
Systems biology

Biclique extension as an effective approach to identify

missing links in metabolic compound–protein

interaction networks

Sandra Thieme and Dirk Walther *

Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany

*To whom correspondence should be addressed.

Associate Editor: Marieke Kuijjer

Received on August 17, 2021; revised on November 26, 2021; editorial decision on January 4, 2022; accepted on January 10, 2022

Abstract

Motivation: Metabolic networks are complex systems of chemical reactions proceeding via physical interactions
between metabolites and proteins. We aimed to predict previously unknown compound–protein interactions (CPI) in
metabolic networks by applying biclique extension, a network-structure-based prediction method.

Results: We developed a workflow, named BiPredict, to predict CPIs based on biclique extension and applied it to
Escherichia coli and human using their respective known CPI networks as input. Depending on the chosen biclique
size and using a STITCH-derived E.coli CPI network as input, a sensitivity of 39% and an associated precision of 59%
was reached. For the larger human STITCH network, a sensitivity of 78% with a false-positive rate of <5% and preci-
sion of 75% was obtained. High performance was also achieved when using KEGG metabolic-reaction networks as
input. Prediction performance significantly exceeded that of randomized controls and compared favorably to state-
of-the-art deep-learning methods. Regarding metabolic process involvement, TCA-cycle and ribosomal processes
were found enriched among predicted interactions. BiPredict can be used for network curation, may help increase
the efficiency of experimental testing of CPIs, and can readily be applied to other species.

Availability and implementation: BiPredict and related datasets are available at https://github.com/SandraThieme/
BiPredict.

Contact: walther@mpimp-golm.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Identifying novel compound–protein interactions (CPIs) is a central

research objective of molecular biology as it can be considered critic-
al for understanding biological systems at the molecular level.

Recently published studies reported large-scale experimental screens
for the identification of novel interactions between compounds and
proteins (Diether et al., 2019; Piazza et al., 2018). In these studies, a

large number of potential interactions were experimentally tested
with only a relatively small fraction of candidate interactions being

validated [around 5% for Piazza et al. (2018)]. Thus, augmenting
experimental approaches with bioinformatic workflows may help to
narrow down the set of candidates for experimental testing, and,

thus, increase the rate of successfully validated interactions, while
also saving time and resources. This study aims to test the utility of

computational approaches that employ the so-called biclique-exten-
sion method to serve this goal.

CPI networks can be represented as bipartite graphs, in which

nodes represent compounds and proteins as the dichotomous entities

or groups, and edges represent the interactions between them, but
not between compounds or proteins themselves. In a bipartite net-
work, subsets of nodes with the maximum number of possible con-
necting edges between them actually established are defined as
bicliques. Thus, a biclique represents the densest possible connection
between a subset of nodes in such a network. We aimed to use bicli-
ques to identify such very closely related sets of compounds and pro-
teins in known CPI networks and to search for interaction
candidates in the directly connected neighborhood of these bicli-
ques. The concept is based on the logic that interactions between
compounds and proteins are likely true, if, by postulating them, an
existing biclique is expanded (see Fig. 1 for a schematic illustration
and further explanation of the underlying logic). Biclique-based
approaches have been applied to drug-target interaction (DTI) net-
works for the prediction of novel pharmaceutically relevant com-
pounds or novel target proteins (Daminelli et al., 2012), and for the
prediction of protein–protein interactions (Schweiger et al., 2011).
Other recently published methods include neural networks based on
chemical properties and structure information (Eslami Manoochehri
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and Nourani, 2020; Tsubaki et al., 2019) as well as random forests
based on GO-terms and KEGG pathway enrichment in combination
with chemical substructure information (Chen et al., 2016). Also bi-
partite local models (BLM) have been widely used for DTI predic-
tions, e.g. based on chemical and protein sequence similarity
(Bleakley and Yamanishi, 2009; Daminelli et al., 2015) or based on
expression data in combination with localization information of
enzymes and phylogenetic profiles (Bleakley et al., 2007). BLMs
apply network-theoretic approaches for the prediction of interactions
that employ local topological information (Cannistraci et al., 2013)
to bipartite networks. For recent reviews on DTI predictions, see
Lotfi Shahreza et al. (2018), Wu et al. (2018) and Lim et al. (2021).

We aimed to transfer the biclique-extension approach from the
field of DTI networks to the identification of as of yet unidentified
CPIs in naturally occurring metabolic and cellular networks. Most
computational approaches that have been developed to predict CPIs
aim at drug–protein interactions. However, metabolite–protein
interactions have their own specifics. They evolved naturally and
under different selection criteria than drug–protein interactions that
may shape binding specificities and strengths differently.
Furthermore, while drugs have been designed to bind as single moi-
eties, different metabolites typically bind jointly to the catalytic site
of the respective protein enzyme in order for the respective biochem-
ical conversion to proceed, except for isomerase reactions, in which
only one substrate binds, or when binding as an allosteric effector.
Even in the case of hydrolase reaction, a second molecule (water)
has to ‘bind’. Thus, it remains to be explored, how well network-
based approaches to predict interactions work when focusing on
natural metabolite–protein interaction networks.

The increasing number of experimentally verified interactions in
public databases now allows us to search for new interactions solely
on the basis of known interactions, without adding any other sour-
ces of information to our network. By focusing only on the network
structure in our approach, we aimed to develop an efficient network
curation method that identifies ‘missing’ interactions and which can
augment other, well established computational methods for the pre-
diction of CPIs that follow a more direct molecular-descriptor-based
approach (Lim et al., 2021) and to furthermore focus on metabolite-
protein, and thus, naturally occurring interactions.

A crucial element for assessing the accuracy of CPI predictions is the
availability of known negative interactions, which refers to CPIs that
are confirmed to not interact appreciably under natural conditions (Liu
et al., 2015). The validation of newly predicted interactions benefits
from having both true-positive (TP) and true-negative interactions deter-
mined in wet-lab experiments, which are not yet part of the input inter-
action network the predictions are based on. In contrast to most
published CPI prediction methods, we did not only use randomly

generated negative samples for the verification of our predicted interac-
tions, as it is difficult to assess for such random data how many positive
interactions are actually contained in such random connections.
Instead, we used negative interactions as reported experimentally or pre-
dicted computationally at high confidence levels.

We analyzed an Escherichia coli CPI network to test the predic-
tion performance on recently published experimental data and also
applied the biclique-extension method to a human CPI network for
which a computed validation dataset based on a large number of
biological features was available. In addition to biclique-based pre-
dictions, we studied the network properties, which proved relevant
for correct biclique predictions.

2 Methods

2.1 Overview
We established the following biclique-extension workflow, summar-
ized in Figure 2. First, a reference network of validated interactions
was constructed. Here, we computed a CPI network based on data
from the STITCH database for E.coli and human. Next, we used an-
notation information from the KEGG database to remove all inter-
actions of drugs from the network to obtain a naturally occurring
metabolic/cellular network. We predicted novel interactions based
on interaction candidates, which were connected to existing bicli-
ques in the reference network (Fig. 1). For validation of our predic-
tions, two additional datasets were needed. First, a true-positive
(TP) dataset of true interactions, which are not part of the reference
network and, secondly, a negative dataset for which no interactions
could be shown to serve as a true-negative set. Here, we used data-
sets generated based on experimental data for the E.coli network
(Piazza et al., 2018) and computationally predicted data for the
human network (Liu et al., 2015) to evaluate our results.

2.2 The reference network
Information about known and predicted interactions between com-
pounds and proteins of E.coli K12 MG1655 and human was down-
loaded from the STITCH database, used as the primary source of
reference CPI network input information (http://stitch.embl.de, version
5.0) (Kuhn et al., 2008; Szklarczyk et al., 2016), including links to
other databases, names and SMILES strings of compounds. Protein
sequences and links to other protein databases were downloaded from
the STRING database (Szklarczyk et al., 2019), UniProt (The UniProt
Consortium, 2017), and from LINKDB (Fujibuchi et al., 1998).
STITCH database entries of compounds were rendered non-redundant
by merging identifiers capturing isoform and salt variants. STITCH
also provides a confidence score for every reported interaction, ranging
between zero and one and with larger values corresponding to higher
confidence (qualitative intervals: low scores of 0.0–0.4, medium 0.4–
0.7, high: 0.7–0.9 and very high confidence: 0.9–1).

A B

Fig. 1. Biclique definition and extension. Bicliques consist of two types of nodes and

edges connecting each node of different types (A). Here, blue circles represent com-

pounds, c, and red squares represent proteins, p, while edges represent interactions.

The biclique expansion starts with an existing biclique (B, yellow inner circle), here

consisting of three compounds (c¼3) and two proteins (p¼ 2). Next, all com-

pounds and proteins that are directly connected to any member of the biclique are

identified. They represent interaction candidates (B, light blue outer circle). Other

compounds and proteins of the network that are not directly connected to any mem-

ber of an existing biclique are not considered (B, gray squares and circles). Finally,

interactions are predicted to exist if interaction candidates lack only one edge to be-

come a member of an existing biclique (B, green dashed lines)

Fig. 2. Biclique prediction workflow. Using a CPI network (e.g. STITCH) as input

and removing all non-naturally occurring interactions based on information from

KEGG, we generated a naturally occurring metabolic network. We identified inter-

action candidates using bicliques and evaluated the predictions using different valid-

ation datasets derived from sampling, experimental and computational studies
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Out of the total of 1 821 709 reported interactions for E.coli,
242 125 interactions were assigned a confidence of ‘medium’ or bet-
ter. To infer the CPI network, only experimentally verified interac-
tions were included, representing edges in the network (176 100
STITCH interactions). Both, direct as well as transferred confidence
scores, i.e. scores assigned by homology from other species, were
taken into account. We applied a ‘medium’ experimental confidence
score of 0.4 to the STITCH network as a lower threshold, which
included 99 487 out of 1 821 709 reported interactions. To test for
robustness of our predictions, networks based on confidence score
thresholds ranging between 0.4 and 0.6 were tested as well. Thus,
we tested our predictions on three networks ranging in size from
37 655 (score>0.6) interactions to up to 99 487 (score>0.4)
interactions.

Out of the total of 15 473 939 reported interactions in human,
1 545 933 interactions were assigned a STITCH confidence score of
‘medium’ or better and 8 842 952 STITCH interactions carry ex-
perimental support. We applied a ‘medium’ experimental (consider-
ing direct and transferred) confidence score of 0.4 as a lower
threshold on the human network, which resulted in 1 026 207 inter-
actions. A network based on a confidence score of 0.5, including
641 457 interactions was tested as well.

2.2.1 BindingDB input network

A second CPI network, based on the BindingDB (BDB) database
(Gilson et al., 2016), was used as input to allow for comparative
analyses. Here, all interactions assigned to human and carrying a
KEGG compound ID (‘C’ number) were included. This resulted in a
network of 11 253 interactions between 2134 compounds and 1299
proteins.

2.2.2 KEGG metabolic pathway network

As a third source of CPI information, KEGG metabolic pathway net-
works were used as input for biclique extension. KGML files of all
pathways reported for E.coli and human were downloaded using
the KEGG API (i.e. a REST-style Application Programming
Interface to the KEGG database resource). Based on this informa-
tion, enzymes were mapped to reactions and a bipartite network,
which connects enzymes and compounds was created. KEGG ‘C’
compound numbers and gene IDs were mapped to ensemble
(STITCH) IDs, for validation and comparison of results.

2.3 Network construction
Bipartite CPI networks were computed using the R-package igraph
(Csardi and Nepusz, 2006; R Core Team, 2016). Nodes of the net-
work represent compounds and proteins. Edges were inserted con-
necting compounds and proteins, for which known interactions
based on the filter criteria described above were reported.

2.4 Data cleanup
To exclude unspecific interactions, small compounds, such as ions,
were removed from the network. Correspondingly, all interactions
with compounds of less than five heavy atoms, as determined from
their SMILES strings, were removed from the initial dataset, as done
similarly by Daminelli et al. (2012). Also, the STITCH and the BDB
CPI network contain many interactions of compounds, which are
not naturally occurring in the metabolic or cellular network of the
corresponding organism, such as antibiotics. We used additional an-
notation information from KEGG (Kanehisa et al., 2017) to confine
our sets of compounds to metabolites and naturally occurring cellu-
lar compounds (‘C’ number KEGG compounds). In addition, com-
pounds marked as ‘antibiotics’, and (in E.coli) ‘hormones and
transmitters’ or ‘steroids’ in KEGG were removed from the network.
Also compounds with a drug ID in KEGG (‘D’ number) and without
an additional ‘C’ number in KEGG were also removed from the net-
work. Compounds assigned a ‘D’ number, but also a ‘C’ number
were retained.

In addition, prior to the biclique calculations, we excluded all
interactions with compounds and proteins occurring only once (i.e.

one reported interaction only) from the STITCH input network, be-
cause such interactions could not be part of any biclique, which we
required to consist of at least two compounds and proteins (i.e. each
biclique member must have at least two interactions). This reduced
the E.coli network to 6353 interactions and the human network to a
size of 42 158 interactions. This performance step reduced the com-
putational time for the large human STITCH network, and was for
consistency and comparability reasons also applied to the STITCH
E.coli network. For the smaller BDB and KEGG networks, this step
was not applied.

2.5 Validation data
The prediction performance of the biclique-extension method was
tested on two reference CPI networks from two species: E.coli and
human. For both species, true-positive (TP) interactions were taken
as random samples from high-confidence STITCH interactions.

True-negative interaction compound–protein pairs were taken
from two different resources. For E.coli, we used interactions, which
were neither reported in STITCH nor detected interacting in a recent
experimental assay in which the interactions were tested (Diether
et al., 2019; Piazza et al., 2018).

For human, a true-negative set was taken from a study that
aimed to computationally assemble a high-confidence negative CPI-
set (Liu et al., 2015).

In both cases, only those validation-set CPIs were considered, for
which the corresponding compounds and proteins were found pre-
sent in the STITCH reference network. The specifics of the valid-
ation sets and runs are outlined below.

2.5.1 Validation procedure and data, E.coli
As a positive validation dataset, in each of the ten performed predic-
tion runs, 5% (KEGG) or 10% (STITCH) of the true interactions as
reported by the respective reference network were randomly chosen
and considered predictable TPs (hereafter referred to as positives).
All positives were removed from the reference CPI network prior to
the biclique detection and subsequent prediction. They were used to
calculate the true-positive rate (TPR) of predicted interactions.

A validation set of negative interactions was compiled from ex-
perimental data. Piazza et al. experimentally tested 34 186 interac-
tions between 20 central compounds (e.g. ATP, ADP, NADP;
Supplementary Table S1) and 2525 proteins of interest and reported
1719 interactions. A negative validation dataset for our study was
created based on the 32 467 interactions, which were tested by
Piazza et al., and reported to not interact in their experiments. A
subset of 26 724 interactions consisted of compounds and proteins
that were also part of the STITCH network and not known to inter-
act (hereafter referred to as Piazza.negatives). This dataset was
expanded by a second, recently published interaction dataset that
also reported experimentally tested interactions in E.coli (Diether
et al., 2019). From the experimental data of Diether et al., an add-
itional set of 1354 tested, but reported as non-interacting com-
pound–protein pairs comprising 55 compounds and 29 proteins was
included as true negatives in our study. However, 584 of these sup-
posedly negative interactions were included in the STITCH database
of known and predicted interactions. These interactions were
removed from the validation dataset of negatives, which finally com-
prised 863 non-interacting compound–protein pairs (hereafter
referred to as Diether.negatives). By adding this dataset, the number
of compounds included in the validation data (negatives) was
increased from 20 to 57. As 172 interactions of Diether.negatives
were already contained in the Piazza.negatives, the combined nega-
tives list finally included 27 415 unique experimentally verified non-
interactions between 57 chemicals and 2474 proteins.

Depending on the chosen confidence score of the reference
STITCH network, 10 720 of these negative interactions (negatives)
were available for prediction; i.e. both the compounds and proteins
were present in STITCH. They were used to calculate the false-posi-
tive rate (FPR) of predicted interactions. Also, more than 8000 of
negatives were available for evaluation of prediction results using
the KEGG database.
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Only predictable interactions were taken into account to calcu-
late true-positive and false-positive interactions and rates, i.e. only
interactions between compounds and proteins, which were both
included in the reference network, and, thus, could be predicted by
biclique extension.

2.5.2 Validation procedure and data, human

A positive validation dataset was created by randomly choosing 5%
of interactions from the input network.

A dataset of negative interactions was taken from Liu et al.
(2015). This study published highly reliable negative interaction sets
combining various chemical, structural and interaction information.
From the provided negatives dataset, 39 758 out of 40 381 com-
pounds and 1974 out of 2027 proteins could be successfully mapped
to STITCH IDs, yielding a total of 369 276 negative interactions. Of
these, 15 865 were predictable negative interactions (negatives) with
chosen confidence score of the reference STITCH network of 0.4.
Using the KEGG input network, �4000 negatives, and for the BDB
network >15 000 negatives, were available for validation. All inter-
actions between compounds and proteins that were also included in
the input network were considered to be predictable interactions.

2.6 Biclique calculation and extension
All maximum bicliques of compounds and proteins in the CPI net-
work were calculated using the R-package biclique (Lu et al., 2020;
Zhang et al., 2014). Using maximum-size bicliques makes sure that
no bicliques of a certain size that are fully contained in larger bicli-
ques are considered separately. However, overlapping bicliques are
possible, and therefore, edges, representing interactions between
two nodes, can be members of multiple bicliques.

A minimum number of two and up to nine nodes on either side
of the biclique was tested, representing the minimum number of
compounds and proteins of each biclique. Thus, the smallest consid-
ered bicliques consisted of two proteins and two compounds.

Candidates for novel interactions between compounds and pro-
teins in the network were searched in the directly connected neigh-
borhood of existing biclique-member nodes, i.e. proteins and
compounds, which are connected to at least one node of the bicli-
que. Only compounds and proteins, which become part of an exist-
ing biclique by insertion of exactly one connecting edge, were
considered as novel interaction candidates (see Fig. 1 for a schematic
illustration). In addition, an insertion of two edges was tested for
bicliques with more than four nodes on the corresponding side.

2.7 Molecular similarity measures
The similarity of compounds was estimated based on the Tanimoto
index with structural features derived from the SMILES string and
using the R-package RxnSim (Giri et al., 2015). The similarity of pro-
teins was assessed based on pairwise protein-based BLAST alignment
scores. E.coli protein sequences were downloaded from UniProt, ID:
UP000000625, strain K12. Given the set of proteins included in the
E.coli dataset, an all-against-all blastp search was performed with the
E-value threshold set to 10 to allow for weak alignments to be reported
and considering one (the best) high-scoring pair per sequence pair only.
Otherwise, default blastp settings were used. Cohen’s-d effect sizes
were calculated using the R-package effsize (Torchiano, 2016).

2.8 Randomization
To investigate the importance of the underlying reference network
of experimentally verified interactions for predictions, we created a
randomized network altering the reference interaction network. To
generate a random bipartite network, the R-package BiRewire
(Gobbi et al., 2020) was used. BiRewire uses the edge switch algo-
rithm to preserve node degrees of the input network. This random-
ized network was also used for biclique calculation and extension.

2.9 Prediction performance metrics
Prediction results were assessed with regard to TPR (or sensitivity or
recall), FPR, and F1-score, and precision as commonly defined.

TPR ¼ TP

P
; FPR ¼ FP

N
; F1 ¼ 2TP

2 TPþ FPþ FN
;

Precision ¼ TP

TPþ FP
;

(1)

where P is the number of positives, N—the number of true negatives
(no interaction), TP—true-positive predictions, FP—false-positive
predictions and FN—false-negative predictions, assessed based on
the positive and negative validation datasets described above.

2.10 KEGG enrichment analysis
To inspect the obtained prediction results in terms of biological
function and their biochemical processes, we performed a KEGG en-
richment analysis on the E.coli network using the R-package
clusterProfiler (Wu et al., 2021; Yu et al., 2012).

2.11 Comparison with other methods, DeepConv-DTI
We compared our performance rates to those obtained by a recently
published deep-learning method DeepConv-DTI (Lee et al., 2019),
which itself was evaluated against several state-of-the-art approaches
to allow even broader comparisons. We obtained the source code from
GitHub (https://github.com/GIST-CSBL/DeepConv-DTI) and used the
rcdk package to obtain Morgan fingerprints from SMILES strings
(Guha, 2007). For a comparison with DeepConv-DTI, we generated a
training dataset to train the model with our input data, as well as a test
dataset for prediction and validation. For training, we used the same
human STITCH input network for both methods. This input network
was reduced from 44 322 interactions to 36 114 interactions, since
SMILES strings and protein sequences were not available for all com-
pounds and proteins in the STITCH network. As positives for the test
data, we sampled 5% (n¼1671) of the input STITCH network and
removed these interactions from the training dataset. As DeepConv-
DTI also needs negative data for training, we added negatives from the
dataset we used for validation (Liu et al., 2015), to the input network.
We randomly sampled the same number of negative interactions as
we had positive interactions (n¼34 443), and only used negative
interactions in which either the protein or the compound was also
included in the positive dataset (one interaction partner). All negative
interactions between compounds and proteins, which were both
included in the input STITCH network (both interaction partners),
were used as negatives for validation of the test data (n¼15 096).
Thus, the test dataset was identical to the dataset we used to validate
our own method. We trained and tested DeepConv-DTI using the
same parameters given in the GitHub examples by the authors (using
convolution, training for 15 epochs, and using Morgan fingerprint
with radius of 2 and size 2048). Default settings of DeepConv-DTI
were used (0.5 score threshold for binary classification).

2.12 Software and data availability
The developed method, called BiPredict, implemented as an R-script
along with relevant data used in this study is available at https://
github.com/SandraThieme/BiPredict.

3 Results

3.1 Properties and structure of the STITCH CPI networks
To apply biclique extension to predict novel CPIs, we first compiled
an E.coli reference interaction network based on data from the
STITCH database. The E.coli network included 6894 interactions
between 177 compounds and 1906 proteins, and after removing
degree-one interactions (as they are not relevant for our method), 6353
interactions between 160 compounds and 1381 proteins (Table 1).

The human network consisted of 44 322/42 158 interactions includ-
ing 2115/1598 compounds and 7542/5885 proteins, with and without
degree-one interactions, respectively (Table 1). The maximum node de-
gree of compounds was 2959 (selenomethionine), the mean degree was
20.9 and the median was 3. The maximum degree of proteins was 100
[5-hydroxytryptamine (serotonin) receptor 2A], the mean degree was
5.9 and the median 3. Judging by their network density, the E.coli
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network had a much higher network density than the human network
(7/6-fold difference, Table 1 with/without degree¼1 interactions).

Despite their different sizes, with many more interactions reported for
human than for E.coli, both networks showed similar degree distributions
when recorded for compounds and proteins, respectively (Fig. 3). For a
compound-centric view, both networks follow a power-law (linear rela-
tionship in log–log scale, Fig. 3, left panel), with the human data shifted to
higher counts due to its larger network size. Power-law degree distribu-
tions have been found to be a characteristic of biological networks (Lima-
Mendez and Helden, 2009). By contrast, a power-law was less obvious
for a protein-centric degree distribution (Fig. 3, right panel) with counts
dropping faster than expected from a power-law alone.

With regard to bicliques, 2202 bicliques were detected in the
E.coli network, with small bicliques being most prevalent and with
c/p-biclique size c¼4 and p¼2 being the most frequent biclique
(106 times in the input network). The analyzed human network con-
tained 22 879 bicliques. Here, larger bicliques were more frequent
relative to E.coli and bicliques of size c¼4 and p¼2 being most fre-
quent with 419 occurrences (Fig. 4).

3.1.1 Structural similarity of compounds and proteins of the same

biclique

In bicliques, by definition, all member-compounds interact with the
same set of proteins, and likewise, all member-proteins interact with
the same set of compounds. As this agreement with regard to their
respective molecular binding partners must have a molecular basis,

it seems reasonable to hypothesize that proteins and compounds
that are part of the same biclique are structurally similar. Indeed,
proteins belonging to the same biclique show significantly higher se-
quence similarity (P<2.2E-16, with sequence similarity used as a
proxy of structural similarity) than found between proteins that be-
long to different bicliques (Fig. 5). Likewise, compounds that are
members of the same biclique display greater chemical similarity
than compounds that are not members of the same bicliques
(P<2.2E-16) (Fig. 5). Interestingly, the difference of similarity with-
in or across bicliques seems stronger for proteins (Cohen’s d effect
size¼1.55) than for compounds (Cohen’s d¼0.49). Assuming that
the difference of similarity scale does not affect effect size, this may
reflect that proteins may have several binding sites (e.g. for substrate
and co-factors) such that with regard to compounds, diversity is
greater than for proteins.

3.2 Evaluation of the biclique-extension method
3.2.1 Performance on STITCH CPI networks

Based on the obtained reference networks, we employed the logic of
biclique extension as laid out in Figure 1 to predict novel interac-
tions between compounds and proteins.

First, we tested the performance of the biclique-extension
method on the E.coli CPI reference network. Performed in a cross-
validation-type test setting, we calculated TPRs and FPRs to evalu-
ate our prediction results. In each of the 10 performed test runs,
randomly chosen 10% of true interactions were considered

Table 1. Number of interactions (Ni), compounds (c) and proteins (p), and network density D ¼ Ni/(c � p) in the E.coli and human network

after different filtering steps

Dataset E.coli Human

Number of interactions, density STITCH network confidence threshold¼0.4 99 487

(c¼ 24 602 p¼ 2562)

D¼ 1.58E-3

1 026 207 (c¼ 410 253, p¼ 9047)

D¼ 0.28E-3

Number of interactions, density metabolic network after cleanup 6894

(c¼ 177, p¼ 1906)

D¼ 2.04E-2

44 322

(c¼ 2115, p¼ 7542)

D¼ 0.28E-2

Number of interactions, density without single (degree¼1) interactions 6353

(c¼ 160, p¼ 1381)

D¼ 2.88E-2

42 158

(c¼ 1598, p¼ 5885)

D¼ 0.45E-2

Note: As node degree¼1 interactions were not considered in the biclique computations (as they cannot contribute to our predictions), we list them separately.

Fig. 3. Degree distribution of compounds (left panel), and proteins (right) in the E.coli and human STITCH reference network. The x-axis represents the node degrees (log10)

and the y-axis the frequency of nodes having that degree (log10)

BiPredict: compound–protein interaction prediction 5



unknown for the purpose of prediction, allowing to compute mean
rates and associated standard deviations on the respective hold-out set.

The number of predicted interactions strongly depended on the
sizes of bicliques with tested size-thresholds ranging from two to
eight for the minimum number of nodes on either side of the biclique
[nodes representing compounds (c) and proteins (p)], from 87 to
�171 154 interaction candidates (Fig. 6). Note that biclique size
refers to biclique-size thresholds, which means that we defined the
minimum size of bicliques, which were considered for calculation of
performance measures. For example, by applying a threshold of
c¼5 and p¼2, all interactions were predicted using bicliques of
this size and, in addition, all occurring bicliques of larger size, with
higher or equal number of compounds (c) and proteins (p), such as
c¼6 and p¼2 were also included.

In general, smaller maximal biclique sizes resulted in more pre-
dicted interactions, as the predicted interactions for larger bicliques
were also included, and also, due to their increased occurrence in
comparison to larger bicliques (Fig. 4). The highest F1-score, in this
case also associated with the highest fraction of TP interactions with

a FPR below 0.05 out of all predicted interactions, was obtained by
using c/p-biclique-size thresholds of five compounds (c¼5) and two
proteins (p¼2) for the E.coli network (Fig. 6A). Applying these c/p-
biclique-size parameters resulted in an average TPR of 0.39 (Fig. 6A
and Supplementary Table S3). To test whether the biclique-exten-
sion method proves both sensitive and specific and whether it
exploits actual biological information as present in the used refer-
ence network, we compared the obtained TPRs and FPRs with cor-
responding rates obtained after randomization of the network using
the edge switch algorithm. As expected, for randomized data, we
obtained significantly lower TPRs in comparison to real data, e.g.
TPR of 0.11 for c¼5, p¼2 (Fig. 6B and Supplementary Table S4).
By contrast, the FPRs observed in real network data and random
data were found at similar levels.

As some compounds, in particular those that act as co-factors,
such as ATP or NADPH bind to many proteins—those compounds
are often dubbed ‘currency metabolites’, we checked how removing
them (for a complete list of compounds considered ‘currency metab-
olites’, see Supplementary Table S14), impacts the prediction

Fig. 4. Size-dependent biclique frequency. (A) Left: E.coli heatmap for all compound/protein biclique sizes up to 100 proteins and 20 compounds. Bicliques including four com-

pounds and two proteins are the most common with n¼106 (total number of bicliques n¼2022). (A) Right: human heatmap for all c/p-biclique sizes up to 100 proteins and

20 compounds. Bicliques including four compounds and two proteins are the most common with n¼ 419 (total number of bicliques n¼ 22 879). (B) Comparison of frequen-

cies of bicliques of different sizes captured as a single number to allow for better comparison of E.coli versus human and defined as sqrt(c�p), where c is the number of com-

pounds and p the number of proteins (histogram clipped at size sqrt(c�p)¼30)
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performance. While the number of predicted interactions dropped
significantly (from 1994 to 457 for biclique size c¼5, p¼2), which
is to be expected, the prediction performance was affected only
slightly (F1-scores 0.47 versus 0.40) (Fig. 6A and Supplementary
Fig. S5 and Table S15). Thus, the reported prediction performance
does not only rely on high-degree interactors.

We also tested the performance when allowing the addition of
two edges to declare a compound or protein to be a member of the
corresponding biclique. Here, we considered larger bicliques only
(minimum number of four compounds or proteins on the corre-
sponding side), to better balance added versus pre-existing interac-
tions. As expected, this resulted in an increased number of predicted
interactions for these larger bicliques (Supplementary Fig. S5) as
well as increased the FPRs. The prediction performance was com-
parable with a maximum F1-score of 0.42 and could not be
increased compared to allowing only one edge addition.

We also applied the biclique-extension method to the larger
human CPI network, which included 44 322 interactions (confi-
dence threshold of 0.4 and after filtering). In ten performed valid-
ation runs, we used a set of 5% randomly drawn true interactions of
the input network as positive controls, which were removed from
the network prior to prediction, and a downloaded set of negative
interactions as true negatives (see Section 2). In dependence of the
applied thresholds, ranging from two to nine for the minimum num-
ber of compounds and proteins on either side of the biclique (max-
imum c/p-biclique size), 1648 to �1.6 million candidate interactions
were predicted for the human network (Fig. 6C and Supplementary
Table S7). The TPRs showed an increase with decreasing biclique
size, while the FPRs were below 0.05 for all bicliques with more
than four compounds and two proteins (Fig. 6C and Supplementary
Table S7). The highest F1-score and, thus, the best biclique-size
threshold was obtained for c¼4, p¼2 (F1¼0.77), followed by
c¼5, p¼2 (F1¼0.76), which were also found to perform best in
E.coli (Fig. 6A). The associated TPRs of 0.78 and of 0.68 were
much higher compared to the E.coli network. We also tested the
insertion of two edges for larger bicliques. This showed no major ef-
fect on the mean FPRs and the mean TPRs (Supplementary Fig. S4).
For a randomized input network, the number of predicted interac-
tions increased significantly compared to the real network (Fig. 6D
and C). The c/p-biclique size c¼4, p¼2 yielded a mean number of
201 212 predicted interactions in the real network and 983 616
interactions in the randomized network (Supplementary Tables S7
and S8). As expected, TPRs decreased, FPRs increased and F1s
decreased accordingly in the randomized network and consistently
across all biclique threshold sizes (Fig. 6D and C).

As predictions can be expected to critically depend on the valid-
ity of the input CPI network, we tested different STITCH confidence
thresholds used in the input network construction. In general, we
obtained very similar TPRs and FPRs for each tested confidence
threshold (Fig. 7), indicating that interactions predicted by the bicli-
que method are not strongly dependent on the underlying levels of
confidence in the analyzed interaction network. Among the three
tested thresholds, confidence scores 0.5 and 0.4 (Fig. 7A and B,
green and black line) yielded the highest TPRs and the lowest FPRs,
while the network with highest confidence score 0.6, surprisingly,
performed worse, possibly explained by the smaller networks, and
thus reduced information in a biclique sense, associated with more
stringent thresholds.

To determine optimal parameter settings, we also inspected the
precision-recall statistic for the E.coli networks based on different
STITCH confidence scores and maximum biclique sizes. Consistent
with our findings reported in Figure 7A and B, we obtained the best
results applying confidence thresholds of 0.4 and 0.5 (Fig. 7C). As
expected, larger maximal biclique sizes resulted in higher precision.
Here, the biclique-based prediction rests on more support, because a
larger number of interactions are known in these bicliques already
rendering the logic of biclique extension more applicable. And that
logic states that, if a compound binds to all but one n other proteins
that another set of m compounds bind to, then, the one missing
interaction for that compound likely occurs as well. And with larger
n and m, this logic is more compelling and for structural reasons
(Fig. 5). The same holds for proteins and their interactions with
compounds.

3.2.2 Performance on BDB CPI networks

We also tested the performance of the biclique-extension method on
a second human input network to demonstrate the independence
from the input network and the reliability of predictions. Since for
E.coli, BDB contained only 529 interactions with KEGG-‘C’ num-
bers, we focused on human data only.

The BDB network (Gilson et al., 2016), used as a second CPI in-
put network, contained fewer interactions (n¼11 253) than the
STITCH network (n¼44 322). A total of 1232 compounds and 792
proteins could be mapped to STITCH IDs, which resulted in 7105
comparable interactions. An intersection of 1367 interactions be-
tween 466 compounds and 377 proteins was contained in both input
networks. This resulted in a set of 174 315 interactions, which were
predictable in both networks (maximum possible intersection of pre-
dictions). Using the STITCH input network, 24 543 of these interac-
tions, and using the BDB input network, 42 550 interactions were

Fig. 5. Molecular similarity of compounds and proteins within the same and between different bicliques. Violin plots of molecular similarity measures (blastp-score for pro-

teins, Tanimoto index for compounds, see Section 2) of compounds and proteins that are part of the same biclique or not with Cohen’s d effect sizes indicated, respectively.

Distributions are based on 1000 randomly selected within and across-different molecule pairs. Corresponding Wilcoxon rank sum test P-values: compounds: <2.2E-16, pro-

teins: <2.2E-16

BiPredict: compound–protein interaction prediction 7


article-lookup/doi/10.1093/bioadv/vbac001#supplementary-data

article-lookup/doi/10.1093/bioadv/vbac001#supplementary-data

article-lookup/doi/10.1093/bioadv/vbac001#supplementary-data

article-lookup/doi/10.1093/bioadv/vbac001#supplementary-data

article-lookup/doi/10.1093/bioadv/vbac001#supplementary-data

article-lookup/doi/10.1093/bioadv/vbac001#supplementary-data

article-lookup/doi/10.1093/bioadv/vbac001#supplementary-data

article-lookup/doi/10.1093/bioadv/vbac001#supplementary-data

article-lookup/doi/10.1093/bioadv/vbac001#supplementary-data

article-lookup/doi/10.1093/bioadv/vbac001#supplementary-data

article-lookup/doi/10.1093/bioadv/vbac001#supplementary-data


predicted. The obtained overlap of 9024 interactions, predicted
using both networks as input, was 1.5 times larger than that pre-
dicted by chance (p� 0.01, hypergeometric test). Also, the obtained
performance was comparable. Using BDB as input and using a c/p-
biclique size of c¼5, p¼2 resulted in an F1-score of 0.75, and with
c¼4, p¼2, F1-score¼0.75 (Supplementary Fig. S6 and Table S16).
The highest F1 using the STITCH input network was obtained for
c¼4, p¼2 (F1¼0.77), followed by c¼5, p¼2 (F1¼0.76). Thus,
very similar performances were obtained for two rather different
networks used as input.

3.2.3 Performance on KEGG metabolic pathway networks

The E.coli metabolic pathway network consisting of metabolic reac-
tions between compounds and enzymes, and extracted from KEGG,
comprised 3079 unique interactions. For 2930 interactions, the
compound ‘C’-numbers could be mapped to STITCH IDs. The net-
work finally included 854 compounds and 894 proteins/enzymes,
which corresponds to a network density of 0.38E-2. Using BiPredict
and a c/p-biclique size of c¼2 and p¼2, 3436 interactions were

predicted, with an associated mean TPR of 0.59 and mean
FPR < 0.02 (Fig. 8A and Supplementary Table S18). A total of 1621
(�47%) of all predicted interactions could also be found in the
STITCH database with an associated mean/median combined confi-
dence score reported in STITCH for those interactions of 0.62/0.76,
respectively, which is significantly higher than that reported for the
whole E.coli STITCH database (0.28/0.21, Wilcoxon rank sum test
P-value <2.2E-16). Thus, BiPredict-predicted interactions are of
high confidence. Testing different c/p-biclique sizes, the maximum
F1-score of 0.53 was obtained for c/p-biclique size c¼3, p¼2, with
an associated TPR 0.4, a FPR of 0.001 and a precision of 0.81
(Fig. 8A and Supplementary Table S18). By contrast, the TPRs
obtained for the randomized network did not exceed 0.04 with a
mean FPR of 0.04, despite the number of predicted interactions
being more than doubled compared to the real network (Fig. 8B and
Supplementary Table S19).

For human, 7941 unique interactions were obtained from the
whole human KEGG-reaction network, of which 6477 interactions
between 1120 compounds and 1160 proteins remained after map-
ping to STITCH IDs. This corresponds to a network density of

Fig. 6. Results of the biclique extension-based interaction predictions using a confidence threshold of 0.4 on the STITCH network and with 10 repetitions on different random

samples. Sorting of data corresponding to different biclique sizes in ascending order of the number of predicted interactions (gray bars, average of 10 runs). Left ordinate axis:

number of predicted interactions, right ordinate: rates representing fractional values of TPR, FPR, and F1-score. Error bars correspond to standard deviations. The red dotted

line marks the 0.05-line to allow for better visual clarity with regard to FPR. Note that the shown c/p-biclique sizes represent a subset of all possible biclique sizes, which are

shown in Supplementary Tables S3 and S4 for E.coli, S7 and S8 for human. (A) and (B) show results obtained for E.coli, (C) and (D) for human. The best obtained biclique

size for E.coli was c¼ 5 and p¼2, with maximal TPR with concurrent FPR<0.05 and highest F1-score
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0.5E-2. Using BiPredict and c/p-biclique size of c¼2 and p¼2,
6929 interactions were predicted, with an associated mean TPR of
0.84 and a mean FPR of 0.01 (Fig. 8C and Supplementary Table
S20). As observed for E.coli, judging from the set of interactions
that are also contained in STITCH [2324 (�34%) of all predicted
interactions], BiPredict predictions are high-confidence interactions
(mean/median confidence score 0.60/0.70 relative to the whole
human database 0.27/0.22, Wilcoxon rank sum test P-value <2.2E-
16). The maximum F1-score of 0.86, was also obtained for c/p-bicli-
que size c¼2, p¼2, with an associated precision of 0.88 (Fig. 8C
and Supplementary Table S20). The largest mean TPR obtained for
randomized networks was 0.37 with an associated mean FPR of
0.10 and precision of 0.21 (Fig. 8D and Supplementary Table S21).
The number of predicted interactions, for which these performance
rates were obtained, was increased 10-fold compared to the real
network.

Taken together, also for the metabolic-reaction-based CPIs,
biclique extension yields high-confidence CPI predictions.

3.2.4 Biclique extension holds the potential to increase the rate of

experimentally validated interactions

We aimed to identify the prediction parameters that would be effect-
ive in reducing the number of experimental tests needed to obtain a
set of validated novel interactions. Our prediction results for the
STITCH E.coli network with maximum F1-score, maximum sensi-
tivity (TPR) and associated FPRs below 0.05, resulted in a confirm-
ation rate (i.e. ratio of TP interactions to the number of predicted
interactions) of at least 0.12 (Table 2). In comparison to the broad
scale experimental studies with confirmation rates of about 0.05
(Piazza et al., 2018), this substantially increases the rate of validated
interactions. Relying on larger bicliques would significantly increase

Fig. 7. Effect of selected STITCH confidence threshold on TPR, FPR and positive predictive value (PPV). Mean TPRs (A) and mean FPRs (B) in dependence on the number of

predicted interactions, and mean TPR in relation to the mean PPV (C) in the E.coli interaction network. All performance measures were calculated for prediction results with

data from ten repeat runs of different random sample sets. Colors represent the three different confidence thresholds applied to the STITCH network to create the input net-

work. Every circle/point corresponds to a particular c/p-biclique size as listed in Figure 6. Note the different scales of the y-axes in (A) and (B). Note, the effect of many more

known negatives (�9000) than positives (�600), prevents reaching higher precision. Large bicliques with c¼6–8 yielded high precision but low recall. The found optimal

(highest F1-score) biclique size (c: 5, p: 2) is indicated in the graph. There are only slight differences between the PPV and TPR of networks based on different STITCH confi-

dence thresholds, especially for the 0.4 and 0.5 thresholds
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the expected confirmation rate (0.71 for c¼8, p¼4), but at the ex-
pense of a much smaller number of predictions and TPs (Table 2).

3.2.5 Iterative biclique extension verifies specificity

As our method only ever adds positive interactions, but never classi-
fies candidate interactions as negative, it needs to be checked
whether iteratively performed cycles would flood the CPI with inter-
actions, leading, in the worst case, to a fully connected biclique net-
work. To test for this scenario, we applied the algorithm in an
iterative manner to the STITCH E.coli input network with c/p-
biclique size set to c¼7 and p¼3. After 14 iterations, the number
of newly predicted interactions fell to below 10, thus essentially,
convergence was achieved. During the 14 iterations, the network
density increased from 0.02 to 0.04. While the density doubled, it is
far from being a fully connected network (density¼1). Hence, the
biclique-extension approach, even if applied iteratively and per-
formed to convergence, does not lead to an unspecific, fully
connected network. Evidently, and as shown above, the choice of

Fig. 8. Results of the biclique extension-based interaction predictions for E.coli (upper row) and human (lower row) using the KEGG pathway network as input and with ten

repetitions on different random samples (5% removed true interactions). On the left-hand side, the results for the real network are shown (A/C) and on the right-hand side the

results for the randomized network (B/D). Sorting of data corresponding to different biclique sizes in ascending order of the number of predicted interactions (gray bars, aver-

age of ten runs). Left ordinate axis: number of predicted interactions, right ordinate: rates representing fractional values of TPR, FPR, and F1-score. Error bars correspond to

standard deviations. The red dotted line marks the 0.05-line to allow for better visual clarity with regard to FPR. See Supplementary Tables S18–S21 for further information

Table 2. Biclique prediction performance with different minimum

number of compounds (c) and proteins (p)

Biclique size # PI # TP TPR # FP FPR PPV TP/PI

c: 8, p: 4 91 65 0.10 2 0.00 0.97 0.71

c: 8, p: 3 122 80 0.13 3 0.00 0.96 0.66

c: 5, p: 3 1295 206 0.33 121 0.01 0.63 0.16

c: 5, p: 2 1994 248 0.39 171 0.02 0.59 0.12

Note: The number of edges represents the number of predicted interac-

tions. PI, predicted interactions, TP/PI provides an estimation of the expected

validation success when tested experimentally. Chosen data correspond to

bicliques with associated mean FPRs below 0.05, nrepeats ¼10. PPV, positive

predictive value. Two large bicliques (c: 8, p: 4/3) and two middle sized bicli-

ques (c: 5, p: 3/2) are listed, including the biclique size, which was identified

as the optimum (c: 5, p: 2). For a complete data table, see Supplementary

Table S3.
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c/p-biclique size critically influences the number of predictions and
should be set in dependence of the density of the input network (see
Section 4).

3.3 Biclique extension performs equally well as

complex deep-learning approaches
We found the biclique-extension method to perform equally well as,
or, regarding some characteristics even better than, advanced, state-

of-the-art deep-learning-based methods. We compared BiPredict to
the recently published deep-learning method DeepConv-DTI (Lee

et al., 2019). DeepConv-DTI uses as input protein sequence infor-
mation (for proteins) and binary fingerprint vectors that characterize
compounds with the regard to a broad range of physico-stereo-

chemical properties, and trains a neural network based on positive
and negative CPIs. We used the same human input network
obtained from STITCH and the same validation data (Liu et al.,
2015) for both methods and compared performance with respect to
TPR, FPR, and F1-score. The input dataset for DeepConv-DTI was

complemented by negative interactions, while BiPredict only needs
positive interactions as input. We obtained a TPR of 0.96 with an
associated FPR of 0.16 applying biclique extension, allowing a min-

imum c/p-biclique size of c¼2 and p¼2. Using DeepConv-DTI, we
obtained a TPR of 0.96 with an associated FPR of 0.23. Biclique ex-

tension also performed better than DeepConv-DTI with respect to
the F1-score (0.55 versus 0.46). A performance comparison of both
methods across the whole range of biclique sizes (BiPredict) and

score-values (DeepConv-DTI) reveals a very similar performance of
both methods (Fig. 9A) with regard to TPR and FPR (ROC). When

inspecting precision versus recall, similar performance characteris-
tics were observed for small c/p-biclique sizes, but BiPredict per-
formed better taking larger minimum c/p-biclique sizes (Fig. 9B).

Notably, bicliques with many proteins but few compounds as min-
imum sizes underperform (e.g. c¼2, p¼9; c¼3, p¼9).

In addition, we tested for agreement of predictions made by
BiPredict, including those for which the answer is not known yet.
We tested five non-intersecting subsets of 100 000 predicted interac-

tions, chosen randomly as a test dataset for DeepConv-DTI, after
training the model. Of those, DeepConv-DTI predicted an average

of 77 469 interactions as positives, which corresponds to an inter-
section of 77.6% (Supplementary Table S17). Thus, both methods
showed high agreement with regard to positive predictions.

3.4 KEGG enrichment analysis on the E.coli network
Following the performance evaluation, suggesting a high predictive
power, we applied the biclique-extension method to the whole
E.coli STITCH network as input. Applying a confidence input score

of 0.4 and setting the biclique-size threshold to the one with detected
highest F1-score (c¼5, p¼2), our method predicts 2666 novel
interactions between 127 compounds and 444 proteins. Of note,

681 (25.5%) of those interactions were in fact already contained in
the STITCH network, but with an experimental confidence level
below our threshold (the complete list of predictions is available as a

Supplementary Material).
To inspect the prediction results with regard to biological func-

tion (proteins) and their biochemical processes (compounds), we
performed a KEGG annotation enrichment analysis on the E.coli
network to discern metabolic pathways that are enriched in the in-

put STITCH network, in bicliques, and in the predicted interactions.
The input list of proteins was compared to the KEGG database as a

reference to determine pathway enrichment.
In the complete filtered STITCH network of known physical

interactions, amino acid metabolism pathways showed the highest

fold-enrichment (‘Phenylalanine, tyrosine and tryptophan biosyn-
thesis’ and ‘Alanine, aspartate and glutamate metabolism’)
(Fig. 10A) relative to the KEGG annotation. Furthermore, other cen-

tral metabolic processes (e.g. ‘Glycolysis’), but also the ‘biosynthesis
of secondary metabolites’ were found overrepresented, with the lat-

ter being associated with the highest significance (smallest adjusted
P-value). We obtained almost identical results for the set of proteins
that were members of at least one biclique (not shown), as almost all

proteins were detected to be part of a biclique (all but 10).
The evaluation of our predictions has revealed an optimal max-

imum c/p-biclique size of c¼5 and p¼2. Thus, we additionally
analyzed the enrichment in this subset of proteins that belong to
bicliques of this optimal maximal size. Here, ‘TCA Cycle’ showed

the largest fold-enrichment (Fig. 10B), followed by ‘2-
Oxocarboxylic acid metabolism’ and ‘ribosome’. All three were not
reported for the full interaction set (Fig. 10A and B). The next four

categories reported enriched in bicliques (‘Pyrimidine-’, ‘Alanine,
aspirated and glutamate-’, ‘Pyruvate-’ metabolism and ‘Microbial
metabolism in diverse environments’) were already reported overre-

presented in the whole input network. Thus, with regard to bio-
chemical processes, bicliques show both characteristic as well as
common process association.

Fig. 9. Performance comparison of BiPredict (red circles) and DeepConv-DTI (black solid line) on human test data. (A) TPR-FPR ROC and (B) precision-recall curve. Labels in-

dicate c/p-biclique size. Note that for BiPredict, no continuous, sortable score variable is produced. Thus, neither a curve nor an associated area can be computed. ROC-curve

created using the R-package ROCR (Sing et al., 2005). Areas computed numerically (trapezoid approximation). Label placing by R-package basicPlotteR (Crispell, 2021)
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Next, we analyzed the enrichment for the predicted interactions.
These predictions were also calculated based on the bicliques with
the maximum c/p-biqlique size c¼5 and p¼2. As we predicted new

interactions, which are connected to the existing bicliques of the in-
put network, we obtained a similar enrichment as for the input bicli-

ques (overlap of two out of three), with one more process
‘Butanoate metabolism’ reported significant. The largest enriched
categories were ‘TCA cycle’ and ‘Ribosome’ (Fig. 10C). A total of

75 out of 420 proteins were only included in the predicted interac-
tions but not part of existing bicliques of the applied c/p-biclique

size.

4 Discussion

Aiming to contribute to a deeper understanding of the function of
compounds, proteins, and their interactions in metabolic and cellu-
lar networks, we searched for the missing links in compound–

protein networks with an explicit focus on metabolite–protein inter-
actions. We applied the method of biclique extension, which works
by discovering incomplete bicliques in a given network and postulat-
ing all edges missing for completion of these bicliques as potentially
novel connections. Based only on network topology, we predicted
novel interactions in E.coli and human CPI networks. Biclique ex-
tension needs only one type of information as input and, thus, is eas-
ily applicable to all species, for which CPI information is available
in reference databases. Biclique extension does not need any detailed
knowledge or prediction of binding modes, energetics, and biochem-
ical process involvements. Hence, we believe the biclique-extension
method to represent an alternative approach to molecular docking
approaches that require molecular structural information and a pre-
cise description in interaction potentials and other machine-learning
methods (Chen et al., 2016; Tsubaki et al., 2019). As we showed,
despite bipartite extension not imposing any molecular information,
it does implicitly capture molecular similarity as a determining fac-
tor for the validity of inference of interaction (Fig. 5). We believe the

Fig. 10. KEGG annotation enrichment analysis of proteins in the E.coli network using the R-package clusterProfiler. Shown are up to 10 KEGG-categories with p.adjust-

<0.01, ordered by fold-enrichment. Control for multiple testing via the Benjamini–Hochberg method (default in clusterProfiler). (A) Enriched KEGG pathways for all proteins

of the input network, (B) for proteins, which are in bicliques up to c/p-biclique size of c¼5 and p¼2 (size with highest F1-score) and (C) for proteins of predicted interactions

applying the same maximum c/p-biclique size. For a complete table, see Supplementary Tables S11–S13
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primary application scenario of the biclique-extension method to lie
in the completion of networks. It can thus be seen as a network cur-
ation step. With this study, we have demonstrated that biclique-
based methods hold great potential when focusing on metabolite–
protein interactions in addition to their successful applications to
DTI prediction and drug-repositioning (Lotfi Shahreza et al., 2018).

We achieved a sensitivity of 39% for predictions of CPIs on the
STITCH E.coli network, while keeping the number of false positives
below 5%, which resulted in an associated precision of 59%
(Fig. 6A and Supplementary Table S3). We demonstrated an even
better prediction performance for the human STITCH network, in
which we obtained a maximum sensitivity of nearly 78%, increasing
with the total number of predicted interactions (Fig. 6C and
Supplementary Table S7).

Even higher prediction performance was shown for both organ-
isms using the KEGG metabolic-reaction network as input. Here, a
sensitivity of 40% with an associated precision of 81% was
obtained for E.coli (Fig. 8A and Supplementary Table S18) and a
sensitivity of 84% with an associated precision of 88% for human
(Fig. 8C and Supplementary Table S20). The performance for
human based on the BDB network was similar to the performance
based on the STITCH network, with a sensitivity of 77% and an
associated precision of 72% (Supplementary Fig. S6 and Table S16).

In both species and all tested networks, prediction performance
levels were significantly and substantially above random predictions
(Figs 6 and 8). We found that performance rates depended on the
chosen c/p-biclique sizes. The best sensitivity for all networks was
obtained when including smaller c/p-biclique sizes, even though
larger bicliques occur at higher frequency in the human STITCH
network than in the E.coli STITCH network. The larger the chosen
c/p-biclique sizes, the larger the set of compounds and proteins with
known interactions captured by these bicliques. As expected, this
resulted in an increase of precision as well as a decrease of FPRs, as
the logic of the biclique extension rests on more support (Figs 6 and
8). In this regard, we also attribute the better performance in human
to the presence of larger bicliques in the input network (Fig. 4B).
However, large c/p-biclique sizes also lead to a smaller number of
bicliques in the input network, and, thus, result in a lower total
number of predicted interactions and lower sensitivity/recall (Figs 6,
8 and 9 and Supplementary Tables S3, S4, S7 and S8). For the E.coli
and the human STITCH network, we found the optimal minimum
c/p-biclique sizes were of four or five compounds and two proteins,
with regard to maximum TPRs and minimum FPRs. Nevertheless,
different c/p-biclique sizes should be tested on used input networks.
Another effective filter criterion would be to limit the total number
of predicted interactions, as this also keeps the FPRs low.
Consistently, we found best performance for bicliques with more
compounds than proteins in them (Figs 6, 8 and 9). As this holds
also for the frequencies of biclique sizes for the input network
(Fig. 4), we assume this to be purely a statistical effect. Comparing
the STITCH and the KEGG networks, the prediction performances
and the network properties regarding their density, we can conclude,
that for input networks with relatively high density, like the
STITCH E.coli network, the minimum c/p-biclique size should be
chosen at higher values (at least c¼4/5, p¼2), while for lower dens-
ity input networks (like all other networks studied here) also a
smaller c/p-biclique size (even c¼2, p¼2) seems optimal.

By its very nature, our method predicts missing links in CPI net-
works, but never classifies candidate interactions as negative. To
test whether this would eventually lead to a fully connected net-
work, we iteratively applied the biclique algorithm to the network,
which converged at a doubled network density (from 0.02 to 0.04),
which was far from a saturated network (density¼1). Thus, we
could show that BiPredict does not indiscriminately ‘flood’ a net-
work with interactions, but is rather specific. Also biologically, posi-
tive interactions are of greater interest than non-interactions. The
binary yes/no classification of interactions is a simplification any-
way, as actually, gradual differences of binding energies determine
the strengths of interactions and concentrations the probabilities
thereof.

Evidently, bipartite extension depends on the input network to
be correct. While this can be assumed to be true for the used net-
works—within the limits of the employed confidence assessment—
we also found that the biclique extension proved robust with regard
to the chosen STITCH confidence scores (Fig. 7). This may reveal a
strength of the biclique-extension method. It integrates over many
interactions to make predictions and may thus prove error tolerant.
In addition, concordant results were obtained using different input
databases (BDB, see Section 3.2.2, and KEGG, see Section 3.2.3).

We compared the obtained performance rates for the E.coli net-
work to rates from a recent experimental study (E.coli CPIs) (Piazza
et al., 2018) to evaluate whether our approach would be able to im-
prove the prediction of novel CPIs in general. Indeed, focusing tests
on predicted interactions obtained by the biclique-extension method
would increase the fraction of validated interactions in relation to
the number of tests. In detail, Piazza et al. tested 34 186 interactions
experimentally and reported 1719 validated interactions, out of
which 1487 were novel targets. This reflects a validation rate of
0.04 for novel interactions and 0.05 relative to all validated interac-
tions (including also previously known interactions). Our predic-
tions resulted in mean validation rates of 12% with TPRs of 39%
up to validation rates of 71% with TPRs of 10%, relative to the
number of predicted interactions and with FPRs below 5% (n¼10).
Noticeably, we can even assume these rates to actually be higher, as
several of the predicted interactions might contain additional TP
interactions that are not yet part of the set of real positive cases
found by experimental testing. Clearly, Piazza et al. went for system-
atic testing and did not aim to optimize for the highest rate of vali-
dated interactions. However, achieving an increase of validated
interactions by simultaneously reducing the number of required tests
would save time and resources. Consequently, novel interaction
partners predicted by biclique extension can be highly supportive
when considered for experimental testing.

We also compared BiPredict performance rates to those of the re-
cently published deep learning method DeepConv-DTI (Lee et al.,
2019), which itself was compared to several state-of-the-art
approaches in the respective study. We found the biclique-extension
method to perform equally well as, or, regarding some characteris-
tics, even better than advanced, state-of-the-art deep-learning-based
methods (see Section 3.3).

Noticeably, the number of interactions predicted by BiPredict in
the human STITCH network was very high (up to 1.5 million, de-
pending on c/p-biclique size) in relation to the input network size
(n¼44 322). However, these represented only 10% of the 15.9 mil-
lion potential interactions given the number of compounds and pro-
teins in the network. To further validate these seemingly high
numbers of predicted interactions, we tested five subsets of
BiPredict-predicted interactions for agreement with DeepConv-DTI
and obtained a high average overlap of 77.6% predicted positive
interactions, which were concordantly predicted by DeepConv-DTI
and BiPredict. Thus, the predictions made by BiPredict were sup-
ported by other methods (DeepConv-DTI) as well. Please note that
both methods also predict false positives, such that an overlap of
100% cannot be expected.

When studying metabolite–protein interactions, two different
modes of binding need to be contemplated. That of a metabolite
binding as a substrate and that of a metabolite binding as an
allosteric modulator. For the latter, approaches developed for ‘con-
ventional’ CPIs can readily be transferred. For the former, the multi-
molecular nature of substrate binding, combined with biochemical
conversions, renders the applicability of single compound–protein
binding prediction methods questionable. Here, we showed that for
both modes, biclique extension generates meaningful results. When
using STITCH and BDB as input networks for predictions, classical
compound–protein binding events can be considered captured
(Fig. 6 and Supplementary Fig. S6), as both focus on compound-
binding, irrespective of metabolic conversions. Using a KEGG-
reaction network as input, we also obtained high-confidence
predictions (Fig. 8). Thus, we conclude that the rationale of biclique
extensions works equally well for both scenarios: single-molecule
binding as an effector and binding as a substrate.
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Biclique extension can only be applied to those interactions, for
which its rationale applies. Isolated interactions of one compound
and one protein, e.g. cannot be captured and are, for principal rea-

sons, not predictable by BiPredict, even when applying the smallest
considered biclique size (c¼2, p¼2). However, judging from the

STITCH input CPI, this constitutes only a small fraction of ‘dark’
CPIs relative to all interactions (7.8% in E.coli and 4.9% in human,
Table 1).

With regard to biochemical process involvement of compounds
and proteins represented in bicliques and biclique-based inter-

action predictions, we found TCA-cycle, ribosome overrepresented
in both (Fig. 10B and C). As the TCA-cycle is a central biochemical

integration hub with relatively tight metabolites–enzyme interac-
tions described before (albeit in yeast) (Durek and Walther, 2008),
the appearance of this process in this statistic seems very plausible.

Furthermore, amongst TCA-enzymes/proteins themselves, many
interactions have been reported (in Arabidopsis thaliana) (Zhang
et al., 2018), rendering an associated compound–protein biclique

interactions more likely, with the notion of support of substrate
channeling referred to as metabolons observed for TCA-cycle. Of

particular interest here are the reported new interactions within
the TCA-cycle (see Supplementary Material) that await experi-
mental verification. By contrast, as the ribosome is not immediate-

ly considered associated with metabolism, but with translation, its
appearance seems surprising. However, as the ribosome is a multi-

protein complex with many proteins binding to co-factors, such as
ATP and ADP, a densely knit interaction network with associated
predictions can be explained as well. Of note also, even when

probing the whole input STITCH interaction network relative to
the KEGG annotation, pronounced overrepresentation of a num-

ber of metabolic functions have been observed (Fig. 10A). Thus,
physical interactions form a much denser network than that of bio-
chemical reaction-based substrate/product–enzyme interactions

captured by KEGG.
In summary, we demonstrated that biclique extension is indeed

an effective approach for the prediction of CPIs in naturally occur-
ring metabolic and cellular networks. Biclique extension works
under minimal assumptions that are solely inferred from observed

interaction networks and their topology and is not limited by the
currently known biochemical and physico-chemical determinants

of CPIs, which offers a great potential to find novel interaction
candidates and to support efficient experimental testing. The bicli-
que-extension methodology can be readily applied to all species

with available CPI interactions. With this study, we provide a basis
that allows choosing the parameters of biclique extension-based

predictions and provide expected performance levels of their appli-
cations in the context of metabolite–protein interaction networks.
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