±8.02 0.816

WIT, min (avg ± SD) 35.42 (5.23) 33.79 (5.83) 0.169

Pump used, n (%) 31 (51.7) 16 (44.4) 0.635

Pump Time min (avg ± SD) 261.25 (356.61) 261.83 (383.20) 0.994

Last Donor Creatinine mg/dL (avg ± SD) 1.83 (1.71) 1.38 (1.18) 0.172

Donor HBV cAb, n (%)

Positive 4 (6.7) 2 (5.6)

0.718Negative 55 (91.7) 34 (94.4)

N/A 1 (1.7) 0 (0.0)

Donor HCV Ab, n (%) Positive 19 (31.7) 10 (27.8) 0.863

Donor CMV, n (%)

Positive 29 (48.3) 21 (58.3)

0.237Negative 31 (51.7) 14 (38.9)

N/A 0 (0.0) 1 (2.8)

KDPI (avg ± SD) 51.68 (23.34) 67.36 (20.08) 0.001

KDRI (avg ± SD) 1.08 (0.33) 1.33 (0.46) 0.003

Recipient Characteristics 

Recipient Age (avg ± SD) 53.33 (12.16) 50.64 (11.43) 0.290

Recipient Gender n (%)
Female 21 (35.0) 9 (25.0)

0.571
Male 38 (63.3) 26 (72.2)
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Clinical Characteristics Category High eGFR
(n=60)

Low eGFR
(n=36) p-value

Unknown 1 (1.7) 1 (2.8)

Recipient Race n (%)

African American 42 (70.0) 21 (58.3)

0.698
Caucasian 11 (18.3) 9 (25.0)

Hispanic 3 (5.0) 3 (8.3)

Unknown 4 (6.7) 3 (8.3)

Recipient BMI, (avg ± SD) 39.20 (38.37) 45.48 (62.18) 0.546

Recipient HCV, n (%)

Positive 3 (5.0) 6 (16.7)

0.108Negative 47 (78.3) 27 (75.0)

N/A 10 (16.7) 3 (8.3)

CMV disease, n (%)

Positive 6 (10.0) 2 (5.6)

0.726Negative 50 (83.3) 31 (86.1)

N/A 4 (6.7) 3 (8.3)

Recipient CMV, n (%)

Positive 29 (48.3) 20 (55.6)

0.165Negative 30 (50.0) 13 (36.1)

N/A 1 (1.7) 3 (8.3)

Pretransplant diagnosis n (%)

DM 11 (18.3) 6 (16.7)

0.676

DM/HTN 10 (16.7) 8 (22.2)

HTN 14 (23.3) 5 (13.9)

FSGS 5 (8.3) 3 (8.3)

Other 18 (30.0) 14 (38.9)

Unknown 2 (3.3) 0

Matched sex, n (%) 21 (36.2) 16 (47.1) 0.421

Months on dialysis pretransplant (avg ± SD) 45.44 ±24.58 54.22 ±50.52 0.262

BMI: Body Mass Index; CIT: Cold Ischemia Time; CMV: Cytomegalovirus; DCD: Donation after Circulatory Death; DM: Diabetes Mellitus; 
FSGS: Focal Segmental Glomerulosclerosis; HBV: Hepatitis B Virus; HCV: Hepatitis C Virus; HTN: Hypertension; KDPI: Kidney Donor Profile 
Index; KDRI: Kidney Donor Risk Index; SCD: Standard Criteria Donor; SD Standard Deviation; WIT: Warm Ischemia Time.
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Table 3.

Regression coefficients for the logistic regression model that includes 13 genes and 3 donor characteristics 

(age, BMI, and race).

Coefficient Lower bound Upper bound P-value

Intercept −4.544 −13.485 4.397 0.319

Donor Age 0.057 0.015 0.1 0.009

Donor Race 0.586 −0.62 1.792 0.341

Donor BMI 0.004 −0.014 0.023 0.628

BCHE 0.29 −0.001 0.581 0.051

FKBP4 0.023 −1.535 1.582 0.977

GYPC −0.981 −1.993 0.032 0.058

HLA-DQB1 −0.105 −0.222 0.012 0.08

HNRNPH3 −0.327 −1.982 1.328 0.698

IGHD 0.039 −0.128 0.207 0.647

NUDT4 0.975 0.131 1.818 0.024

RBM8A 0.717 −1.522 2.956 0.53

RHOQ −2.182 −3.885 −0.478 0.012

SQLE 0.112 −0.583 0.808 0.752

STK24 1.073 −0.201 2.346 0.099

TRADD 0.171 −0.865 1.207 0.746

ZNF185 0.378 −0.783 1.539 0.523

Lower and upper bounds of the 95% Confidence Intervals and adjusted p-values for each regression coefficient.
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