
Structural bioinformatics

Generating tertiary protein structures via interpretable

graph variational autoencoders

Xiaojie Guo1,†, Yuanqi Du2,†, Sivani Tadepalli2, Liang Zhao 3 and Amarda Shehu 4,*

1Department of Information Sciences and Technology, George Mason University, Fairfax, VA 22030, USA, 2Department of Computer

Science, George Mason University, Fairfax, VA 22030, USA, 3Department of Computer Science, Emory University, Atlanta, GA 30322,

USA and 4Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: Michael Gromiha

Received on August 26, 2021; revised on November 7, 2021; editorial decision on November 9, 2021; accepted on November 17, 2021

Abstract

Motivation: Modeling the structural plasticity of protein molecules remains challenging. Most research has focused
on obtaining one biologically active structure. This includes the recent AlphaFold2 that has been hailed as a break-
through for protein modeling. Computing one structure does not suffice to understand how proteins modulate their
interactions and even evade our immune system. Revealing the structure space available to a protein remains chal-
lenging. Data-driven approaches that learn to generate tertiary structures are increasingly garnering attention.
These approaches exploit the ability to represent tertiary structures as contact or distance maps and make direct
analogies with images to harness convolution-based generative adversarial frameworks from computer vision.
Since such opportunistic analogies do not allow capturing highly structured data, current deep models struggle to
generate physically realistic tertiary structures.

Results: We present novel deep generative models that build upon the graph variational autoencoder framework. In
contrast to existing literature, we represent tertiary structures as ‘contact’ graphs, which allow us to leverage graph-
generative deep learning. Our models are able to capture rich, local and distal constraints and additionally compute
disentangled latent representations that reveal the impact of individual latent factors. This elucidates what the fac-
tors control and makes our models more interpretable. Rigorous comparative evaluation along various metrics
shows that the models, we propose advance the state-of-the-art. While there is still much ground to cover, the work
presented here is an important first step, and graph-generative frameworks promise to get us to our goal of unravel-
ing the exquisite structural complexity of protein molecules.

Availability and implementation: Code is available at https://github.com/anonymous1025/CO-VAE.

Contact: amarda@gmu.edu

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Decades of research have demonstrated that protein molecules
are inherently dynamic and leverage their structural plasticity to
interact with multiple partners in the cell (Boehr and Wright,
2008; Boehr et al., 2009) and even evade our immune system. A
growing number of studies have shown structural plasticity in ac-
tion: the receptor-binding domain of the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein,
assumes a closed structure in its stealth mode, where it hides
from our antibodies, and a partially open structure in its offense
mode, where it binds to the human Angiotensin-converting en-
zyme 2 receptor, thus mediating viral entry in human host cells

(Henderson et al., 2020; Majumder et al., 2021; Tian and Tao,
2021).

Capturing protein structural plasticity remains challenging for
both wet and dry laboratories (Nussinov et al., 2019), primarily due
to the disparate temporal scales at which conversions between ter-
tiary structures happen and the presence of short-lived structural
states. Computational approaches harness specific knowledge about
a protein in the form of reaction coordinates and/or existing struc-
ture data, reduce the representation detail of a tertiary structure,
utilize specialized energy functions, and/or leverage specialized tech-
niques to expedite simulations based on Newtonian mechanics or

VC The Author(s) 2021. Published by Oxford University Press. 1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics Advances, 2021, 1–9

https://doi.org/10.1093/bioadv/vbab036

Advance Access Publication Date: 29 November 2021

Original paper

https://orcid.org/0000-0002-2648-9989
https://orcid.org/0000-0001-5230-4610
https://github.com/anonymous1025/CO-VAE

article-lookup/doi/10.1093/bioadv/vbab036#supplementary-data
https://academic.oup.com/


enhance the sampling of complementary, optimization-based algo-
rithms (Maximova et al., 2016). Currently, computational
approaches do not generalize well. In contrast, methods that focus
on computing one structure have shown better generalizability. For
decades, improvements came from a combination of better fragment
libraries, more accurate structure scoring functions, and more
powerful optimization algorithms seeking local minima of scoring
functions. Recent methods based on deep learning have shown rapid
improvements. The performance of AlphaFold2 (Jumper et al.,
2021) in CASP14 suggests that an important milestone has been
achieved in single-structure prediction.

The question of whether a computational approach can reveal
the diversity of structures employed by a protein molecule to regu-
late molecular interactions still stands. Methods like AlphaFold2
and others do not provide a broad view of the structure space. On
the other hand, balancing between exploration and exploitation in a
vast, high-dimensional structure space (with hundreds or thousands
of dimensions even for a protein with a hundred or fewer amino
acids) is a fundamental algorithmic challenge. Prompted by the re-
emergence of neural networks in data-rich domains, including mo-
lecular structure biology, researchers are now asking an interesting
question: can we learn how to generate structures of protein mole-
cules from existing structural data?

A recent survey (Hoseini et al., 2021) overviews the current land-
scape of generative models for protein structure generation and
reveals that, while preliminary results seem promising, much confu-
sion abounds. Many authors confound their contributions to the
body of work in protein modeling and arbitrarily frame their work
as either falling under protein design, protein folding or protein
structure prediction. The problem of protein design asks the ques-
tion of what amino acid sequences would populate a given tertiary
structure most optimally (under some definition of optimality that is
related to sequence-structure scoring functions)? The problem of
protein folding asks about the physical process that shows how an
unstructured chain of amino acids finds its way to one or more sta-
ble and/or semi-stable structures. For instance, AlphaFold2 does not
address protein folding. Its contribution is in protein structure pre-
diction and in the narrow setting of one sequence, one structure.
Generative models that claim to address protein structure predic-
tion, even if interpreted more broadly to contribute to the larger
problem of revealing the protein structure space, do not consider the
specific amino acid sequence. In fact, the majority of deep generative
models ask a rather modest question: given tertiary structures (with
some choice of representation), can the model generate protein-like
(physically realistic) tertiary structures without any particular amino
acid sequence in mind?

Though modest, the above question is an important milestone to
demonstrate convincingly. Work in Hoseini et al. (2021) reveals
that there is much ground to cover, even when clarifying the ques-
tion. Current deep generative methods predominantly exploit the
ability to represent tertiary structures as contact maps or distance
matrices, which encode the spatial proximity of pairs of amino acids
(often using alpha carbon or backbone atoms to represent amino
acids). Some earlier works employed dihedral angles to represent
protein structures; however, as such representations are under-
constrained, the generated structures contained steric clashes and
failed short in other characteristics attributed to physically realistic
structures. The reason that contact maps or distance matrices have
become popular is that they capture more constraints that are inher-
ent in a tertiary structure. They also allow researchers to make direct
analogies with (pixel maps) images and so leverage convolution-
based generative adversarial frameworks from computer vision. A
detailed review of these methods is beyond the scope of this article.
However, as the recent review in Hoseini et al. (2021) relates, exist-
ing methods build over the generative adversarial network (GAN)
framework, in which a discriminator network helps a generator net-
work to learn the implicit distribution of contact maps (or distance
matrices) in the training dataset.

Across the landscape of deep generative methods, the quality of
the generated contact or distance maps is varied. In fact, most stud-
ies do not take a deep dive into evaluating key aspects of the quality

of the generated maps. Work in Rahman et al. (2021) exposes issues
with existing, state-of-the-art (SOTA) methods in capturing all the
intrinsic structural constraints in a tertiary structure. Very recent
SOTA methods leverage the loss function as the mechanism by
which to focus the network on what to learn, such as the symmetry
of contact maps (Yang et al., 2020), the few long-range distances (in
the 4–16 Å range) in distance maps over the abundant short-range
or blank cells (Ding and Gong, 2020), and more (Hoseini et al.,
2021). Work in Rahman et al. (2021) shows that training GANs is
fraught with instability and impacts the quality of generated data.

Noticeably, methods building over the variational autoencoder
(VAE) framework have been absent. In this article, we posit that
VAEs present an interesting complementary framework and warrant
further attention. In particular, we posit that they allow bringing
over recent developments in deep learning that better capture the
rich structure (and constraints) in tertiary structures (and, more
broadly, molecular structures). In particular, we maintain that a cen-
tral reason behind the current difficulties of GAN-based methods to
compute physically realistic tertiary structures is that they leverage
image convolution. However, tertiary structures are three-
dimensional objects, and proximity among the building blocks
extends from sequence to three-dimensional space. Graph-based
representations allow capturing spatial proximity, and bringing
them over to structure generation is one of the main contributions in
this article. Leveraging developments in graph-generative deep
learning, this work represents a tertiary structure as a contact graph
and learns over the space of known contact graphs (corresponding
to different tertiary structures) to generate more contact graphs. In
particular, we build over a graph-generative VAE framework and
propose several graph-generative VAE models. We posit that VAE-
based models are more powerful; by exposing latent factors, they
permit more understanding of what the models have learned.
Specifically, building on our work on disentangled representations
in other domains, we propose here disentangled graph-generative
VAE models, which reveal the impact of individual latent factors.
This aids our understanding of what the factors control and so
makes our models more interpretable.

2 Methods

Figure 1 summarizes the overall approach. The schematic shows
that tertiary structures in the training dataset are first represented as
contact maps, which are then converted to contact graphs. This
dataset is used to train a graph VAE, summarized in the bottom
panel. The output of the trained model is generated contact graphs,
from which one can then recover tertiary structures in a pipeline,
using established methods that recover tertiary structures from con-
tact maps (as we show here). The middle top panel of Figure 1
shows conceptually that the learned latent factors capture various

Fig. 1. Overall schematic of the proposed generative learning framework. A contact

map is extracted from a given tertiary structure and is then converted into a contact

graph. Contact graphs in the training dataset are distilled to populate node and edge

attribute data, which are then passed to an encoder network to learn a disentangled

representation. New node and edge attribute data are then obtained from the de-

coder network. These are used to obtain a new contact graph, which is then con-

verted into a contact map, which is used in turn to obtain a new tertiary structure

2 X.Guo et al.



aspects of a tertiary structure, and by varying them one obtains in-
sight into what the model has learned. In the interest of space, the
exposition of our approach balances between allowing the reader to
understand the approach in its entirety while relating the novel
methodological components. We assume some familiarity with VAE
architecture and graph VAEs (Kingma and Welling, 2014).

2.1 Problem formulation and setup
The tertiary structures in the training dataset have atomistic detail;
i.e. Cartesian coordinates are available for every atom. In keeping
with convention, we extract the contact map from a given tertiary
structure by making use only of the Cartesian coordinates of the cen-
tral CA atoms (there is one in each amino acid). Each CA-only struc-
ture is converted into a contact graph. In summary, if the Euclidean
distance between the CA atoms of amino acid i and j (with amino
acids numbered 1 through n from the N- to the C-terminus) is no
higher than 8 Å, an edge is placed between vertices representing
amino acids i and j. In this way, a dataset of tertiary structures is
converted into a dataset of contact graphs. We note that the thresh-
old of 8 Åis predominantly used in contact map research literature,
based on early work and analysis by Vendruscolo et al. (1997).

We employ the concept of a contact map graph, which can be
computed as described from a given tertiary structure. Inversely, a
tertiary structure can be recovered from a contact map. We do so by
using CONFOLD (Adhikari et al., 2015). Hence, the contact map is
a graph-based representation of a tertiary structure that effectively
embeds the three-dimensional Cartesian space into a two-
dimensional space. Specifically, in our approach, a contact map is
denoted as a graph with N nodes, where each node is an amino acid,
and an edge between a pair of nodes encodes the adjacency relation
between them.

We denote such an undirected graph as G ¼ ðE;FÞ, which is
associated with its edge attribute tensor E 2 RN�N�L1 , where L1

denotes the number of edge attributes. In our implementations in
this article, L1 ¼ 1, and so the edge attribute tensor E 2 RN�N,
where Ei;j ¼ 1 records an interaction (contact) between vertices i
and j, and Ei;j ¼ 0 otherwise. We also consider each node to have a
connection to itself. The node attribute matrix is F 2 RN�L2 and
denotes the attributes of each amino acid by hot vector embedding,
where L2 is the number of attributes. Node attributes can store not
just the identities of the amino acids, but also their Position-Specific
Scoring Matrix profile, their solvent accessibility and secondary
structure as derived from a given tertiary structure. The edge attrib-
utes can encode additional information about contacts, such as their
exact distance and/or contact predicted for that pair of amino acids
(nodes) from sequence information alone. In our experiments,
L2 ¼ 20, which corresponds to the number of all the classic amino
acid types, and L1 ¼ 1, which corresponds to the existence of the
contacts.

2.2 Deep protein contact graph VAE
In order to evaluate the fundamental premise that graph VAEs are a
promising framework for (protein) contact graph generation, we de-
sign what we refer to as the CO-VAE model, which stands for Deep
(Protein) Contact Graph Variational Autoencoder (CO-VAE). This
model serves as a baseline, as it does not contain the disentangle-
ment mechanism, we propose in a more sophisticated model.

Let us first summarize CO-VAE. The overall CO-VAE architec-
ture consists of a graph encoder and a graph decoder, which are
trained by optimizing the variational lower bound loss with respect
to the variational parameters:

‘ ¼ EqðZjF;EÞ½log pðE; FjZÞ� � KL½qðZjF;EÞjjpðZÞ�: (1)

In the above equation, Z 2 R1�H are the stochastic latent varia-
bles vectors. E and F are the edge and node attribute tensors, re-
spectively. The first item on the right-hand-side is the expected
reconstruction loss of the generated contact graphs. The second
term is a regularization term that encourages the approximate pos-
terior qðZjF;EÞ to be close to the prior p(Z). Specifically, the term
measures the KL½qð�Þjjpð�Þ� Kullback–Leibler divergence (Kullback,

1997) between qð�Þ and pð�Þ. This term enforces that the inferred la-
tent vector is close to the prior distribution. pðZÞ ¼

Q
i pðziÞ ¼Q

iNðzij0;1Þ is a Gaussian prior; we note that in a VAE, the prior
over the latent variables is modeled as a centered isotropic multivari-
ate Gaussian.

For the encoder part qðZjF;EÞ, we take a simple inference model
parameterized by a two-layer Graph Convolution Neural Network
(GCN) (Kipf and Welling, 2016):

qðZjF;EÞ ¼
YN

i¼1
qðzijF;EÞ; where qðzijF;EÞ ¼ N ðzijli; r

2
i Þ; (2)

where l ¼ GCNlðF;EÞ is the mean of the latent vectors, while li is
the i-th element of it, which is inferred by GCN to model qðzijF;EÞ
as a Gaussian distribution. Similarly, r ¼ GCNrðF;EÞ is the stand-
ard deviation of the latent vector that is inferred by another GCN,
and ri is the i-th element of it. Z can be sampled from the distribu-
tions of the latent vectors qðZjF;EÞ.

The edge and node attributes are inputted into the convolution
layer, which is based on the classical GCN (Kipf and Welling,
2016). During convolution, for each graph, given the node attribute
matrix F and the edge attribute matrix E, we then have H ¼ E0FW,
where W is a matrix that refers to a layer-specific trainable weight
matrix and E0 ¼ D�1=2ED�1=2. D refers to the normalized degree
matrix of the graph. More details on the operations in a GCN can
be found in Kipf and Welling (2016).

For the generator to approximate pðE; FjZÞ, we utilize the graph
decoder developed in our prior works (Guo et al., 2018) based on
novel graph deconvolution operations for graph decoding. In our
problem of contact graph generation, the node attribute matrix is
fixed. Thus, we can first generate F by directly copying from the in-
put. To generate the edge attribute E, the latent vector Z is first
inputted into a fully connected layer to get Z0. Then, Z0 is concaten-
ated with each node feature vector in F to get the new node feature
matrix F0. F0 is inputted into the graph deconvolution network,
including node deconvolution layers and edge deconvolution layers,
to obtain the final generated edge matrix E.

We perform mini-batch gradient descent and make use of the re-
parameterization trick (Kingma and Welling, 2014) to optimize the
parameters of the Gaussian distribution.

2.3 Disentanglement enhancement contact graph VAE
Although disentanglement enhancement and deep graph genera-
tive models are respectively attracting increasing attention in re-
cent years, their integration remains under-explored (Higgins
et al., 2017; You et al., 2018). The DECO-VAE model, which
stands for Disentanglement Enhancement Contact Graph
Variational Autoencoder, represents one of the few works to inte-
grate the two and the first work to do so for protein structure
modeling. Specifically, we propose to generalize the CO-VAE
framework with an additional hyperparameter b that modulates
and enhances the independency among the individual latent varia-
bles of Z; the disentanglement enhancement mechanism is inspired
by b-VAE (Higgins et al., 2017). The goal is to weaken the cou-
pling among the latent variables. Equation (1) can be re-written to
obtain the DECO-VAE formulation, with the addition of the b
coefficient:

‘ ¼ EqðZjF;EÞ½log pðE; FjZÞ� � bKL½qðZjF;EÞjjpðZÞ�: (3)

When b¼1, DECO-VAE becomes equivalent to CO-VAE.
When b > 1, the model is pushed to pursue more toward the consist-
ency with the isotopic Gaussian prior, thereby enhancing variable
independency.

2.4 Details of architecture and training parameters of

CO-VAE and DECO-VAE
We describe the detailed operation and implementation of the en-
coder and decoder in the CO-VAE and DECO-VAE frameworks.
The training parameters and architecture information are also pro-
vided for reproducibility. The encoder, which is the same both in

Interpretable VAEs for protein structure generation 3



CO-VAE and DECO-VAE, consists of two edge convolution layers
[proposed by Guo et al. (2018)] sequentially and then two paths of
graph convolution layers [proposed in Kipf and Welling (2017)] for
inferring the latent representation Z, which follows the Gaussian
distribution. One path is used to generate the mean of Gaussian dis-
tribution, and another path is used to generate the standard deriv-
ation. The decoder consists of one fully connected layer, a node
deconvolution layer [proposed in Guo et al. (2018)] and two edge
deconvolution layers [proposed by Guo et al. (2018)]. We summar-
ize the parameters of the architecture and training process in the
Supplementary Material. The node and edge convolution layer is
described in the format of < Filter_size > < Conv_type > .
< Num_Channels > < Activationfunction > .stride(s) < stride_size >.
The graph convolution layer is described in the format of:
Graph � conv. < Num_Channels > < Activationfunction >. The fully
connected layer is described as: FC: < Num_of_hiddens >. The learn-
ing rate for training is 5� 10�4; the mini-batch is 100, and the number
of epochs is 200.

Implementation Details: codes for the neural network layers of
decoder can be found at https://github.com/anonymous1025/Deep-
Graph-Translation-, and codes for layers of encoder can be found at
https://github.com/tkipf/gcn.

3 Results

3.1 Experimental setup
3.1.1 Datasets

The evaluation is carried out on 15 protein targets of varying lengths
(53 to 146 amino acids long). Column 2 in Table 1 lists the name of
each protein; Column 3 reports the length in the number of amino
acids and Column 4 relates the number of tertiary structures gener-
ated per protein with the Rosetta AbInitio protocol (Leaver-Fay
et al., 2011). Specifically, on each protein target, using as input its
amino acid sequence in fasta format, the Rosetta AbInitio protocol
[available freely in the Rosetta software suite (Leaver-Fay et al.,
2011)] is run in an embarrassingly parallel manner to obtain a set of
at least 50 000 tertiary structures. The same amount of time is allo-
cated per protein; the variation in the number of tertiary structures
obtained is due to the variation in the cost of energy calculations in

Rosetta as a function of chain length. The resulting structures are
converted into contact graphs as described in Section 1. A 4:1 split is
used to obtain the training and testing dataset on each protein.

3.2 Comparison with SOTA methods
We compare the proposed CO-VAE and DECO-VAE to four base-
line methods, VGAE, Graphite, GraphRNN and WGAN (described
in detail in the Supplementary Material). In summary, Graphite
(Grover et al., 2019) is a framework for unsupervised learning of
representations over nodes in large graphs using deep latent variable
generative models. VGAE (Kipf and Welling, 2016) is implemented
based on the VAE framework for unsupervised learning on graph-
structured data. GraphRNN (You et al., 2018) is a deep autoregres-
sive model to approximate any distribution of graphs with minimal
assumptions about their structure. WGAN (Rahman et al., 2021) is
a GAN that leverages image convolution and Wasserstein distance
in the loss function to generate distance matrix representations of
tertiary protein structures.

Our first comparison focuses on training and generating times,
which vary greatly among the models. For instance, the left panel of
Figure 2 shows training times varying from 61.06 s for VGAE, to
71.5 s for Graphite, to 298.06 s for DECO-VAE, to 302.43 s for
CO-VAE, to 2221:63s for GraphRNN and to 20 351s for WGAN.
The left panel of Figure 2 also indicates that the largest range (indi-
cated by vertical lines) is observed for GraphRNN and then WGAN,
in this order. The right panel of Figure 2 shows a similar pattern,
with CO-VAE and DECO-VAE having the lowest average generat-
ing times, followed closely by VGAE and Graphite. GraphRNN has
the highest average (and range of) generating time, followed next by
WGAN.

3.3 Evaluating the quality of the generated datasets
Our first comparison focuses on evaluating the quality of the gener-
ated datasets, using the training dataset as a reference. Specifically,
we evaluate whether the generated contact graphs from the learned
distribution follow that of the training samples. We do so in two
ways, first by focusing on intrinsic graph properties and so summa-
rizing a contact graph with a summary statistic (such as density, or
number of edges, etc., as described below), or by focusing on
domain-specific metrics that additionally leverage experimentally
known structures.

3.4 Evaluating learned distributions via graph-intrinsic

properties
First, we focus on four intrinsic graph properties: the density of a
graph, the number of edges in it, the average degree coefficient and
the transitivity of a graph. The density of a graph is the ratio be-
tween the number of edges in the graph and the number of possible
edges (that would be achieved in a complete graph with the same
number of vertices). The average degree coefficient measures the
similarity of connections in the graph with respect to the node de-
gree. Transitivity is the overall probability for the graph to have ad-
jacent nodes interconnected. We calculate these properties via the
open source API NetworkX (Hagberg et al., 2008).

The distance between the distribution of the generated contact
graphs and the distribution of the graphs in the training dataset in
terms of each of the four properties is measured in three ways: via
the Pearson correlation coefficient (PCC) (Benesty et al., 2009), the
Bhattacharyya distance (BD) (Kailath, 1967) and earth mover’s dis-
tance (EMD) (Rubner et al., 2000). In statistics, PCC measures the
linear correlation between two variables X and Y. Here, X and Y
refer to a specific graph property measured over the generated versus
the training graphs, respectively. BD and EMD both measure the
dissimilarity/distance of two probability distributions.

In the interest of space, we only relate here in Figure 3 the BD-
based comparison along each of the four graph properties. All
results are shown in the Supplementary Material. Bar plots are used
to compare the various models.

Table 1. Protein targets employed for evaluation

Protein Num_AA Dataset size

1. Rubredoxin (formyl methionine mutant)

from Pyrococcus furiosus

53 61 000

2. Human carboxypeptidase A2 61 58 745

3. High-potential iron-sulfur protein 62 60 000

4. Chromosomal protein SSO7D 64 65 000

5. B1 domain of protein L 64 60 000

6. Hyperthermophile protein 66 66 000

7. Chey-binding domain of Chea 69 51 724

8. N-terminal fragment of NS1 protein from

influenza A

70 58 491

9. Nova-2 KH3 K-homology RNA-binding

domain

74 60 500

10. N-terminal domain of Escherichia coli ar-

ginine repressor

78 57 000

11. Azobacter cytochrome C5 83 55 000

12. Translation initiation factor 3 C-terminal

domain

88 60 000

13. Aspartyl protease from HIV-1 isolate BRU 99 60 000

14. PG1108 from Porphyromonas gingivalis

W83

123 54 795

15. Extracellular fragment of human CD40 146 53 000

Note: Column 3 shows the number of amino acids (Num_AA) in a protein

target. The number of tertiary structures (dataset size) in the Rosetta-gener-

ated dataset for each protein target is shown in Column 4.

4 X.Guo et al.


article-lookup/doi/10.1093/bioadv/vbab036#supplementary-data
https://github.com/anonymous1025/Deep-Graph-Translation-
https://github.com/anonymous1025/Deep-Graph-Translation-
https://github.com/tkipf/gcn

article-lookup/doi/10.1093/bioadv/vbab036#supplementary-data

article-lookup/doi/10.1093/bioadv/vbab036#supplementary-data


Figure 3 shows that the lowest BDs are obtained either by CO-
VAE or DECO-VAE; i.e. the generated distribution is most similar
to the distribution in the training dataset (according to the four
graph properties and according to BD) when the distribution is gen-
erated with either of the two models proposed here. The worst BD is
obtained by WGAN. In the Supplementary Material, a new view of
the BD-based comparison that does not include WGAN is shown.
Figure 3 shows that the lowest BD is achieved by CO-VAE on all of
the four properties with an average value of 3.02; DECO-VAE
reports the second lowest BD value of the four properties with an
average of 3.26, which is very similar to that reported by CO-VAE
(see Supplementary Material for all values in table format). The
Supplementary Material additionally shows that the lowest EMD is

almost always achieved by CO-VAE or DECO-VAE on each of the
four graph properties.

3.5 Evaluating learned distributions via biomolecular

domain-specific metrics
Alternatively, experimentally available structures can be used as a
reference. Specifically, for each protein, we obtain an experimentally
available structure from the Protein Data Bank (Berman et al.,
2003) (listed in the Supplementary Material), convert it into a con-
tact graph and count the number of edges in it; we refer to these as
‘native contacts’. Specifically, we introduce two metrics, NAT-C
and NONNNAT-C, to summarize a generated contact graph.

Fig. 2. Average (left) training and (right) generating times for the models under comparison. The error bars indicate the range

Fig. 3. The generated graphs are compared to the ones in the training dataset on four graph properties. BD is used to measure the distance between two distributions. The box-

plots show the range of BD values over all compared models across all datasets. Annotations denote the values obtained by CO-VAE and DECO-VAE

Interpretable VAEs for protein structure generation 5


article-lookup/doi/10.1093/bioadv/vbab036#supplementary-data

article-lookup/doi/10.1093/bioadv/vbab036#supplementary-data

article-lookup/doi/10.1093/bioadv/vbab036#supplementary-data

article-lookup/doi/10.1093/bioadv/vbab036#supplementary-data


NAT-C measures the percentage of native contacts in a contact
graph. Given a contact graph, the number of edges (contacts) that
are also found in a given native contact graph is divided by the total
number of edges in the native contact graph. This ratio is turned
into a percentage. In the summary analysis below, we report on the
average of NAT-Cs measured over the contact graphs in a dataset.

NONNAT-C reports on the non-native contacts; i.e. the edges in
a contact graph that are not found in the native contact graph. Since
there is no reasonable way to normalize the number of these edges,
we measure NONNAT-C somewhat differently. Specifically, given a
contact graph, we first measure the number of edges in it that are
not found in a given native contact graph (so, the number of non-
native contacts). This number is normalized by the number of amino
acids (number of vertices). In this way, NONNAT-C reports on the
number of non-native contacts per amino acid. We report on the
average of NONNAT-Cs measured over the contact graphs in a
dataset.

The top panel of Figure 4 shows <NAT-C>, the average NAT-C
and <NONNAT-C>, the average NONNAT-C, over generated
contact graphs for each of the five models; Supplementary Table S3
lists all the values in table format.

The top panel of Supplementary Figure S4 and Table S3 shows
that the highest <NAT-C> is achieved by Graphite on 8/15 of the
protein targets, followed by DECO-VAE and CO-VAE, each of
which achieves the highest <NAT-C> values on three protein tar-
gets, and then VGAE, which achieves the highest on one target.
While GraphRNN achieves the lowest <NAT-C> values over all
protein targets, DECO-VAE and CO-VAE achieve no lower than
7% of the highest <NAT-C> achieved by Graphite on 6/8 targets
where Graphite outperforms other models. VGAE and Graphite re-
port <NONNAT-C> values almost an order of magnitude higher
than those achieved by GraphRNN, CO-VAE and DECO-VAE,
which points to unrealistic tertiary structures. In fact, CO-VAE or
DECO-VAE achieve the lowest <NONNAT-C> values on 12/15
targets. The only two models that achieve both high <NAT-C> and

low <NONNAT-C> values are CO-VAE and DECO-VAE. These
results suggest that CO-VAE and DECO-VAE generate (physically
realistic) contact graphs with high NAT-C and low NONNAT-C
values compared to the other three models. These results are sup-
ported visually in Supplementary Figure S3 on three selected target
proteins, where the distribution of NAT-C and NONNAT-C values
over the training dataset are compared visually to the corresponding
distributions over the data generated by DECO-VAE.

3.6 Precision, recall, coverage and F1 score on

biomolecular domain-specific metrics
Using the contact graph of a reference experimental structure for
each protein as the ‘ground truth’, we calculate the precision, recall,
coverage and F1 score over the generated dataset for each of the
five models under comparison. In summary, we recall that
precision ¼ true positive (TP)/[(TP þ false positive (FP)]. We inter-
pret an edge in a generated contact graph that is also in the native
contact graph as a TP. Conversely, an edge in a generated contact
graph that cannot be found in the native contact graph is an FP. We
also note that recall ¼ TP/[(TP þ false negative (FN)], where an edge
that can be found in the native contact graph but is missing in a gen-
erated contact graph is counted as an FN. The coverage metric meas-
ures only the number of TPs. The F1 score combines both precision
and recall as in F1¼2 � Recall � Precision/(Recall þ Precision).
The use of the harmonic mean makes the F1 score more sensitive to
the smaller of the two values.

The bottom panel of Figure 4 highlights the F1 scores; the
Supplementary Material shows all these values in table format.
CO-VAE and DECO-VAE achieve very high F1 scores in the range
of 0.61 and 0.64 on average, which is over 52.4% and 54.7% higher
than the best-performing baseline model (among the three other
models). The Supplementary Material additionally shows that
CO-VAE and DECO-VAE additionally achieve high coverage and
recall of around 0.34, outperforming the other models by a large

Fig. 4. The generated graphs are compared to a reference graph computed over an experimentally-available structure for each protein; <NAT-C>, <NONNAT-C> and F1

scores are computed over generated graphs. The bar plots show the values obtained from each model across all datasets

6 X.Guo et al.


article-lookup/doi/10.1093/bioadv/vbab036#supplementary-data

article-lookup/doi/10.1093/bioadv/vbab036#supplementary-data

article-lookup/doi/10.1093/bioadv/vbab036#supplementary-data

article-lookup/doi/10.1093/bioadv/vbab036#supplementary-data

article-lookup/doi/10.1093/bioadv/vbab036#supplementary-data


margin. The precision reached by CO-VAE and DECO-VAE is in
the range of 0.67 and 0.71 on average, which is over 53.4% and
56.7% higher than the best-performing baseline model. Similarly,
the coverage reached by CO-VAE and DECO-VAE is in the range of
0.55 and 0.58 on average, which is over 12.7% and 24.8% higher
than the best-performing baseline model. The recall reached by CO-
VAE and DECO-VAE is in the range of 0.57 and 0.59 on average,
which is over 12.2% and 15.2% higher than the best-performing
baseline model. In summary, CO-VAE and DECO-VAE, obtain the
best performance in all four metrics on almost 76% of the target
proteins.

3.7 Comparing generated distributions to the training

dataset
The Supplementary Material additionally compares the CO-VAE-
and DECO-VAE-generated datasets to the training dataset on each
target, utilizing the <NAT-C> and <NONNAT-C> metrics. On
each target, the <NAT-C> or <NONNAT-C> values, respectively,
on the training dataset are used as a reference, and the d improve-
ment in the respective metric in the generated dataset is measured
and reported. Supplementary Figure S5 shows that the contact
graphs generated by CO-VAE and DECO-VAE are of high quality
and resemble the training datasets in native and non-native contacts
across the tertiary structures. The lowest differences in the average
percentage of native contacts (over the generated dataset from a ref-
erence training dataset) are reached by CO-VAE on 6/15 of the tar-
gets and by DECO-VAE on 10/15 on the targets (with ties in one
target). The lowest differences in the average number of non-native
contacts per amino acid are reached by CO-VAE on 12/15 of the
targets and by DECO-VAE on 7/15 of the targets (with ties in 4/15
of the targets).

The evaluation so far shows that CO-VAE and DECO-VAE pro-
duce more protein-like contact graphs. We provide some representa-
tive tertiary structures, reconstructed with CONFOLD (Adhikari
et al., 2015) from generated contact graphs, for CO-VAE, DECO-
VAE and GraphRNN on each of several selected proteins in
Figure 5. The structures shown in Figure 5 are physically realistic,
with secondary structures (alpha helices, beta sheets and coils)
packed around one another. Qualitatively, there is more secondary
structure and better packing in CO-VAE and DECO-VAE.

3.8 Interpreting the disentangled latent representation

learned in DECO-VAE
In addition to being one of the top-performing methods on the
various evaluations above, DECO-VAE learns a disentangled rep-
resentation. By changing the value of one variable in the latent
code continuously and fixing the remaining variables, we can visu-
alize the corresponding change of the generated contact graph. We

do so for a selected protein target, the NOVA-2 KH3 K-homology
RNA-binding domain. The left panel in Figure 6 shows the change
in contact maps, and the right panel shows the corresponding ter-
tiary structures [reconstructed with CONFOLD (Adhikari et al.,
2015)]. A latent code varies from left to right; when a latent code
varies, the others and noise are fixed. Each row in Figure 6 corre-
sponds to each individual varying factor (while fixing the others)
that is controlled by one variable in the learnt latent codes. For ex-
ample, the first row shows five generated contact maps for five
possible values (ranging from 1 to 10 000) of latent variable Z3.
From the varying contact maps in each row, one can see which
part is related to or controlled by the corresponding latent factor/
variable. We highlight some parts (red circles) that are consistently
influenced by each factor. What may seem like small changes in the
contact map translate to global rearrangements of secondary struc-
tures couple with local unfolding and folding of the secondary
structures. While in other domains, such as vision, it is often the
case that the latent factors control disparate, easily perceptible in-
formation, such as color, texture and so on, in domains, such as
molecular structure modeling, the information encoded in the la-
tent factors is not easily perceptible. This is the reason we relate via
this analysis both changes in contact maps and corresponding ter-
tiary structures. Similar observations and analyses on other pro-
teins are related in the Supplementary Material.

4 Conclusion

Currently, popular methods for exploring protein structure spaces
build upon the Monte Carlo or Molecular Dynamics. One practical
appeal of the generative models, we propose here is their low-com-
putational times in generating structures. For instance, CO-VAE
and DECO-VAE spend less than a millisecond in generating one
contact graph (considering training time as pre-processing cost). In
contrast, it takes anywhere from several seconds to a minute (or
more) to generate a tertiary structure with a Metropolis Monte
Carlo method.

Altogether, the presented results are encouraging and the first
step toward maturing generative models. As we summarize in
Section 1, much of the work on generating physically realistic ter-
tiary structures leverages GANs rather than VAEs. GANs are easier
to implement, but they are also more difficult to train properly, and
suffer from well-known issues. As reported in Rahman et al. (2021),
these issues need to be diagnosed and addressed, lest the quality of
generated structures suffers. In addition, as the evaluation in
Rahman et al. (2021), GANs seem to have a hard time learning all
the rich information in a tertiary structure, such as the presence of a
backbone, the short-range contacts that indicate the secondary
structures, and the long-range contacts that indicate the packing of
those secondary structures in three dimensions. The generative

Fig. 5. Some generated structures are shown for five selected proteins. A generated contact graph is converted via CONFOLD into a tertiary structure, which is drawn with

PyMol (DeLano, 2002). Secondary structures are shown (alpha helices in red, beta sheets in yellow and coils in green)

Interpretable VAEs for protein structure generation 7


article-lookup/doi/10.1093/bioadv/vbab036#supplementary-data

article-lookup/doi/10.1093/bioadv/vbab036#supplementary-data

article-lookup/doi/10.1093/bioadv/vbab036#supplementary-data


network in a GAN has a hard time balancing all these constraints,
and so much work focuses on heuristics to remedy one issue at a
time. In contrast, we do not observe such difficulties in VAEs. Most
centrally, this is due to the embedding in contact graph space. All
current GAN-based work utilizes convolution (as in images).
Though in a controlled setting, learning over rich datasets generated
by reliable models over various protein targets, the graph-based
VAE methods presented here show much promise.

Encouraged by these results, there is much future research, we
hope to investigate. For instance, the exploration of the node-edge
joint generative model would be an interesting direction. The pro-
posed DECO-VAE focuses on generating the graph topology (i.e. via
contacts) instead of node features (e.g. properties and types of amino
acids). Jointly generating both graph topology and node features
could be important to further improve the quality of the generated
distributions. A differentiable model that generates tertiary struc-
tures instead of relying on contact-to-tertiary structure reconstruc-
tion methods would also be beneficial to provide a direct
interpretation of what the latent variables control and perhaps a fur-
ther insight into improving the quality of the generated datasets.
This direction can additionally leverage pairwise amino acid distan-
ces instead of contact graphs.

Another direction to explore is not to rely on training datasets
obtained for specific sequences (as we do here) but instead to direct-
ly utilize known experimental structures. This is non-trivial, as such
structures are obtained for different amino acid sequences and thus
have different lengths and characteristics. However, such a direction
may prove useful to further diversify generated structures and poten-
tially explore a larger latent space containing novel structures cur-
rently beyond the reach of the wet laboratory. We also note that due
to the setup pursued in this article, the generated structures are se-
quence specific (as the training dataset is sequence-specific). When
moving forward with generative frameworks that can leverage ex-
perimentally available structures of varying protein sequences, an
important computational component will be to condition generated
structures upon a specific sequence.

Author contributions

X.G., Y.D., L.Z. and A.S. conceived the methodology and the
experiment(s), X.G., Y.D. and S.T. conducted the experiment(s),
X.G., Y.D. and S.T. analyzed the results. X.G., Y.D., L.Z. and A.S.
wrote and reviewed the manuscript.

Funding

This work was supported in part by funds from the National Science

Foundation (NSF: # 1942594, # 1755850 and # 1907805). This material is

additionally based upon work by A.S. supported while serving at the National

Science Foundation.

Conflict of Interest: none declared.

References

Adhikari,B. et al. (2015) CONFOLD: residue-residue contact-guided ab initio

protein folding. Proteins, 83, 1436–1449.

Benesty,J. et al. (2009) Pearson correlation coefficient. In: Noise Reduction in

Speech Processing. Vol 2, Springer, Berlin, Heidelberg, pp. 1–4. https:

//doi.org/10.1007/978-3-642-00296-0_5.

Berman,H.M. et al. (2003) Announcing the worldwide Protein Data Bank.

Nat. Struct. Biol., 10, 980.

Boehr,D.D. and Wright,P.E. (2008) How do proteins interact? Science, 320,

1429–1430.

Boehr,D.D. et al. (2009) The role of dynamic conformational ensembles in

biomolecular recognition. Nat. Chem. Biol., 5, 789–796.

DeLano,W.L. (2002) The PyMOL Molecular Graphics System. Delano

Scientific, San Carlos.

Ding,W. and Gong,H. (2020) Predicting the real-valued inter-residue distances

for proteins. Adv. Sci., 7, 2001314.

Grover,A. et al. (2019) Graphite: iterative generative modeling of graphs. Int.

J. Mach. Learn. Res., 80, 1–11.

Guo,X. et al. (2018) Deep graph translation. arXiv preprint arXiv:1805.09980.

Hagberg,A. et al. (2008) Exploring network structure, dynamics, and function

using networkx. Technical report. Los Alamos National Lab (LANL), Los

Alamos, NM, USA.

Henderson,R. et al. (2020) Controlling the SARS-CoV-2 spike glycoprotein

conformation. Nat. Struct. Mol. Biol., 27, 925–933.

Higgins,I. et al. (2017) beta-VAE: learning basic visual concepts with a con-

strained variational framework. In: International Conference on

Representation Learning, pp. 1–22. Toulon, France.

Hoseini,P. et al. (2021) Generative deep learning for macromolecular structure

and dynamics. Curr. Opin. Struct. Biol., 67, 170–177.

Jumper,J. et al. (2021) Highly accurate protein structure prediction with

AlphaFold. Nature, 596, 583–589.

Kailath,T. (1967) The divergence and Bhattacharyya distance measures in sig-

nal selection. IEEE Trans. Commun. Technol., 15, 52–60.

Kingma,D.P. and Welling,M. (2014) Auto-encoding variational Bayes. In:

International Conference on Representation Learning, pp. 1–14. Banff, Canada.

Kipf,T.N. and Welling,M. (2016) Variational graph auto-encoders. arXiv pre-

print arXiv:1611.07308.

Fig. 6. Left: generated contact graphs for a selected protein target; four semantic factors in the latent variables (i.e. Z3, Z6, Z8 and Z9) control changes in the contact graphs;

the value of latent variables changes from 1 to 10 000; right: corresponding reconstructed tertiary structures

8 X.Guo et al.



Kipf,T.N. and Welling,M. (2017) Semi-supervised classification with graph

convolutional networks. In: International Conference on Representation

Learning. pp. 1–14. Toulon, France.

Kullback,S. (1997) Information Theory and Statistics. Dover Publications,

New York.

Leaver-Fay,A. et al. (2011) ROSETTA3: an object-oriented software suite for

the simulation and design of macromolecules. Methods Enzymol., 487,

545–574.

Majumder,S. et al. (2021) Exploring the intrinsic dynamics f SARS-CoV-2,

SARS-CoV and MERS-CoV spike glycoprotein through normal mode

analysis using anisotropic network model. J. Mol. Graph. Model., 102,

107778.

Maximova,T. et al. (2016) Principles and overview of sampling methods for

modeling macromolecular structure and dynamics. PLoS Comput. Biol.,

12, e1004619.

Nussinov,R. et al. (2019) Computational structural biology: the challenges

ahead. Molecules, 24, 637.

Rahman,T. et al. (2021) Generative adversarial learning of protein tertiary

structures. Molecules, 26, 1209.

Rubner,Y. et al. (2000) The earth mover’s distance as a metric for image re-

trieval. Int. J. Comput. Vis., 40, 99–121.

Tian,H. and Tao,P. (2021) Deciphering the protein motion of S1 subunit in

SARS-CoV-2 spike glycoprotein through integrated computational meth-

ods. J. Biomol. Struct. Dyn., 39, 6705–6712.

Vendruscolo,M. et al. (1997) Recovery of protein structure from contact

maps. Fold. Des., 2, 295–306.

Yang,H. et al. (2020) GANCon: protein contact map prediction with deep

generative adversarial network. IEEE Access, 8, 80899–80907.

You,J. et al. (2018) GraphRNN: generating realistic graphs with deep

auto-regressive models. Int. J. Mach. Learn. Res., 80, 1–10.

Interpretable VAEs for protein structure generation 9


	tblfn1



