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Abstract

Motivation: Antiviral peptides (AVPs) from various sources suggest the possibility of developing peptide drugs for
treating viral diseases. Because of the increasing number of identified AVPs and the advances in deep learning the-
ory, it is reasonable to experiment with peptide drug design using in silico methods.

Results: We collected the most up-to-date AVPs and used deep learning to construct a sequence-based binary classi-
fier. A generative adversarial network was employed to augment the number of AVPs in the positive training dataset
and enable our deep learning convolutional neural network (CNN) model to learn from the negative dataset. Our
classifier outperformed other state-of-the-art classifiers when using the testing dataset. We have placed the trained
classifiers on a user-friendly web server, AI4AVP, for the research community.

Availability and implementation: AI4AVP is freely accessible at http://axp.iis.sinica.edu.tw/AI4AVP/; codes and data-
sets for the peptide GAN and the AVP predictor CNN are available at https://github.com/lsbnb/amp_gan and https://
github.com/LinTzuTang/AI4AVP_predictor.

Contact: cylin@iis.sinica.edu.tw or sophia0715@tmu.edu.tw

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

A viral pandemic has substantial impacts on every aspect of our
lives. Despite the obvious need, the treatment options available for
viral diseases other than supportive care are limited. Developing a
new high-efficacy drug for a viral pathogen, such as Tamiflu for pre-
venting influenza virus propagation and Acyclovir for treating ves-
icular stomatitis virus infection, is a difficult task, as has been
learned from the pandemic of coronavirus disease 2019 (COVID-
19), monkeypox and other viral pathogens on the horizon. Antiviral
reagents often have systemic side effects or low efficacy because
drug-resistant strains of viruses emerge (Agarwal and Gabrani,
2021). Antiviral peptides (AVPs) are effective against re-emerging

and drug-resistant viruses (Mahendran et al., 2020). They are nat-
ural and peptidase biodegradable and have low toxicity (Boas et al.,
2019). The existence of AVPs indicates that synthetic peptides have
the potential to combat viral diseases. However, randomly generat-
ing sequences for AVP screening is not a cost-effective approach.

Several papers have discussed the development of artificial pep-
tide sequences with AVP activity. Thakur et al. (2012) proposed an
AVP prediction algorithm based on a model derived from experi-
mentally validated positive and negative data sets and wrapped the
model into the web tool AVPpred (Thakur et al., 2012). The dataset
from that study was used in other in silico peptide designs, such as
AntiVPP 1.0 (Beltran Lissabet et al., 2019), Meta-iAVP
(Schaduangrat et al., 2019) and FIRM-AVP (Chowdhury et al.,
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2020). In these designs, amino acid composition, amino acid sequen-
ces, motif structures and physicochemical properties are considered
features. AVP predictors were built using machine learning methods
such as random forest and support vector machine (Supplementary
Table S1).

In the present study, we introduce AI4AVP, an AVP predictor.
With the most up-to-date AVP set, a deep learning model based on a
convolutional neural network (CNN) was trained and compared
with other AVP predictors. We used PC6 encoding (Lin et al.), a
protein-encoding method based on six physicochemical properties,
to transform sequential data into matrices. We developed a genera-
tive adversarial network (GAN) model for AVP drug development
based on our previous work. GAN has been applied to various bio-
informatic problems involving protein or DNA design (Linder et al.,
2020; Liu et al., 2019, 2021; Wang et al., 2020).

We used a peptide generator for data augmentation to increase
the input data size without disturbing the positive–negative balance.
The final trained CNN models are accessible as a web tool and can
be used to evaluate the AVP potency of user-submitted sequences.
AI4AVP can help AVP researchers evaluate the antiviral potential of
unknown peptides.

2 Methods

2.1 Data collection and preprocessing
AVP sequence sets were collected from APD3 (Wang et al., 2016),
DRAMP (Kang et al., 2019), YADAMP (Piotto et al., 2012),
DBAASP (Pirtskhalava et al., 2020), CAMP (Waghu et al., 2016)
and AVPdb (Qureshi et al., 2014) (Supplementary Table S2).
Sequences containing the keyword ‘anti-viral’ and its synonyms
were collected and cleaned to create a non-redundant set. Sequences
were excluded if they contained unusual letters (e.g., ‘B’, ‘Z’, ‘U’, ‘J’,
‘O’, ‘X’, ‘I’, ‘n’, or ‘�’) or if their length was not between 10 and 50
residues. We used CD-HIT (Huang et al., 2010) for reported repre-
sentatives of highly similar sequences with 95% identity. Finally, a
cleaned AVP set (AVP_fullset) composed of 2934 sequences was
collected.

We randomly collected peptide sequences unrelated to antiviral
function from the UniProt/SwissProt database (UniProt Consortium,
2021) to construct a negative dataset and generate artificial sequen-
ces. Briefly, short non-AMP peptides are defined as peptides not
tagged with keywords related to antimicrobial peptide function (e.g.
‘anti-microbial’, ‘anti-viral’, ‘antibiotic’, ‘amphibian defense pep-
tide’ or ‘antiviral protein’) and with the length between 10 and 50
residues—were obtained from Swiss-Prot. An equal number
(n¼8592) of random peptide sequences with a length between 10
and 50 residues was appended to create the negative set (n¼17 184)
(Supplementary Table S2).

For model training, we used 90% of the cleaned AVPs and an
equal number of randomly chosen peptides from the negative data-
set to create a balanced input named AVP_training (2641 positives
þ 2641 negatives). For model validation, we used the spare AVPs
plus an equal number of sequences from the negative dataset to cre-
ate AVP_testing (293 positives þ 293 negatives).

We also collected and revised the dataset of Thakur et al. (2012),
denoted 2012_training. The dataset comprises 506 AVPs and 506
non-AVPs and has been used in the training of predictors such as
AVPpred (Thakur et al., 2012), AntiVPP 1.0 (Beltran Lissabet et al.,
2019), Meta-iAVP (Schaduangrat et al., 2019) and FIRM-AVP
(Chowdhury et al., 2020). Here, we used Python to process the data
and build our models. We also implemented Keras, a high-level API
of Tensorflow v2.10.0, to shape our deep learning model and the
Scikit-learn package to construct the random forest models and sup-
port vector machine.

2.2 Data augmentation by GAN
We trained a generative model with AVP_fullset (n¼2934) to gen-
erate AVP-like sequences. As shown in Supplementary Figure S1, the
latent noise vectors were transformed into generated AVPs through
the generator network. The discriminator network then assessed the

real and generated AVPs before updating the model weights through
backpropagation. These two competing neural networks were modi-
fied in each iteration of training (Supplementary Fig. S1). We used
WGAN-GP (Gulrajani et al., 2017), a GAN with higher stability
and less severe mode collapse problems compared with the original
GAN (Goodfellow et al., 2014). For a given pair of a generator G
and a discriminator D, the training process is a min-max game that
maximizes the probability of correctly detecting training data and
minimizes the difference between the training data and the gener-
ated set. The loss function of WGAN-GP is defined as follows:

L ¼ E~x�Pg
D ~xð Þ½ � � Ex�Pr

D xð Þ½ � þ kE~x�P~x
½ð r~xD ~xð Þ
�� ���� ��

2 � 1Þ2�

In the equation, Pr and Pg are the data distributions from the
training set and generated set, respectively; x is the data sampled
from Pr, and ~x is the data sampled from Pg. P~x represents the uni-
form y between Pr and Pg, and k is a penalty coefficient. By adding a
gradient penalty (kE~x�P~x

½ð r~x D ~xð Þ
�� ���� ��

2 � 1Þ2�) in Wasserstein GAN
(WGAN) (Arjovsky et al., 2017), the Lipschitz continuity is
achieved. Unlike other GANs in which batch normalization is used
to help stabilize the training, layer normalization is employed in
WGAN-GP to fit the gradient penalty by processing each input inde-
pendently. Our previous study used WGAN-GP to generate peptides
(Lin et al., 2021). The peptide generator/discriminator GAN imple-
mentation is available on GitHub (https://github.com/lsbnb/amp_
gan).

Thousands of AVP-like sequences were generated. Finally, we
built a hybrid dataset (AVPþGAN_training) composed of 16 995
positives from AVP_training and GAN-generated AVP-like sequen-
ces and 16 995 randomly chosen negatives from the negative
dataset.

2.3 Protein-encoding method
We used the protein-encoding method PC6 (Lin et al.) to transform
peptide sequences into numeric matrices (Supplementary Fig. S2).
This encoding method can express the arrangement of residues and
the physicochemical properties of amino acids, thus offering essen-
tial features for model training. Another encoding method used in
this study was the descriptor encoding used in ENNAVIA (Timmons
and Hewage, 2021). We implemented the descriptor encoding
method as described in the paper. Briefly, we calculated global phys-
icochemical descriptors using the modlAMP package (Müller et al.,
2017) and composition descriptors—such as the amino acid com-
position, pseudo amino acid composition, AA index, and dipeptide
composition—using the iFeature package (Chen et al., 2018).

2.4 AVP predictor model construction
We implemented the AVP predictor deep learning model in Python
using tf.keras, a high-level API from Tensorflow. The model was
constructed on a three-CNN-block architecture. Each CNN block
comprised a convolutional layer [filters: (64, 32, 16), kernel_size: (8,
8, 8)] with a rectified linear activation function, a batch normaliza-
tion layer, and a dropout layer [rate: (0.5, 0.5, 0.5); Fig. 1]. The out-
put value, between 0 and 1, was produced by a fully connected layer
(unit: 1) with a sigmoid activation function. We set the batch size of
the validation dataset to 1000. The validation loss of every epoch
during model training was evaluated, and the training was stopped
when the model’s performance had stabilized. The model with the
lowest validation loss was saved as the optimal model.

We also constructed models using conventional machine learning
schemes, such as random forest and support vector machine. The
algorithms were implemented using the Scikit-learn package.
Finally, we compared the model’s performance with and without
GAN data augmentation for every model we constructed.

2.5 Model evaluation and performance measures
Three model training datasets were used in this study. Because of
the limitations of model retraining, we changed the training set to
ensure a fair comparison. We trained our model on 2012_training
[506 AVPs and 506 non-AVPs, used in other AVP predictors
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(Beltran Lissabet et al., 2019; Chowdhury et al., 2020;
Schaduangrat et al., 2019; Thakur et al., 2012)] and compared the
predictor’s performance with that of other AVP predictors using the
same dataset. We then trained another AVP_training (2641 positives
þ 2641 negatives) to construct a predictor using the updated infor-
mation. To fully utilize the information in negative non-AVP
sequences, we trained a GAN model for data augmentation, as pre-
viously described, and then used the hybrid AVPþGAN_training
(16 995 positives þ 16 995 negatives) to include as much informa-
tion as possible in the AVP predictor model training.

We evaluated the model’s performance in terms of accuracy, pre-
cision, sensitivity, specificity, and the Matthews correlation coeffi-
cient (MCC). These were calculated as follows:

accuracy ¼ TPþ TN

TPþ FPþ TN þ FN
� 100

precision ¼ TP

TPþ FP
� 100

sensitivity ¼ TP

TPþ FN
� 100

specificity ¼ TN

TN þ FP
� 100

MCC ¼ TP� TNð Þ � ðFP� FNÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞ

p

where TP represents the number of true positive predictions, TN is
the number of true negative predictions, FP is the number of false

positive predictions and FN is the number of false negative
predictions.

2.6 AI4AVP website
We developed AI4AVP, a web server that enables users to employ
the deep learning model constructed in this study (Fig. 2). Users can
submit their peptide sequences through a friendly interface, receive
the calculated prediction results, and select the predictor trained
using AVP_training or AVPþGAN _training. The input sequence
should be in FASTA format with a minimal length of 10 residues.
For inputs longer than 50 residues, AI4AVP will chop the input into
multiple strings (window size: 50, step: 25) before running the
prediction.

3 Results

In this study, we introduced a new AVP predictor that employs a
deep learning algorithm and is trained with updated data. An experi-
mental approach was also attempted to recruit more information
from the negative dataset without compromising the balance of the
input training set (Supplementary Fig. S3). Table 1 presents the
model’s performance when trained on three datasets: 2012_training,
AVP_training and AVPþGAN_training. The neural network outper-
formed the other two tested algorithms in AVP_training and hybrid
AVPþGAN_training. In the AVPþGAN_training, the precision and
specificity of the CNN model were high, contributing to the final
MCC being 0.68 rather than 0.65, as was achieved for the
AVP_training. We also conducted a 10-fold cross-validation to
evaluate the model’s stability, as shown in Supplementary Table S3.
For all models, the standard deviation was low (<0.1). The 10-fold
cross-validation result based on the model encoding PC6 on CNN
with a new training dataset (AVPþ GAN_training) performs best on
Accuracy and MCC by 0.94 and 0.88 in Supplementary Table S3,

Fig. 1. Architecture of the AI4AVP model. The encoded peptide matrix serves as the input that passes through the three CNN blocks. The fully connected layer with a sigmoid

activation function transforms the vector into a value between 0 and 1 to produce the model’s output, the prediction.

AI4AVP 3

https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbac080#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbac080#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbac080#supplementary-data


respectively. Compared to the same approach used on
AVP_training, the value of Accuracy and MCC are 0.87 and 0.77
around. The same encoding model PC6 with CNN can benefit great-
ly from the sequences generated in wGAN-GP.

To make a fair comparison of the model’s performance, we
trained another predictor in the same deep learning/protein encod-
ing architecture on 2012_training, which is the same training data
used by AVPpred, AntiVPP 1.0, Meta-iAVP, and FIRM-AVP. The
validation was performed using AVP_test, which was not contami-
nated by the models’ training sets. According to Supplementary
Table S4, all predictors, including ours, performed marginally, with
an accuracy of �0.5 and an MCC of �0.1. All performance indices
were significantly better than those obtained with the model trained
on the new collection (AVP_training), which contained three times
newer AVP sequences than 2012_training.

We compared the PC6 encoding method with the descriptor pro-
tein encoding method used in protein property prediction studies
(Beltran Lissabet et al., 2019; Chowdhury et al., 2020;
Schaduangrat et al., 2019; Thakur et al., 2012). We implemented
the ENNAVIA (Timmons and Hewage, 2021) method involving

both composition and physicochemical descriptors as features to
train the neural network model. We discovered that the descriptive
encoding performed similarly with our PC6 encoding when the
model was trained with AVP_training. Still, the performance was
lower in almost every measurement, except sensitivity, with
AVPþGAN_training (Table 1).

4 Discussion

Predicting a peptide’s AVP potency based on its primary sequence is
a typical binary classification problem in machine learning. The per-
formance of machine learning depends on both the quality and
quantity of data. After Thakur’s work, a few new AVPs were discov-
ered. Using the same deep learning architecture, we found that
increasing the amount of input data improves a classifier’s perform-
ance. Neural networks are generally better at constructing models
from large datasets. Although we could not retrain the models of the
AVP predictors from other studies, the experimental results indi-
cated that a well-designed deep learning model (neural network)

Fig. 2. AI4AVP web server workflow. (1 and 2) AI4AVP interface. The input of AI4AVP is peptide sequences in FASTA format, submitted in either copy-paste or batch execu-

tion in a file upload manner with the selected encoding method. Users can wait for the server’s response or supply a valid email to retrieve the result upon job completion notifi-

cation. (3) The window clip of the result page. (4) The predictions of each peptide are summarized in a CSV file that is downloadable from the ‘Download area.’.

Table 1. Results of model evaluation with various datasets by the same testing set, AVP_testinga

Training set Encoding method Algorithm Accuracy Precision Sensitivity Specificity MCC

2012_trainingb PC6 encoding CNN 0.55 0.61 0.29 0.82 0.12

AVP_trainingb PC6 encoding CNN 0.83 0.82 0.85 0.81 0.65

PC6 encoding RF 0.74 0.69 0.88 0.60 0.50

PC6 encoding SVM 0.73 0.68 0.86 0.59 0.47

descriptor encodingc CNN 0.78 0.77 0.81 0.76 0.57

AVPþ GAN_trainingb PC6 encoding CNN 0.84 0.84 0.85 0.86 0.68

PC6 encoding RF 0.74 0.69 0.85 0.62 0.49

PC6 encoding SVM 0.81 0.81 0.81 0.81 0.62

descriptor encodingc CNN 0.70 0.64 0.94 0.46 0.46

aAVP_testing: 293 positives þ 293 negatives, selected from a clean AVP collection (AVP_fullset, 2934 positives þ 2934 negatives).
b

2012_training: 506 positives þ 506 negatives by Thakur et al. (2012); AVP_training: 2641 positives þ 2641 negatives; AVP1GAN_training: 16 995 positives

(from AVP_training and GAN-generated AVP-like sequences) þ 16 995 negatives.
c

Descriptor encoding refers to the feature descriptor used in ENNAVIA (Timmons and Hewage, 2021), including composition and physicochemical

scores. Each evaluation metric’s best and second ones were marked in bold and underlined.

CNN, convolutional neural network; RF, random forest; SVM, support vector machine.
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increasingly outperforms a random forest or support vector machine
model as the size of the input dataset increases.

Because of the cost and labor involved in discovering and vali-
dating peptides, those clearly defined for a specific activity, such as
the AVP we targeted in this study, are limited. We often had more
negative data than positive data, but the concern of training data
balance meant that some negative data could not be used. To in-
crease the input data size without disturbing the positive–negative
balance, we used GAN in the data augmentation process, generating
AVP-like sequences as surrogates. We first initiated the generator
model to create an AVP-like sequence based on real AVPs; this gen-
erator was reshaped during the model training process, making it a
better generator. GAN augmentation also increased the positives,
allowing almost all sequences in the negative set to be used in the
AVP classifier model training, thereby improving the classifier’s ro-
bustness for peptide identification. As evidenced by Table 1, the
model trained on the augmented dataset achieved higher accuracy
and sensitivity and an overall better MCC score. We do not know
why the CNN with descriptive encoding could not benefit from the
increased dataset size.

5 Conclusions

We constructed AI4AVP, an AVP predictor, using a deep learning
algorithm trained on the most up-to-date dataset and a previously
published protein-encoding method (PC6). In our previous studies,
we achieved data augmentation and developed a peptide GAN that
can increase the amount of negative data used. This approach allowed
us to use our training data while keeping the datasets balanced during
model training. The AVP predictors trained on AVP_training and
AVPþGAN_training is available as user-friendly web portal,
AI4AVP, for predicting the antiviral ability of peptide sequences and
accelerating the development of potential antiviral drugs.
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