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Abstract

Motivation: Nonparametric multivariate analysis has been widely used to identify variables associated with a dis-
similarity matrix and to quantify their contribution. For very large studies (n � 5000) and many explanatory varia-
bles, existing software packages (e.g. adonis and adonis2 in vegan) are computationally intensive when conducting
sequential multivariate analysis with permutations or bootstrapping. Moreover, for subjects from a complex sam-
pling design, we need to adjust for sampling weights to derive an unbiased estimate.

Results: We implemented an R function fast.adonis to overcome these computational challenges in large-scale stud-
ies. fast.adonis generates results consistent with adonis/adonis2 but much faster. For complex sampling studies, fas-
t.adonis integrates sampling weights algebraically to mimic the source population; thus, analysis can be completed
very fast without requiring a large amount of memory.

Availability and implementation: fast.adonis is implemented using R and is publicly available at https://github.com/
jennylsl/fast.adonis.

Contact: jianxin.shi@nih.gov

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

Nonparametric multivariate analysis (Anderson, 2001; McArdle
and Anderson, 2001) based on a dissimilarity matrix has been
widely used to analyze human microbiome data. This analysis
quantifies the overall contribution of explanatory variables (R2,
coefficient of multiple determination), individually or collectively,
by explaining the variation in the dissimilarity matrix [e.g. the
UniFrac distance matrix (Lozupone and Knight, 2005)]. Then,
statistical significance can be quantified using permutations and
confidence intervals (CIs) are obtained using bootstrap sampling.
The functions adonis and adonis2 in an R package vegan
(Oksanen et al., 2020) are most commonly used for human micro-
biome data. While useful, they are computationally intensive for
analyzing large-scale studies with thousands or tens of thousands
of subjects and many explanatory variables (McDonald et al.,
2018), particularly when performing sequential multivariate ana-
lysis (SMA) with permutations and bootstrapping. Moreover, we
often perform many SMAs for variables included in the model in
different orders because R2 for individual variables depends on
the order.

A more complicated problem is to analyze microbiome data
from a study using complex sampling. For example, using a nested
case-cohort design in a cohort study with N subjects, suppose that
we have microbiome data for n ðn� NÞ subjects, each of which
is sampled with a probability based on the fraction of the subjects
selected from their sampling stratum. To derive an unbiased esti-
mate of R2 that reflects the source cohort population, we have to
explicitly incorporate sampling weights (Korn and Graubard,
1999).

We first describe fitting multiple multivariate models simultan-
eously for subjects from a natural population. For a study with n
samples, we have an n�n dissimilarity matrix D ¼ ðdijÞ and an
n�p design matrix X for p explanatory variables with the first col-
umn ð1; . . . ;1Þ0. We define an n�n matrix A with aij ¼ �d2

ij=2. The
Gower’s centered matrix (Gower, 1966; Gower and Legendre,
1986) is defined as G ¼ ðI � K=nÞAðI � K=nÞ, where K is an n�n
matrix with kij ¼ 1 and I is an n�n identity matrix. Let H ¼
XðX0XÞ�1X0 be the idempotent hat matrix. McArdle and Anderson
(2001) showed that
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trðGÞ ¼ trðHGHÞ þ trððI �HÞGðI �HÞÞ: (1)

Based on this partitioning, R2 ¼ trðHGHÞ=trðGÞ is interpreted
as the fraction of variance in matrix D explained by the p variables.
In marginal multivariate analysis, we fit one model for each

individual variable to derive R2. In SMA for p variables with a given
order, we calculate R2

k for the first k variables and then R2
1;R

2
2 �

R2
1; . . . ;R2

p �R2
p�1 are calculated as the incremental contribution of

each individual variable. Obviously, SMA depends on the order of
the variables.
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Fig. 1. (A) Computation time (hours) for fast.adonis and adonis2 to perform one sequential multivariate analysis (SMA) for n subjects and p variables with 1000 permutations.

For example, ‘1.2/123’ indicates 1.2 h for fast.adonis and 123 h for adonis2. ‘NA’: Analyses were not successful on the computer. (B) Computation time (hours) for adonis2

and fast.adonis to perform ten sequential multivariate analysis (SMA) for n subjects and p variables with 1000 permutations. Here, 10 SMAs mean SMA for 10 different orders

of the same p variables. (C) Marginal and sequential R2 for 30 variables and a weighted UniFrac dissimilarity matrix in the American Gut Project with n¼7096 subjects.

Confidence intervals were calculated based on 1000 bootstrapping. (D) Multivariate analysis for the oral microbiome of n¼2487 subjects from the PLCO cohort with source

population n¼ 32 763. Analyses were done for 29 dummy variables based on 7 categorical variables. Confidence intervals were derived based on within stratum

bootstrapping.
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In Supplementary Note, we show that trðGÞ ¼
P

i< j d2
ij=n and

trðHGHÞ ¼ trðHAÞ þ
P

i< j d2
ij=n. Thus, to calculate R2, it remains to

calculate tr(HA). Let V ¼ X½ðX0XÞ�1� and U ¼ X0A. Here, V is
an n�p matrix and U is an p�n matrix. Thus,

trðHAÞ ¼ trfðX½ðX0XÞ�1�ÞðX0AÞg ¼ trðVUÞ ¼
P

1� i� n;1� j� p VijUji.

In Supplementary Note, we show that the computational complexity

for tr(HA) is n2p when p� n, which is much less than n3 required for
the multiplication of n�n matrices.

Now, we consider simultaneously fitting multivariate models for
M subsets of the p variables with a given order (denoted as
S1; . . . ; SM). We first calculate U ¼ X0A for all p variables. For any
subset Sm, we do not need to calculate UðSmÞ individually; instead,
we extract the corresponding rows of U. For a subset Sm with q vari-
ables, computing UðSmÞ has a complexity of n2q and is the most
computationally intensive step for fitting the model when q� n.
Thus, this extension is suitable for fitting many models simultan-
eously, including SMAs.

We compared the computational time between fast.adonis and
adonis2 for performing one SMA with 1000 permutations on a
MacBook Pro with Intel 2.3 GHz Core i9 CPU and 16 gigabytes of
memory. No comparisons were made with adonis because of the re-
quirement of memory (�30 gigabytes of memory required when
n¼10000 and p¼20). For n¼10000 and p>20, fast.adonis is
about 50–100 times faster than adonis2 (Fig. 1A). At n¼20 000, ado-
nis2 did not run successfully when p � 20. Next, we compared the
computing time for performing 10 SMAs for the same set of p varia-
bles included in different orders (Fig. 1B). fast.adonis simultaneously
performed 10 SMAs while adonis2 performed SMA 10 times serially.

We used fast.adonis to analyze the data from the American Gut
Project (McDonald et al., 2018) with 111 variables (p¼559 after
expanding categorical variables) and n¼7, 096 subjects. We eval-
uated the marginal R2 of these variables and performed SMA with
variables ordered by the marginal R2 values. Analyses were per-
formed for the weighted UniFrac dissimilarity matrix with 1000 per-
mutations and 1000 bootstrap samples. Results for the top 30
variables are shown in Figure 1C. Consistent with the original publi-
cation (McDonald et al., 2018), technical factors were most associ-
ated with the dissimilarity matrix, followed by nutrition variables.
For most nutrition variables, the R2 from sequential analyses was
much lower than those from marginal analyses. Because p¼559,
this analysis took fast.adonis 8.8 h (1 SMA, 1000 permutations and
1000 bootstrapping); adonis2 was not able to finish analyses.

Next we extend the algorithm to complex sampling studies. The
complex sample design used to sample the cohort to obtain a subco-
hort for the case-cohort study involved partitioning the subjects in
the cohort into multiple strata, and subjects are randomly selected
from each stratum with some sampling fraction. As an example, we
have recently characterized the oral microbiome of n¼2487 sub-
jects from the Prostate, Lung, Colorectal and Ovarian Cancer
Screening Trial (PLCO) cohort (n¼37 263 eligible individuals with
oral wash specimens) to prospectively investigate the association be-
tween the oral microbiome and the risk of multiple cancers, includ-
ing lung cancer (Vogtmann et al., 2022). To select a referent
subcohort for comparison to the cases, 24 strata were created based
on age, sex and smoking variables and stratum-specific sampling
fractions were determined based on the number of site-specific can-
cer cases in that stratum. To derive an unbiased estimate of R2 in the
dissimilarity matrix for many demographic and lifestyle factors, we
extended the algorithm to explicitly incorporate the sampling weight
(Supplementary Notes) following the philosophy of survey data
analyses (Korn and Graubard, 1999).

We analyzed the PLCO data for p¼29 dummy variables gener-
ated from seven categorical variables (Vogtmann et al., 2022): age,
race, sex, education, smoking history, alcohol consumption and body
mass index (Fig. 1D). For each analysis, we used within-stratum boot-
strapping by independently resampling the stratum-specific samples
with replacement to derive the CI for R2. Together, these seven varia-
bles explained 4.70% (95% CI¼3.84–5.68%) of the variance in the
weighted UniFrac dissimilarity matrix, while smoking history alone

explained 1.70% (95% CI¼1.20–2.22%) of the variance, condition-
ing on age, sex and education. Results based on marginal analyses and
sequential analyses are similar in this data. It took 3.8 min to finish
the analysis with 1000 bootstrap resampling for this data.

In summary, we developed fast.adonis to efficiently fit multivari-
ate models to microbiome data from large-scale studies. fast.adonis
can efficiently fit many multivariate models simultaneously, making
it useful to identify important factors by forward selection (Blanchet
et al., 2008). While results in this manuscript were obtained using a
single core, fast.adonis has the option of parallel computation.
Moreover, fast.adonis can analyze data from complex sampled stud-
ies which require analyses using sampling weights. When the interest
centers on testing the association between one variable and a dis-
tance matrix, one can rely on the asymptotic P-value instead of per-
mutations (Chen and Zhang, 2021).
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