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Abstract

Motivation: Identification of human genes involved in the aging process is critical due to the incidence of many dis-
eases with age. A state-of-the-art approach for this purpose infers a weighted dynamic aging-specific subnetwork by
mapping gene expression (GE) levels at different ages onto the protein–protein interaction network (PPIN). Then, it
analyzes this subnetwork in a supervised manner by training a predictive model to learn how network topologies of
known aging- versus non-aging-related genes change across ages. Finally, it uses the trained model to predict novel
aging-related gene candidates. However, the best current subnetwork resulting from this approach still yields sub-
optimal prediction accuracy. This could be because it was inferred using outdated GE and PPIN data. Here, we evalu-
ate whether analyzing a weighted dynamic aging-specific subnetwork inferred from newer GE and PPIN data
improves prediction accuracy upon analyzing the best current subnetwork inferred from outdated data.

Results: Unexpectedly, we find that not to be the case. To understand this, we perform aging-related pathway and
Gene Ontology term enrichment analyses. We find that the suboptimal prediction accuracy, regardless of which GE
or PPIN data is used, may be caused by the current knowledge about which genes are aging-related being incom-
plete, or by the current methods for inferring or analyzing an aging-specific subnetwork being unable to capture all
of the aging-related knowledge. These findings can potentially guide future directions towards improving super-
vised prediction of aging-related genes via -omics data integration.

Availability and implementation: All data and code are available at zenodo, DOI: 10.5281/zenodo.6995045.

Contact: tmilenko@nd.edu

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

1.1 Motivation and background
Human aging is a biological process associated with increased sus-
ceptibility to chronic disorders, such as cancer, cardiovascular,
Parkinson’s and Alzheimer’s disease (Ferrucci et al., 2020; Uyar
et al., 2020). The aging process has a strong genetic basis, e.g. gen-
omic instability or DNA somatic mutations (Rodr�ıguez-Rodero
et al., 2011). So, to understand it, treat associated diseases, and im-
prove life quality for the elderly, it is critical to identify ‘hallmark’
genes that drive the aging-related molecular mechanisms (Liguori
et al., 2018).

Traditionally, such ‘hallmark’ genes have been identified by wet
lab experiments (Bolignano et al., 2014; Paschos et al., 2012). These
efforts have yielded valuable public knowledge about which genes
are related to the aging process (Berchtold et al., 2008; Jia et al.,
2018; Lu et al., 2004; Tacutu et al., 2018; Simpson et al., 2011).

Yet, such knowledge is limited, because wet lab experimentation is
difficult due to the ethical constraints and long life span of the
human species (Emanuel et al., 2000). So, by benefiting from the
existing wet lab experimental aging-related knowledge plus wealth
of recent -omics data, one can computationally predict novel aging-
related gene candidates as those that share -omics ‘signatures’ with
the known wet lab experimental aging-related genes (Fabris et al.,
2017). Unlike with wet lab experiments, computational analyses of
the aging process can be done on a large, systems-level scale.

Such computational prediction of aging-related genes is typically
carried out by supervised classification using gene expression (GE)
data or protein–protein interaction network (PPIN) data (Fabris
et al., 2017). In particular, GE-based approaches predict a gene as
aging-related based on whether its expression level varies with age
(Berchtold et al., 2008; Holtman et al., 2015; Jia et al., 2018; Lu
et al., 2004; Simpson et al., 2011). While GE-based approaches cap-
ture aging-specific information (i.e. the changes of GE with age),
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they ignore complex interactions between genes’ protein products,
which ultimately carry out all biological processes (Chen et al.,
2014), including aging. This is why PPIN-based approaches have
been introduced, which predict a gene as aging-related if its network
topology is ‘similar enough’ to the network topology of known
aging-related genes (Fabris et al., 2016; Fang et al., 2013; Freitas
et al., 2011). While PPIN-based approaches capture interactions be-
tween proteins, their interactions span different conditions, such as
diseases or tissues. In our case, they span different ages, meaning
that they do not capture aging-specific information. In other words,
their considered PPIN data are context-unspecific (i.e. aging-
unspecific). To address the above drawbacks, more recent studies
have focused on predicting aging-related genes using both aging-
specific GE data and entire context-unspecific PPIN data (Elhesha
et al., 2019; Faisal and Milenkovi�c, 2014; Kerepesi et al., 2018; Li
et al., 2021; Li and Milenkovi�c, 2021).

Our group has pioneered this research direction by inferring an
aging-specific subnetwork that captures both aging-specific informa-
tion from GE data and interactions from PPIN data through a series
of studies/methods (Faisal and Milenkovi�c, 2014; Li and
Milenkovi�c, 2019, 2021; Li et al., 2021; Newaz and Milenkovi�c,
2020). Our most recent finding is that inferring an aging-specific
subnetwork that is both weighted and dynamic is superior (in terms
of quality of aging-related gene predictions made from it) than infer-
ring an aging-specific subnetwork that is unweighted or static as
well as using entire context-unspecific PPIN data (Li et al., 2021).

Intuitively, to infer such a weighted dynamic aging-specific sub-
network, we used network propagation (Komurov et al., 2010;
Leiserson et al., 2015) to map gene expression levels from GE data
onto a context-unspecific PPIN via random walks or diffusion. This
resulted in assigning each interaction in the PPIN with an age-
specific weight for each age present in the GE data. Such weighted
interactions at a given age form a weighted age-specific subnetwork
snapshot. The collection of age-specific snapshots in the increasing
order of ages present in the GE data forms a weighted dynamic
aging-specific subnetwork. We believe that such a subnetwork
results in higher-quality aging-related predictions than an
unweighted or static subnetwork because the amounts of aging-
specific information that different interactions carry are captured by
their weight differences (i) within each age, unlike in an unweighted
subnetwork and (ii) across different ages, unlike in a static
subnetwork.

Briefly, we make aging-related gene predictions from a subnet-
work as follows. Via several iterations (Li and Milenkovi�c, 2019,
2021; Li et al., 2021), we developed a comprehensive framework
that uses a variety of network features and classifiers in cross-
validation. The framework relies on established knowledge,
primarily from GenAge (Tacutu et al., 2018), about which genes are
aging- versus non-aging-related; this knowledge are genes’ ground
truth labels. The framework trains a predictive model (feature-clas-
sifier combination) on a part of the genes to learn network feature
differences between the known aging- versus non-aging-related
genes from the training data. Then, it tests the model on the remain-
ing genes, by examining how well it distinguishes between the
known aging- versus non-aging-related genes from the testing data.
That is, the model predicts each gene from the testing data as either
aging-related or not. Then, the model’s accuracy, i.e. the quality of
its predictions (whether the genes’ predicted and ground truth labels
match) is evaluated via the area under precision-recall curve
(AUPR), precision, recall and F-score. Finally, the most accurate of
all predictive models is selected for the subnetwork of interest.

Nonetheless, even this newest (weighted and dynamic) aging-
specific subnetwork (Li et al., 2021), which is the state-of-the-art,
yields suboptimal accuracy. Our postulations for this finding, which
we explore in this study, are:

1. The GE data [from an over a decade old study (Berchtold et al.,

2008)] and/or the PPIN data [from HPRD, which has not been

updated for about a decade (Prasad et al., 2009)] that we used to

infer our weighted and dynamic aging-specific subnetwork are

outdated.

2. The current aging-related knowledge, i.e. ground truth labels

from GenAge, might be incomplete or otherwise noisy and thus

cannot reliably guide computational prediction of novel aging-

related knowledge.

3. The methods used to infer an aging-specific subnetwork or to

predict aging-related genes from an inferred subnetwork (Li and

Milenkovi�c, 2019, 2021, Li et al., 2021) cannot capture all of

the current aging-related knowledge.

Note that the reason why we used the older Berchtold GE and
HPRD PPIN data in all of our previous studies is because our group
started the research direction of inferring and analyzing aging-
specific subnetworks in 2012, with the first paper published in 2014
(Faisal and Milenkovi�c, 2014). The only aging-specific GE data for
human that encompassed multiple ages and enough samples for
each age at the time was that curated by Berchtold et al. via a micro-
array technology. Similarly, HPRD was a state-of-the-art human
PPIN data at that time. Since then, we proposed a series of more
advanced methods for inferring or analyzing aging-specific subnet-
works (Li and Milenkovi�c, 2019; 2021; Li et al., 2021; Newaz and
Milenkovi�c, 2020). For fairness of evaluation of every new method
against previous ones, we kept the input (i.e. GE and PPIN) data the
same. More recently, newer aging-specific GE data with enough
ages and enough samples per age, produced using a next-generation
sequencing technology (RNA-Seq), have become available, i.e. GE
data from the Genotype-Tissue Expression (GTEx) project (GTEx
Consortium, 2015). Also, newer, regularly updated PPIN data exist
in the BioGRID database (Oughtred et al., 2021).

In this study, we primarily (although not only) examine whether
using the newer GTEx GE or BioGRID PPIN data to infer a
weighted dynamic aging-specific subnetwork will improve the qual-
ity of predicted aging-related genes compared to using the older
Berchtold GE and HPRD PPIN data.

1.2 Our study and contribution
We summarize our study in Figure 1. To examine which of the two
data components (GE data or PPIN data) might lead to better pre-
diction accuracy, we construct four weighted dynamic aging-specific
subnetworks by varying one data component at a time (Table 1). To
construct and analyze (make predictions from) the four subnet-
works, we rely on our well-established framework discussed above
(Li and Milenkovi�c, 2021, Li et al., 2021).

Postulation 1 would be validated if using GTEx-BioGRID is bet-
ter than using all of Berchtold-HPRD, Berchtold-BioGRID and
GTEx-HPRD. Shockingly, we find this not to be the case. That is,
generally, neither using newer PPIN data nor using newer GE data
helps. To attempt to understand this finding, we perform several
analyses, including the following.

All four subnetworks perform statistically significantly better
than expected by chance, i.e. each subnetwork captures some of the
aging-related knowledge. So, we aim to test whether the different
subnetworks yield complementary or duplicated aging-related gene
predictions. We find that the subnetworks are overall complemen-
tary to each other, with relatively low (although statistically signifi-
cant) average pairwise overlaps of 34%. Hence, even though newer
GE or PPIN data do not necessarily improve upon their older coun-
terparts, they do capture aging-related knowledge that older data
cannot.

However, our subnetworks are imperfect regardless of what data
they are inferred from: the highest AUPR, precision, recall and F-
score over all subnetworks are 50, 67, 45 and 52%, respectively. To
understand this, we rely on existing data on human proteins’ mem-
berships in aging-related KEGG pathways (Kanehisa et al., 2021)
and their Gene Ontology (GO) term annotations (Gene Ontology
Consortium, 2021). We test the enrichment of four groups of aging-
and non-aging-related genes in the aging-related pathways and GO
terms. These four gene groups are presented in Table 2.

Predicted–Aging genes, being supported by at least one of our
subnetworks as well as GenAge, are our positive control and should
be enriched in aging-related pathways or GO terms. Similarly,
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NotPredicted–NonAging genes, being supported by neither our sub-
networks nor GenAge, are our negative control and should not be
enriched in any aging-related pathways and GO terms. Indeed, this
is what we find. Then, we examine the enrichment of Predicted–
NonAging and NotPredicted–Aging genes in the aging-related path-
ways and GO terms, for the following reasons.

Our suboptimal precision means that a portion of each subnet-
work’s predictions are currently not known to be aging-related;
these correspond to Predicted-NonAging genes. If these genes that
are currently missing from GenAge are enriched in aging-related
pathways or GO terms and are thus more similar to the positive con-
trol genes than the negative control genes, then this could imply that
postulation 2 holds, i.e. that GenAge is incomplete. In this case,
Predicted–NonAging genes could be considered as highly ranked
candidates for future wet lab validation. Indeed, we find this to be
the case—Predicted–NonAging genes are statistically significantly
enriched in multiple aging-related pathways.

Our suboptimal recall means that each subnetwork fails to pre-
dict a portion of known aging-related genes from GenAge; these cor-
respond to NotPredicted–Aging genes. If these genes are enriched in
aging-related pathways or GO terms, it could mean that the aging
process has at least two distinct network ‘signatures’: one signature
shared between those genes from GenAge that can be captured by
our subnetworks, and a different signature (or signatures) that the
remaining genes from GenAge have but that our subnetworks can-
not recognize. This would correspond to postulation 3, i.e. network
methods used to infer a weighted dynamic aging-specific

subnetwork or to predict aging-related genes from an inferred sub-
network being unable to capture all of the current aging-related
knowledge. Otherwise, if NotPredicted–Aging genes are not
enriched in aging-related pathways or GO terms, this would mean
that there might be discrepancies between GenAge aging-related
ground truth data and aging-related pathway and GO term data,
possibly because GenAge is noisy or because the different databases
capture complementary aging-related knowledge. We find the for-
mer to be the case—NotPredicted–Aging genes are statistically sig-
nificantly enriched in multiple aging-related pathways or GO terms.

2 Methods

2.1 Data
2.1.1 Considered aging-specific GE data

The two considered aging-specific GE datasets are from Berchtold
(Berchtold et al., 2008) and GTEx (GTEx Consortium, 2015).
Berchtold GE data encompasses 173 postmortem samples in brain
from 55 individuals, which span 37 different ages from 20 to
99 years. GTEx GE data (version 8) encompasses 17 382 postmor-
tem samples across 54 tissues from 175 individuals, which span six
age groups: 20–29, 30–39, 40–49, 50–59, 60–69 and 70–79. Of the
54 tissues from 31 organs, 13 tissues are from the brain. These are
tissues that we focus on, for fair comparison to Berchtold data that
is solely brain-related. The 13 tissues encompass 2642 samples. See
Supplementary Section S1.1 for more detail.

2.1.2 Considered entire context-unspecific PPIN data

The two considered entire context-unspecific PPINs are from HPRD
(Berchtold et al., 2008) and BioGRID (version 4.4.197, the latest
version at the time we started this study) (Oughtred et al., 2021).
We consider only the largest connected component of the two
PPINs. The one from HPRD has 8938 proteins and 35 900 interac-
tions. The largest connected component of human physical interac-
tions from BioGRID has 18 928 proteins and 484 146 interactions.

2.1.3 Inference of weighted dynamic aging-specific subnetworks

We infer multiple weighted dynamic aging-specific subnetworks, de-
pending on which GE and PPIN data are used. Berchtold-HPRD is
the benchmark subnetwork from our previous study (Li et al.,
2021). Berchtold-HPRD was inferred using a method called
NetWalk (Komurov et al., 2010), which was proved to be the best
of two state-of-the-art network propagation algorithms for inferring
aging-specific subnetworks in our previous study (Newaz and
Milenkovi�c, 2020). For fairness, we use NetWalk to infer all other
considered networks.

Namely, for an age (in case of Berchtold GE data) or age group
(in case of GTEx GE data), NetWalk propagates GE levels onto the
interactions in an entire context-unspecific PPIN via a biased ran-
dom walk, and outputs a PPIN with two directed age-specific
weights assigned to each interaction. That is, an interaction (u, v)
has a weight from u to v and another weight from v to u, see original
publication (Komurov et al., 2010) for methodological detail about
NetWalk. The smaller of the two weights is selected for each

Fig. 1. Summary of our study. See the text for details

Table 1. Our four weighted dynamic aging-specific subnetworks (in

bold) constructed from the four combinations of GE and PPIN data

PPIN\GE data Berchtold (old) GTEx (new)

HPRD (old) Berchtold-HPRD GTEx-HPRD

BioGRID (new) Berchtold-BioGRID GTEx-BioGRID

Table 2. The four considered groups of aging- and non-aging-

related genes

Ground truth label

Aging-related Non-aging-related

Predicted as aging-

related by � 1

subnetwork?

Yes Predicted–Aging Predicted–Non

Aging

No NotPredicted–Aging NotPredicted–

NonAging

Note: The gene groups are named based on a combination of their pre-

dicted label and their ground truth label. Note that ‘Predicted’ are those genes

predicted by at least one of the four subnetworks, while ‘NotPredicted’ are

those genes not predicted as aging-related by any subnetwork.
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interaction, yielding a weighted static age-specific subnetwork snap-
shot for the given age (group). This way, we create one static
weighted subnetwork snapshot for each of the considered ages or
age groups.

Given all x weighted static age-specific subnetwork snapshots
for the x considered ages or age groups, we obtain the final dynamic
weighted aging-specific subnetwork (for a given combination of GE
and PPIN data) using an established two-step approach (Li et al.,
2021). First, to make the weights of the interactions comparable
across snapshots, the weights are normalized over all x snapshots.
Second, given the x snapshots with normalized interaction weights,
x—1 ‘differential’ snapshots are created; a ‘differential’ snapshot is
created for each pair of consecutive normalized-weight snapshots i
and iþ1 (i ¼ 1;2;3; . . . ;x� 1), where for each interaction, its
‘differential’ weight wi;iþ1 is defined as the relative weight change
between the snapshots i (i.e. wi) and iþ1 (i.e. wi;iþ1):

wi;iþ1 ¼ ½wiþ1�Wi ��100
½wiþ1þwi � . The collection of the x—1 age-specific ‘differ-

ential’ snapshots in the increasing order of ages or age groups forms
the final weighted dynamic aging-specific subnetwork (for a given
combination of GE and PPIN data), see Supplementary Figure S12.

Because we aim to evaluate whether subnetworks inferred using
newer GE data or newer PPIN data (or both) outperform the bench-
mark subnetwork (Berchtold-HPRD) that is inferred using both
older GE data and older PPIN data, we need to systematically test
which component (GE data or PPIN data) leads to potential per-
formance improvement. To do so, in addition to Berchtold-HPRD,
we infer three additional aging-specific subnetworks (also using
NetWalk) by varying one data component at a time. That is, com-
pared to Berchtold-HPRD, by changing the PPIN data component,
we infer Berchtold-BioGRID; by changing the GE data component,
we infer GTEx-HPRD; by changing both the GE and the PPIN data
component, we infer GTEx-BioGRID. In addition, to examine
whether grouping samples into individual (specific) ages versus age
groups yields performance difference (Section 3.2), we group sam-
ples in Berchtold GE data into six age groups that match those in
GTEx GE data (see above). Note that of the 173 samples in
Berchtold GE data, we focus on all 119 samples that belong to one
of the six age groups. Then, we combine this modified, age group-
based Berchtold GE data with each of HPRD and BioGRID PPIN
data using NetWalk to infer two additional subnetworks, referred to
as Berchtold-HPRD-6 and Berchtold-BioGRID-6, respectively.
Table 3 shows sizes of the six subnetworks.

Note that network propagation requires, for each age (group),
expression levels for all genes in an entire context-unspecific PPIN.
Also, because GE data encompasses multiple samples for each age
(group), the expression level of a gene at a given age (group) needs
to be somehow combined or normalized across these samples. We
achieve these tasks as follows.

Berchtold GE data was curated using microarray technology
(Affymetrix Hg-U133plus 2.0), containing expression information
for 54 675 probes. Because nodes in our PPIN data have gene IDs,
to integrate GE with PPIN data, we need to map probe IDs to gene
IDs. To do this, we mimic our previous study (Newaz and
Milenkovi�c, 2020). That is, by using the DAVID tool (Huang et al.,
2009), we are able to map 48 724 of the 54 675 probes to 21 441
unique gene IDs. Next, while there are multiple samples (i.e. expres-
sion values) relevant to a gene at a given age, we need to obtain a

single score value for each gene at each age. We do this by assigning
to a given gene the average expression value of all of its samples rele-
vant to the given age. Moreover, we use the MAS 5.0 BioConductor
package (Gentleman et al., 2004) that calculates the P-value of
whether a gene that is present in Berchtold GE data is statistically
significantly expressed (i.e. active) at a given age. This enables us to
assign expression values to those genes that are present in the con-

sidered PPIN but not in Berchtold GE data at a given age. We as-
sume such genes to not be active at a given age. This is why we
assign them the average expression value of all non-active genes that
are present in Berchtold GE data at the given age. For methodologic-
al details, see Supplementary Section S1.1.1 of Faisal and
Milenkovi�c (2014).

GTEx GE data was curated using RNA-Seq technology. There
are many methods proposed for normalizing RNA-Seq data. We use
the Trimmed Mean of the M-values (TMM) (Robinson and
Oshlack, 2010) because (i) TMM has been widely used for this pur-
pose; and (ii) it was suggested by Evans et al. (2018) and Zhao et al.
(2021) that TMM typically performs better than other existing nor-

malization methods. In particular, TMM assumes that most of the
genes are not differentially expressed, and the batch effect across
multiple tissues or genotypes can be removed. Briefly, TMM works
as follows. First, the log2 fold change and absolute expression value
of a sample against the reference sample are calculated. Then, those
genes that have high fold changes or have large absolute expression
values are trimmed, and the weighted average fold change per sam-

ple can be calculated. Finally, the read counts of genes are normal-
ized by the weighted average fold change and the total number of
samples in the GE data. For methodological details about TMM, see
Robinson and Oshlack (2010). We use a BioConductor package
called edgeR (Robinson et al., 2010) to obtain normalized GE data
via TMM. Note that genes in GTEx GE data are represented as
Ensembl IDs, and we convert these IDs to gene symbols using the
DAVID tool. We remove from consideration a gene if its Ensembl

ID shares more than one gene symbol. Unlike microarray-based GE
data, we cannot obtain P-value for whether a gene is statistically sig-
nificantly expressed at a given age group due to the lack of reference
data. So, for those genes that are present in the considered PPINs
but not in GTEx GE data at a given age group, we assign these genes
an expression value of zero.

2.1.4 Aging- and non-aging-related gene labels

For fairness in comparing the considered subnetworks, we consider
all 8756 genes that are present in all of the subnetworks. Supervised
classification requires ground truth labels, i.e. knowledge of which
of the considered genes are aging- versus non-aging-related.

To define aging-related gene labels, as established (Li et al.,
2021), we rely on a confident ground truth data source, GenAge
(Tacutu et al., 2018). Human genes included in GenAge are se-
quence orthologs of aging-related genes in model species. All aging-

related genes in model species are experimentally validated. Their
human homologs are included in GenAge if they are supported by
multiple pieces of literature and have aging-related phenotypical evi-
dence in the human species. Of all 307 genes in GenAge, 277 of
them are among the 8756 considered genes. We denote these 277
genes as aging-related genes.

Next, we define non-aging-related genes from the 8; 756�
277 ¼ 8;479 genes that are not present in GenAge. To ensure that
our non-aging-related labels are as confident as possible, we also
rely on five other aging-related ground truth datasets curated by
Jia et al. (2018), Lu et al. (2004), Berchtold et al. (2008) and
Simpson et al. (2011); note that there are two gene sets from Jia

et al. (2018), for genes that are upregulated and downregulated
with age, respectively. That is, we remove all genes that are present
in any of the five aging-related ground truth datasets from the
8479 genes. This leaves 4282 genes that we denote as non-aging-
related genes. We refer to the 277þ 4282 ¼ 4559 aging- and non-
aging-related genes as ground truth labeled genes.

Table 3. The number of snapshots and size for each of the six con-

sidered weighted dynamic aging-specific subnetworks

Subnetwork No. of snapshots No. of nodes No. of edges

Berchtold-HPRD 37 8 938 35 900

Berchtold-BioGRID 37 18 928 484 146

GTEx-HPRD 6 8 938 35 900

GTEx-BioGRID 6 18 928 484 146

Berchtold-HPRD-6 6 8 938 35 900

Berchtold-BioGRID-6 6 18 928 484 146
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2.1.5 Aging-related pathways and GO terms

We focus on five confident aging-related pathways, i.e. adenosine
monophosphate-activated kinase (AMPK), Sirtuin 1 (SIRT1), mam-
malian target of rapamycin (mTOR), phosphatidylinositol-3-kinase
and protein kinase B (PI3K-AKT), and neurotrophin. Their related-
ness to the aging process and lifespan was examined by numerous
studies and was systematically reviewed by Yu et al. (2021), as
follows.

• AMPK, SIRT1 and mTOR pathways are some of the key path-

ways that describe molecular mechanisms of the aging process.

In particular, AMPK is considered as aging-related because it

was found to control cell survival, growth, death and autophagy,

and it can regulate cellular homeostasis and resistance to stress

(Morgunova and Klebanov, 2019). SIRT1 is considered as aging-

related because it was found to play an important role in improv-

ing oxidative stress resistance of cells and inhibiting cell death

(Brunet et al., 2004), and hence is involved in many age-related

diseases (Zhao et al., 2020). mTOR is considered aging-related

because it functions as a sensor of intracellular energy and a cen-

tral regulator of biological processes, including aging (Arriola

Apelo and Lamming, 2016; Di Francesco et al., 2018).
• PI3K-AKT pathway is considered as aging-related because it was

identified as the signaling pathway of several aging-related dis-

eases: diabetic encephalopathy (Wang et al., 2018) and cancer

(Porta et al., 2014).
• Neurotrophin pathway is considered as aging-related because it

was identified as the key signaling pathway of aging-related

Parkinson’s disease (Paudel et al., 2020).
We obtain the genes for these five pathways from the KEGG

database (Kanehisa et al., 2021). We summarize the size of each
pathway as in KEGG and as in our ground truth aging-related data
in Table 4. In addition, we consider aging-related GO terms
(Supplementary Section S1.2).

3 Results

As already discussed, we consider four weighted dynamic aging-
specific subnetworks: Berchtold-HPRD, Berchtold-BioGRID, GTEx-
HPRD and GTEx-BioGRID. We test whether GTEx-BioGRID, which
is inferred using both newer GE and PPIN data, outperforms the
remaining three subnetworks that are inferred using older GE data or
older PPIN data (or both). To test this, first, for each subnetwork, we
consider nine predictive models (i.e. feature-classifier combinations).
We train and test each predictive model via 5-fold cross-validation in
terms of prediction accuracy (AUPR, precision, recall and F-score
averaged over the five folds). Then, we select the best predictive model
that yields the highest AUPR, to give each subnetwork the best-case
advantage (Section 3.1). For fairness, we force the gene sets that are
randomly split into the training and testing data for cross-validation
to be same for all predictive models across all four subnetworks (see
Section 2.1.4 for details). Second, we compare the selected best pre-
dictive models to evaluate which subnetwork results in the highest

prediction accuracy (Section 3.2). Third, we analyze whether the four
subnetworks are predicting redundant or complementary aging-
related genes (Section 3.3). Finally, we present a deep-dive analysis in
terms of enrichment of the predicted genes in aging-related pathways
and GO terms (Section 3.4).

3.1 Selecting the best predictive model for each

subnetwork
The considered nine predictive models per subnetwork are combina-
tions of nine features and one classifier. We consider the nine best
features among 30 features evaluated in our previous study (Li et al.,
2021) (Supplementary Section S1.3). We use logistic regression as
the classifier for all predictive models because it consistently per-
formed the best among nine prominent classifiers evaluated in our
previous studies (Li and Milenkovi�c, 2019, 2021; Li et al., 2021).

For each of the four subnetworks, all nine predictive models per-
form statistically significantly better than expected by chance
(adjusted P-values < 0.05), with respect to all four accuracy meas-
ures (Supplementary Tables S1–S4 and Supplementary Figs S1–S4).
For each subnetwork, the best-performing predictive model brings
sufficient (although not always statistically significant) improvement
compared to the remaining eight predictive models. This is why we
choose the best-performing predictive model for a given
subnetwork.

Overall, it is typically different predictive models that are
selected for the different subnetworks. That is, the four subnetworks
yield three distinct best predictive models. The same best predictive
model is selected only for the two HPRD-based subnetworks
(Berchtold-HPRD and GTEx-HPRD).

3.2 Comparing prediction accuracy of the four

subnetworks
Given the selected best predictive model for each of the four subnet-
works, we compare the prediction accuracy of the four subnet-
works. With this, we aim to test postulation 1: whether using
GTEx-BioGRID that is inferred from both newer GE and PPIN data
would outperform all other three subnetworks that are inferred
from older GE data or older PPIN data (or both).

First, we ask whether using newer BioGRID PPIN data is better
than using its older HPRD counterpart when the GE data is fixed,
i.e. whether Berchtold-BioGRID improves upon Berchtold-HPRD
and whether GTEx-BioGRID improves upon GTEx-HPRD. We find
neither of the two to hold (Fig. 2): Berchtold-BioGRID performs
marginally worse than Berchtold-HPRD in terms of all four predic-
tion accuracy measures, and GTEx-BioGRID performs marginally
worse than GTEx-HPRD in terms of all four prediction accuracy
measures.

Second, we ask whether using newer GTEx GE data is better
than using its older Berchtold counterpart when the PPIN data is
fixed, i.e. whether GTEx-HPRD improves upon Berchtold-HPRD
and whether GTEx-BioGRID improves upon Berchtold-BioGRID.
We find that these do not necessarily hold (Fig. 2). Namely, GTEx-
HPRD performs marginally worse than Berchtold-HPRD in terms
of precision and F-score, although marginally better in terms of
AUPR and recall. GTEx-BioGRID performs marginally worse than
Berchtold-BioGRID for all four prediction accuracy measures.

Overall, GTEx-BioGRID that is inferred from both newer GE
and PPIN data does not outperform any subnetwork inferred from
at least one older data component. That is, postulation 1 does not
hold. In fact, Berchtold-HPRD that is inferred from both older GE
and PPIN data marginally outperforms all other subnetworks in
terms of precision and F-score. Meanwhile, Berchtold-HPRD is the
second-best subnetwork in terms of AUPR and recall.

3.3 Examining prediction overlaps between the

subnetworks
Thus far, we have found that using both newer GE and PPIN data
does not necessarily improve the prediction accuracy upon using
older GE data or older PPIN data (or both); also, all four

Table 4. The sizes of (numbers of genes in) the five aging-related

pathways as available in KEGG and in our ground truth data

Pathway Size in KEGG Size in our ground truth data

AMPK 113 38

SIRT1 89 36

mTOR 165 41

PI3K-AKT 354 179

Neurotrophin 119 57

Note: That is, the latter is the number of genes from a given KEGG path-

way that are present in our 4559 ground truth labeled genes.
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subnetworks yield prediction accuracies that are statistically signifi-
cantly better than at random. Given this, we ask whether our four
subnetworks are predicting complementary or redundant aging-
related knowledge by examining overlaps of their predictions.
Namely, we split predicted aging-related genes of each subnetwork
into two groups: true positives (i.e. genes predicted as aging-related
and labeled as aging-related in the ground truth data) and novel pre-
dictions (i.e. genes predicted as aging-related but are currently
labeled as non-aging-related in the ground truth data); the former is
more confident than the latter to actually be aging-related.

For true positive predictions, we find that all pairwise overlaps
are statistically significantly high (i.e. adjusted P-values < 0:05) but
in reality still quite complementary. Namely, the largest, smallest
and average Jaccard indices of all pairwise overlaps are 76.3, 35.7
and 51.3%, respectively (Fig. 3). Moreover, each of Berchtold-
HPRD, Berchtold-BioGRID, GTEx-HPRD and GTEx-BioGRID
predicts as aging-related some of the genes from GenAge that none
of the other three subnetworks predict. These statistics are 5 (out of
175) predictions for Berchtold-HPRD, 13 (out of 220) predictions
for Berchtold-BioGRID, 10 (out of 225) predictions for GTEx-
HPRD, and 4 (out of 140) predictions for GTEx-BioGRID.

So, even though using newer GE or PPIN data does not improve
upon using their older counterparts, the former does capture known
aging-related knowledge that using older data does not. The oppos-
ite also holds. This means that the different data, i.e. subnetworks,
yield complementary predictions.

Results for novel predictions are qualitatively similar to the
results for true positive predictions, i.e. all overlaps are statistically
significantly high but in reality still quite complementary
(Supplementary Fig. S6). Namely, the largest, smallest and average
Jaccard indices of all pairwise overlaps are 42.2, 5.9 and 16.9%,
respectively. Moreover, each of Berchtold-HPRD, Berchtold-
BioGRID, GTEx-HPRD and GTEx-BioGRID make some novel
predictions that none of the other three subnetworks make. These
statistics are 10 (out of 175) predictions for Berchtold-HPRD, 60
(out of 220) predictions for Berchtold-BioGRID, 39 (out of 225)
predictions for GTEx-HPRD and 35 (out of 140) predictions for
GTEx-BioGRID.

3.4 Validating predictions using aging-related pathways

and GO terms
Although all four subnetworks yield statistically significantly high
prediction accuracies, their accuracies are suboptimal, i.e. the high-
est accuracy score is ‘only’ 67%. To understand such suboptimal
performance, we rely on existing data on human proteins’ member-
ships in aging-related KEGG pathways and their aging-related GO
term annotations. As typically done, we analyze whether our

predictions are statistically significantly enriched in aging-related
pathways or GO terms. To do so, we split the genes from the ground
truth data into four groups (Predicted–Aging, Predicted–NonAging,
NotPredicted–Aging and NotPredicted–NonAging genes, as defined
in Table 2) based on whether their predicted labels agree with their
ground truth labels (Section 1.2). Then, we test the enrichment of
each gene group in aging-related pathways and GO terms. We use
all five established aging-related pathways (Yu et al., 2021) and all
13 aging-related GO terms that annotate sufficiently many (at least
three aging- or non-aging-related) of our ground truth labeled genes.

We find that the Predicted–Aging genes are significantly enriched
(adjusted P-values < 0.05) in all aging-related pathways (Fig. 4) and
over half of the aging-related GO terms (Supplementary Fig. S7).
This is expected, as Predicted–Aging genes are supported as aging-
related by both our subnetworks and the ground truth data and are
thus our positive control (i.e. genes that are the most confident to be
aging-related).

On the hand, NotPredicted–NonAging genes are not significant-
ly enriched (adjusted P-values ¼ 1:0) in any aging-related pathway
or GO term (Fig. 4 and Supplementary Fig. S7). This is also
expected, as NotPredicted–NonAging genes are not supported as
aging-related by either our subnetworks or the ground truth data
and are thus our negative control.

Next, we look into Predicted–NonAging, the gene group that
causes suboptimal precision. We find this group of genes to be sig-
nificantly enriched (adjusted P-values < 0.05) in three aging-related
pathways (AMPK, PI3K-AKT and Neurotrophin, Fig. 4). That is,
statistically significantly many Predicted–NonAging genes are linked
to the aging process. In other words, postulation 2 seems to hold,
i.e. GenAge appears to be incomplete. So, the novel predictions from
our subnetworks could potentially guide future wet lab experiments
to expand the current GenAge aging-related ground truth data.

Finally, we look into NotPredicted–Aging, the gene group that
causes suboptimal recall. We find this group of genes to be significant-
ly enriched in an aging-related pathway (PI3K-AKT, Fig. 4) and two
aging-related GO terms (GO:0007568—aging and GO:0008340—
determination of adult lifespan, Supplementary Fig. S7). That is, these
GenAge genes that are not captured by our subnetworks are indeed

Fig. 2. The prediction accuracy in terms of AUPR, precision, recall and F-score of

the four weighted dynamic aging-specific subnetworks, each under its best predictive

model. The number below each subnetwork name represents the number of genes

that are predicted as aging-related by the corresponding subnetwork. The horizon-

tally dashed line indicates the prediction accuracy scores expected by chance, i.e. the

fraction of all genes in the ground truth data that are labeled as aging-related
Fig. 3. Pairwise overlaps in terms of Jaccard indices of true positives for each pair of

the four considered subnetworks. By true positives, we mean genes that are pre-

dicted as aging-related and are also present in GenAge. The two numbers in the par-

enthesis below each subnetwork name represent the number of true positives and

the number of all predicted aging-related genes for the given subnetwork, respective-

ly. In a cell, corresponding to a pair of subnetworks, the three numbers represent

the Jaccard index (top), the raw number of genes in the overlap (middle) and the

adjusted P-value indicating whether the overlap is statistically significantly high.

The color shades are driven by Jaccard indices, where a darker color means a higher

Jaccard index. For overlaps of novel predictions (rather than true positives), see

Supplementary Figure S6
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aging-related. This suggests that there may be multiple network ‘sig-
natures’ of aging-related genes: one that is shared between GenAge

aging-related genes and our subnetworks, and other signature(s) that
are not recognized by our subnetworks. In other words, postulation 3

seems to hold, i.e. our subnetworks or network features might have
failed to recognize all network ‘signatures’ of GenAge aging-related
genes.

In summary, these analyses show that the enrichments of
Predicted–Aging, Predicted–NonAging and NotPredicted–Aging

genes in aging-related pathways and GO terms are statistically sig-
nificantly high, i.e. these are confident aging-related genes. On the
other hand, the enrichments of NotPredicted–NonAging genes are

not statistically significant, i.e. these are confident non-aging-related
genes.

4 Discussion

In this study, we systematically evaluate whether GTEx-BioGRID
that is inferred from both newer GE and PPIN data, improves the

prediction accuracy upon its counterparts inferred from at least one
older data component. We discuss our findings and provide future

directions in this section.

4.1 The choice of best predictive model matters
The choice of predictive model for a given subnetwork matters

(Section 3.1). The fact that no model performs the best for all

subnetworks stresses the need to test multiple models, to give each
subnetwork the best-case advantage.

Also, given the fact that the four subnetworks are predicting
complementary aging-related knowledge (Section 3.3), it might be
worth to pursue development of a novel network feature or an en-
semble learning approach that would integrate the complementary
aspect of the four subnetworks.

4.2 Higher-quality PPIN or GE data might be needed
When GE data is fixed, subnetworks inferred using newer BioGRID
PPIN data never outperform subnetworks inferred using older
HPRD PPIN data (Section 3.2). The superiority of using HPRD
PPIN data may be due to the following. HPRD is manually curated
(i.e. ‘read, analyzed and interpreted by expert biologists’ according
to the HPRD website). As such, it contains interactions that are con-
fident (Lazareva et al., 2021). Nonetheless, these interactions en-
compass fewer genes than newer PPIN data. On the other hand,
PPIN databases that are not manually curated, including BioGRID,
could potentially introduce technical or literature biases when newer
interactions are added (Lazareva et al., 2021). That is, those proteins
that are used as ‘baits’ for discovering new interactions (Lazareva
et al., 2021), have known biological functions, are related to com-
mon diseases, etc., along with their interactions, may be studied
more than the remaining proteins and their interactions.
Henceforth, newer, regularly updated PPIN databases such as
BioGRID might continuously increase their bias towards uncovering
biology primarily about the aforementioned types of proteins and
their interactions.

When PPIN data is fixed, subnetworks inferred using newer
GTEx GE data do not necessarily outperform subnetworks inferred
using older Berchtold GE data (Section 3.2). This may be because of
a variation between Berchtold and GTEx GE data: the samples in
Berchtold GE data are grouped across 37 specific ages in the [20–
99] range, while the samples in GTEx GE data are grouped across
six age groups (20–29, 30–39, 40–49, 50–59, 60–69, 70–79). So,
the resulting Berchtold-based subnetworks have 37 snapshots while
the GTEx-based subnetworks have six snapshots. To test whether
the differences in the number or nature of the snapshots between
Berchtold-based and GTEx-based subnetworks yield differences in
their accuracy, we further infer two subnetworks, as follows. First,
we group samples in Berchtold GE data into the same six age groups
as in GTEx GE data. Then, we integrate the modified Berchtold GE
data with each of HPRD and BioGRID PPIN data, to infer two new
subnetworks, each with six snapshots; we refer to these as
Berchtold-HPRD-6 and Berchtold-BioGRID-6, respectively. This
way, both the number and nature of snapshots are matched between
Berchtold-HPRD-6 and GTEx-HPRD, as well as between
Berchtold-BioGRID-6 and GTEx-BioGRID. Thus, comparison may
be more fair between Berchtold-HPRD-6 and GTEx-HPRD than be-
tween Berchtold-HPRD and GTEx-HPRD. Similarly, comparison
may be more fair between Berchtold-BioGRID-6 and GTEx-
BioGRID than between Berchtold-BioGRID and GTEx-BioGRID.

When we compare Berchtold-HPRD-6 and GTEx-HPRD, as
well as Berchtold-BioGRID-6 and GTEx-BioGRID, i.e. even when
the age groups match between Berchtold and GTEx GE data, using
newer GTEx GE and BioGRID PPIN data still does not improve ac-
curacy compared to using at least one older data component
(Supplementary Fig. S5). That is, GTEx-BioGRID is still inferior
among all four subnetworks with six age groups (i.e. snapshots). In
fact, Berchtold-HPRD-6 inferred using both older GE and PPIN
data performs marginally better than the other three six-snapshot
subnetworks. Therefore, the difference in the nature of Berchtold
and GTEx GE data does not account for why newer data does not
help.

A side observation of this analysis is as follows. By comparing
Berchtold-HPRD versus Berchtold-HPRD-6 (both of which happen
to be the best-performing networks in their respective evaluations),
we can evaluate the effect of using specific ages versus using age
groups, respectively, to construct aging-specific subnetworks. We
find that the two subnetworks yield almost indistinguishable predic-
tion accuracies (Supplementary Fig. S5). Thus, the aforementioned

Fig. 4. Enrichments of the four gene groups (x-axis) in the five aging-related path-

ways (y-axis). The number below a pathway name or a gene group name represents

the gene count in the pathway or gene group. In each cell, the three numbers repre-

sent the overlap size as measured by the Jaccard index (top), the raw number of

genes in the overlap (middle) and the adjusted P-value indicating whether the over-

lap size is statistically significantly high, i.e. whether the given gene group is statistic-

ally significantly enriched in the given pathway. The adjusted P-values below 0.05

are highlighted in red. Note that there are 4559 genes in the ground truth data.

However, the total number of genes over these four gene groups is 3590. This is be-

cause for NotPredicted–Aging and NotPredicted–NonAging, we only consider those

genes that are not predicted as aging-related by any of the four subnetworks.

Analogous results for aging-related GO terms are shown in Supplementary Figure

S7
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effect seems to be minimal, i.e. it does not seem to matter whether
specific ages or age groups are used. The implications of this result
are as follows. When in GE data the samples are already provided as
being grouped across age groups, without having information about
their specific ages, one clearly has to use age groups. On the other
hand, when in GE data the samples’ specific ages are known, one
could use the specific ages directly or they could instead first group
the ages into age groups and then use the groups. For the GE data
we have evaluated, the choice between the two does not seem to
matter in terms of accuracy. But the same might not necessarily hold
for different GE data. So, ideally, one should empirically evaluate
whether it is better to use specific ages or somehow form age groups.
However, it is unclear how exactly to define age groups, e.g.
whether one should define an age group (i.e. construct an age group-
specific snapshot) for every 5, 10 or more years of the human life-
span, as well as whether age groups (i.e. snapshots) should span age
intervals of equal length or of differing lengths (Newaz et al., 2020).
A possible way to address these challenges could be to start with the
network snapshots corresponding to specific ages and then use algo-
rithms such as SCOUT (Hulovatyy and Milenkovi�c, 2016) to com-
putationally identify age groups. Namely, SCOUT is able to identify
n time points (in our context, ages) in the entire time interval where
network structure (with respect to some network structural prop-
erty, in SCOUT’s case, community or clustering structure) signifi-
cantly changes. This corresponds to identifying nþ1 temporal
segments (in our context, age groups) that are separated by these n
changing time points and the corresponding nþ1 network snap-
shots. The intuition here is that specific ages (that are consecutive in
GE data) which have similar community (or other network) struc-
tures are likely to have similar biological ‘signatures’ and hence
should belong to the same age group. See the SCOUT paper
(Hulovatyy and Milenkovi�c, 2016) for more details.

While it is still unclear why newer GTEx GE data does not out-
perform older Berchtold GE data, the former does offer opportuni-
ties that the latter does not. While Berchtold GE data only
encompasses samples from the brain, GTEx GE data encompasses
samples from 31 organs. This, combined with the fact that GTEx-
based subnetworks perform significantly better than expected by
chance and only marginally worse than Berchtold-based subnet-
works, means that GTEx GE data allows for studying aging in tis-
sues other than the brain.

Finally, we comment on an additional opportunity of GE data.
GTEx GE data was curated using RNA-seq in different tissues.
More recently, even newer biotechnology, single-cell RNA-seq, has
allowed for curation of the Human Cell Atlas data that allows for
even more detailed investigations of the human aging process—in
different cell types (Uyar et al., 2020).

4.3 More complete aging-related ground truth data

might be needed
The fact that Predicted–Aging and Predicted–NonAging genes are
captured (predicted as aging-related) by our subnetworks implies
that these two gene groups have similar network topologies (fea-
tures). We aim to illustrate this by visualizing these genes’ features
in 2-dimensional (2D) vector space as described in Supplementary
Section S1.5. Their features are indeed close in the 2D space, i.e. are
topologically similar to each other in our subnetworks (Fig. 5 and
Supplementary Figs S8–S11). The 2D visualization further supports
postulation 2, i.e. GenAge might be incomplete. This may not be
surprising, because human genes in GenAge are mostly orthologs of
aging-related genes in model species. That is, GenAge encompasses
primarily the aging-specific ‘biology’ that is common to the human
species and model species. However, each species, especially human,
has its unique aging-specific ‘biology’ that is not shared with other
species (Bronikowski et al., 2011).

Thus, there is a need for more complete, human-specific know-
ledge on which genes are linked to aging. To the best of our under-
standing, the only such data come from GE studies such as the
Berchtold study (Berchtold et al., 2008), GTEx project (Jia et al.,
2018) or the Human Cell Atlas (Uyar et al., 2020). But we already

use such GE data to infer our subnetworks in the first place.
Therefore, we cannot use that same data as the ground truth know-
ledge on which genes are linked to aging as well, as this would yield
a circular argument. A potential solution for this challenge is to
combine the genes in GenAge with those that are members of the
aging-related pathways or are annotated by aging-related GO terms
into a more comprehensive aging-related ground truth gene set.
Another potential although imperfect solution might be to rely on
predicted novel aging-related genes from existing computational
studies, e.g. those predicted via network clustering (Hulovatyy and
Milenkovi�c, 2016), network alignment (Faisal et al., 2015), un-
supervised analyses of aging-specific subnetworks (Newaz and
Milenkovi�c, 2020) or supervised analyses of aging-specific subnet-
works. Note that these computationally predicted novel aging-
related genes should not be used to validate prediction methods that
share similar properties as the methods that generated the predic-
tions, in order to avoid a circular argument. In this study, this would
mean adding Predicted–NonAging genes to the ground truth know-
ledge, as these can be viewed as confident candidates for future wet
lab validation.

4.4 Advanced algorithms for network inference or

analysis might be needed
The fact that NotPredicted–Aging and NotPredicted–NonAging
genes are predicted as not being aging-related implies that these
genes’ network features differ from network features of Predicted–
Aging and Predicted–NonAging genes. This is not surprising for
NotPredicted–NonAging genes, as these are our negative control
genes (Section 3.4). What might appear surprising is that
NotPredicted–Aging genes, which are aging-related according to the
ground truth data, seem to have network features that are more
similar to those of NotPredicted–NonAging genes (because
NotPredicted–NonAging genes are not predicted as aging-related)
than those of Predicted–Aging and Predicted–NonAging (which are
predicted as aging-related). Indeed, we confirm the network feature
(dis)similarities between the different gene groups in the 2D visual-
ization (Fig. 5 and Supplementary Figs S8–S11). This further sup-
ports postulation 3 that our inferred subnetworks or predictive

Fig. 5. Illustration of topological (dis)similarities between Predicted–Aging,

Predicted–NonAging, NotPredicted–Aging and NotPredicted–NonAging genes in a

given subnetwork by embedding their features into 2D space. This figure is for

Berchtold-BioGRID; similar embedding trends hold for the other three subnetworks

(Supplementary Figs S8, S10 and S11). This is a zoomed-in visualization with out-

liers removed for simplicity (see Supplementary Fig. S9 for the full visualization).

When mapping features into 2D space, we have tested tSNE and PCA and selected

the visualization with the clearest pattern. This figure is generated using tSNE
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models for their analyses might have failed to recognize all network
‘signatures’ of GenAge aging-related genes, i.e. that they have failed
to identify as aging-related the ‘signatures’ of NotPredicted–Aging
genes.

This result suggests a need for more advanced subnetwork infer-
ence or analysis methods. To infer our subnetworks, we relied on
network propagation. A potential solution to improve subnetwork
inference is to examine whether other types of integrative algo-
rithms, such as kernel-, Bayesian- or non-negative matrix
factorization-based methods (Gligorijevi�c and Pr�zulj, 2015), would
result in subnetworks that yield higher prediction accuracy or un-
cover complementary aspects of aging-related knowledge. A poten-
tial solution to improve network analysis is to use an ensemble
learning approach that may be able to integrate complementary
aspects of different subnetworks (Sagi and Rokach, 2018), as sug-
gested in Section 4.1. Another potential solution is to use deep learn-
ing (e.g. graph convolutional networks) for dynamic network
analysis (Pareja et al., 2020) to automatically learn and capture the
differing types of network ‘signatures’ of genes of interest.

5 Conclusions

In this study, we have systematically evaluated whether using newer
GE or PPIN data curated via more advanced biotechnologies to con-
struct an aging-related subnetwork would improve the accuracy of
predicting aging-related genes from the subnetworks. Unexpectedly,
we have found that using newer GE or PPIN data does not help
compared to using older data. In fact, the subnetwork inferred from
both older Berchtold GE data and older HPRD PPIN data marginal-
ly outperforms the other subnetworks inferred from newer
Berchtold GE data or newer HPRD PPIN data (or both). We have
performed several analyses to try to explain this, without a clear an-
swer. We have provided guidance on future directions towards the
advancement of computational aging research, including a need for
more complete aging-related ground truth data as well as more
advanced subnetwork inference and analysis methods.
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