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Abstract

Motivation: We explore the use of literature-curated signed causal gene expression and gene–function relationships
to construct unsupervised embeddings of genes, biological functions and diseases. Our goal is to prioritize and pre-
dict activating and inhibiting functional associations of genes and to discover hidden relationships between func-
tions. As an application, we are particularly interested in the automatic construction of networks that capture rele-
vant biology in a given disease context.

Results: We evaluated several unsupervised gene embedding models leveraging literature-curated signed causal
gene expression findings. Using linear regression, we show that, based on these gene embeddings, gene–function
relationships can be predicted with about 95% precision for the highest scoring genes. Function embedding vectors,
derived from parameters of the linear regression model, allow inference of relationships between different functions
or diseases. We show for several diseases that gene and function embeddings can be used to recover key drivers of
pathogenesis, as well as underlying cellular and physiological processes. These results are presented as disease-
centric networks of genes and functions. To illustrate the applicability of our approach to other machine learning
tasks, we also computed embeddings for drug molecules, which were then tested using a simple neural network to
predict drug–disease associations.

Availability and implementation: Python implementations of the gene and function embedding algorithms operat-
ing on a subset of our literature-curated content as well as other code used for this paper are made available as part
of the Supplementary data.

Contact: andreas.kramer@qiagen.com

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Many experimental observations reported in the biomedical litera-
ture represent cause–effect relationships. Examples are observations
that directly or indirectly couple the activation or inhibition of genes
to the downstream regulation of other genes, or the activation or in-
hibition of biological functions. Collectively, such literature-derived
causal relationships (Krämer et al., 2014) can be viewed as the defin-
ing features of genes and functions, and therefore be exploited in
machine learning (ML) models.

A widely used approach is the construction of mappings to high-
dimensional vector representations (Hinton, 1986), so-called
embeddings, that are at the heart of many modern ML methods.
The most famous example for this is arguably the word2vec algo-
rithm (Mikolov et al., 2013), which uses word proximity in a text to

encode semantic relationships in high-dimensional word embed-
dings. Embeddings have also been applied to graphs (Grover and
Leskovec, 2016; Nelson et al., 2019) and used in scientific contexts,
for instance to discover latent knowledge in materials science
(Tshitoyan et al., 2019). In the biological context, embeddings for
genes have been constructed from protein sequences (Yang et al.,
2018), protein–protein interaction networks (Cho et al., 2016),
coexpression data (Du et al., 2019) and using text mining (Liang
et al., 2021; Xing et al., 2018).

In this work, we explore the use of literature-curated signed
causal gene expression and gene–function relationships to construct
unsupervised embeddings of genes and functions. In contrast to pro-
tein–protein interactions or correlation measures like coexpression,
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causal gene expression relationships capture information about the
behavior of a biological system as a whole in response to perturba-
tions. Here, we make explicit use of the fact that causal interactions
carry a sign which distinguishes between activating and inhibiting
effects.

The obtained gene embeddings can be used to predict and priori-
tize genes affecting functions and diseases. We distinguish our ap-
proach from existing function prediction methods that aim to
annotate previously uncharacterized genes with their predicted func-
tion, based on some form of ‘guilt-by-association’, i.e. the assump-
tion that colocalized and interacting genes or proteins are more
likely to be functionally correlated (Chen et al., 2021). Here, in con-
trast, we are interested in the identification of the most relevant
genes causally affecting a given function or disease. These genes can
either be previously known to be associated with that function or
purely predicted. In the context of diseases, gene prioritization
approaches were previously developed based on matrix factorization
(Natarajan and Dhillon, 2014; Zakeri et al., 2018), but those do not
distinguish between activating and inhibiting effects. In addition to
gene embeddings, we also construct function embedding vectors
that allow to infer previously unknown signed function–function
relationships, including disease–function associations that point to
disease mechanisms involving specific cell types or tissues.

Our embeddings are generally useful to construct biological net-
works that highlight some mechanism or key contexts. A recent ex-
ample is the ‘Coronavirus Network Explorer’ (Krämer et al., 2021),
which uses an early version of our gene–function prediction ap-
proach to compute networks that connect severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) viral proteins to host cell
functions. In the current paper, we illustrate the application to bio-
logical networks by constructing disease networks, which capture
disease-underlying functions and associated key genes. Embeddings
are not limited to genes, but can also be extended to other molecules
including drugs. Such embedding feature vectors can then be used in
other ML models trained for arbitrary prediction tasks. As an ex-
ample, we demonstrate this for the prediction of drug–disease
associations.

2 Methods

2.1 Literature-curated content
We employ the QIAGEN Knowledge Base (QKB), a structured col-
lection of biomedical content that includes findings manually cura-
ted from the literature as well as content from third-party databases
(https://digitalinsights.qiagen.com/products-overview/qiagen-know
ledge-base/). The QKB was used to create a large-scale knowledge
graph with nodes representing genes, chemical compounds, drugs,
microRNAs, biological functions and diseases; and edges catego-
rized into different edge types representing a variety of interactions
such as gene expression, activation/inhibition, phosphorylation and
protein–protein binding among others. For more details regarding
QKB content, see Supplementary data, Section 1.

In this work, we particularly focus on two kinds of edges: (i)
gene expression relationships that represent the causal effect of
genes on the expression of other genes and (ii) causal gene–function
and gene–disease edges that represent causal effects of genes on bio-
logical functions and diseases.

Here, causality relating to an edge A! B between two entities A
and B is defined in the following way: There exists at least one pub-
lished experimental observation, in some experimental context, that
a change in some property of A (usually its activation, inhibition,
over-expression, knockout, etc.) results in (i.e. ‘causes’) a measured
response of B, e.g. its expression up- or downregulation if B is a
gene, or its activation or inhibition (promotion/suppression) if B is a
biological function or disease. Examples of these kind of edges, and
their underlying literature findings are shown in Supplementary
data, Section 1.2.

We only consider signed edges that have an associated direction
of effect which is either activation (leading to an increase, sign: þ1)
or inhibition (leading to a decrease, sign: –1). All edges generally

bundle a number of underlying literature findings from various ex-
perimental contexts, therefore edge signs reflect a consensus among
all those contexts. Note that our approach explicitly excludes pro-
tein–protein binding edges since those do not represent causal effects
and also do not carry an edge sign which is required by our method.

As part of an ontology, functions are organized in a hierarchy
where, except for very general terms, parents inherit causal gene
associations (and edge signs) from their descendants. In total, 6757
genes and 29 553 functions are included in our embedding model.
Here and in the following, the term ‘function’ generally refers to
both functions and diseases, unless we explicitly make the
distinction.

2.2 Unsupervised gene embeddings
In the following, we describe three approaches to derive unsupervised
embeddings of genes from their downstream expression signatures
defined by literature-curated signed causal gene expression relation-
ships. The starting point is a bipartite graph G (see Fig. 1a) in which N
genes (for which we will compute embeddings) are connected to their
M expression-regulated target genes by signed edges that represent
causal expression findings from the literature. From G we define the
signed, weighted N�M bi-adjacency matrix W, Wij ¼ sijffiffiffiffi

Ni

p , where sij 2
f�1; 0;1g (activation: þ 1, inhibition: –1, no edge: 0) and Ni ¼P

j jsijj is the total number of genes that are regulated by gene i. The
matrix W can be viewed as taking N-dimensional one-hot encoded
gene vectors as input and outputting normalized M-dimensional vec-
tors corresponding to the up/downregulation pattern (see Fig. 1b). Two
of our embedding strategies (E1 and E2) are based on an approxima-
tion of the matrix W, which is associated with the compression of the
one-hot encoded input into a lower-dimensional embedding space.

The ‘spectral’ embedding E1 uses a low-rank approximation of
W based on singular value decomposition (Markovsky, 2012),

~W ¼ URVT ; (1)

where columns of the N�K matrix U are eigenvectors of the posi-
tive definite matrix S ¼WWT , corresponding to its top K eigenval-
ues. Entries of the matrix S represent a signed ‘similarity’ of genes
based on their downstream regulation patterns. Note that the nor-
malization factor 1=

ffiffiffiffiffiffi
Ni

p
used in the construction of W was chosen

such that diagonal elements of S are equal to one, regardless of the
number of regulated genes. The square roots of the eigenvalues of S
form the matrix elements of the diagonal K�K matrix R, and V is
an M�K matrix. One can think of U as projecting one-hot encoded
vectors representing single genes onto K-dimensional embedding
vectors, i.e. these embedding vectors are the rows of U, where
UTU ¼ I. This spectral method of computing embedding vectors is
equivalent (up to constant scale factors on embedding vector com-
ponents) to training a simple three-layer linear neural network with-
out bias terms and mean-squared error (MSE) loss (corresponding
to the Frobenius norm of ~W ), where embeddings are retrieved from
the middle layer (Bermeitinger et al., 2019; see Fig. 1c). The neural
network-based embedding strategy E2 extends this linear model by
adding another layer that includes bias and has a rectified linear unit
(ReLU) activation function in order to capture non-linear effects
(see Fig. 1d). Since there is no bias term between the final layers for
both the E1 and E2 approaches, inverting the sign of an embedding
vector will result in exactly the opposite effect on downstream-regu-
lated genes.

For the third embedding strategy (E3), instead of using the signed
similarity matrix S, we construct a signed similarity graph H that
has a signed edge between two gene nodes i and k if the two genes
exhibit a similar downstream regulation pattern. In particular, we

compute the ‘z-score’ zik ¼ 1ffiffiffiffiffiffi
Nik

p P
j sijskj where Nik ¼

P
j jsijjjskjj is

the number of coregulated genes and requires the absolute value of
zik to meet a certain cutoff for an edge to be present. The sign of an
edge is given by the sign of zij (see Fig. 1e). From H, we construct an
unsigned graph H’ by replicating each node of H and connecting the
replicated nodes in H’ either parallel (positive edge sign) or cross-
wise (negative edge sign) with unsigned edges as shown in Figure 1f.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1. Gene and function embedding methods. (a) In the bipartite graph G, regulating genes are connected to expression-regulated genes by signed edges that represent upregu-

lating and downregulating causal expression findings from the literature (for illustration, different colors represent different regulation directions). Embedding vectors are com-

puted for the N regulating genes. G defines the signed, weighted adjacency matrix W. (b) W can be viewed as taking N-dimensional one-hot encoded gene vectors as input and

outputting normalized M-dimensional vectors corresponding to the up/downregulation pattern. (c) The spectral method E1 uses a low-rank approximation ~W ¼ URVT to

compute embedding vectors, which is equivalent to training a simple three-layer linear neural network without bias terms and MSE loss. (d) The neural network-based embed-

ding strategy E2 extends the linear model by adding another layer which includes bias and an ReLU activation function. (e) The graph-based approach E3 uses a signed similar-

ity graph H connecting similar and anti-similar genes. (f) From H, an unsigned graph H’ is constructed with a replicated set of nodes. H’ allows the computation of

embeddings using the node2vec algorithm (Grover and Leskovec, 2016). (g) The gene–function (and disease) bipartite graph defines the bi-adjacency matrix Yij. Genes are con-

nected to functions and diseases by signed edges that represent activating and inhibiting causal effect findings from the literature. (h) Function (and disease) embedding vectors

are computed as parameter vectors in a linear regression problem
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This construction of an unsigned graph H’ preserves the information
contained in the edge signs of H. In the next step, we apply the
node2vec graph embedding algorithm (Grover and Leskovec, 2016)
that samples random walks in order to map the graph embedding
problem to word2vec using the skip-gram approach (Mikolov et al.,
2013). Embedding vectors ui and vi are computed for all nodes in
H’, where u and v denote the two replicas, one of which is used for
the final gene embedding vectors.

2.3 Function embeddings
Functions are characterized by their causally associated genes that
were curated from literature along with the respective direction of
the effect (activation or inhibition). We construct function embed-
ding vectors p in the same vector space as gene embedding vectors x
such that their scalar product p � x approximates the effect of x on p
(activation: p � x > 0, inhibition: p � x < 0, no effect: p � x � 0).
This construction is in line with the symmetry described above: a
gene with opposite causal expression signature, i.e. with the embed-
ding vector �x has also the opposite effect �p � x on the function p.

Function embedding vectors are determined as follows: Let the
matrix Y ¼ fYijg represent the effect of gene i on a function j (acti-
vation: Yij ¼ 1, inhibition: Yij ¼ �1, no effect: Yij ¼ 0) as curated
from the literature (see Fig. 1g), then the embedding vector pj for
each function j is determined independently by standard linear re-
gression (using MSE loss; see Fig. 1h), i.e. by minimizingP

i ðxi � pj � YijÞ2. This leads to

pj ¼ ðUTUÞ�1UTyj; (2)

where the matrix U has K-dimensional gene embedding vectors as
rows, yj is a column vector of Y and it is assumed that the r.h.s. of
Equation (2) is well-behaved, and no further regularization is
needed, which is usually the case if K� N. For the spectral method
E1 in particular we have UTU ¼ I, which simplifies Equation (2) to
pj ¼ UTyj. Note, that gene–function prediction is viewed as a regres-
sion problem, not classification, since the values of Yij are ordered in
a sequence, �1, 0, 1 and there could in principle be a continuous
transition from ‘inhibition’, to ‘no effect’ to ‘activation’. We finalize
the construction of function embedding vectors by also performing a
normalization step, ~pj ¼

pj

jjpj jj, in order to put embedding vectors on
the same footing for all functions. This is motivated by the expect-
ation that isotropically distributed random gene embeddings (i.e.
‘noise’) should lead to the same distribution of sij ¼ ~pj � xi for all
functions.

2.4 Gene–function prediction and prioritization
Signed causal gene–function relationships are predicted if the abso-
lute value of the gene–function score defined by the scalar product
sij ¼ ~pj � xi is greater than a certain threshold. For a given function,
we can think of function embedding vectors ~pj, based on the con-
struction above, to be tilted toward ‘consensus’ sets of function-
associated genes that have similar (or anti-similar) gene embedding
vectors. This means that predicted genes that are also similar to one
of these sets, as well as all genes within these sets (that are already
known to be associated with the function), will receive high absolute
scores. In this sense, scoring will prioritize ‘key’ genes that are con-
cordant with the consensus sets. Likewise, genes whose embedding
vectors are more scattered and not similar to one of the consensus
sets, will not receive high scores, and thus not be prioritized. The
choice of the embedding dimension K determines whether the gene–
function prediction model tends to under- or overfit. If K is too
small, not enough information will be encoded in the embedding
vectors; if K is too large, the similarity between genes will not be suf-
ficiently represented. For example, in the spectral model E1, in the
limit K¼N all gene embedding vectors are orthogonal.

Gene–function scores were also transformed to z-scores (see
Supplementary data, Section 4). Since z-scores measure statistical
significance, this is useful to define meaningful cutoffs for top-
scoring genes.

2.5 Cosine similarity for embedded functions
The similarity of functions is determined by using cosine similarity
of the associated embedding vectors, which in our case is simply
given by their scalar product since function embedding vectors are
normalized. This scalar product can assume negative values corre-
sponding to ‘anti’-similarity, i.e. the activation of one function being
similar to the inhibition of another. Statistical significance of func-
tion similarity can be assessed by considering the standard deviation
rc of the cosine similarity distribution (centered around 0) for two
random unit vectors. Since one of these vectors can be held fixed,
this is the same as the standard deviation of a single vector compo-
nent xi of a random unit vector. From the condition

P
i x2

i ¼ 1 then
follows that 1 ¼

P
ihx2

i i ¼ Kr2
c since all K vector components are

equivalent. An appropriate significance threshold (at 2rc) for the co-
sine similarity score is therefore 2K�1=2 which is about 0.09 for a
typical embedding dimension of K¼500.

2.6 Implementation
Algorithms were implemented in Python using the standard scientif-
ic computing stack (numpy, scipy, pandas, scikit-learn). Most code
was run on a standard laptop in minutes to hours time frame. The
implementation of the neural network-based embedding strategy E2
uses the pytorch framework, and we ran experiments on a machine
with a T4 GPU (about 1 hour per run). For node2vec (E3) we uti-
lized the python implementation provided by Grover and Leskovec
(2016) based on the gensim library with default parameter settings
(random walks with 30 nodes, 100 walks per node, hyperparameters
p ¼ q ¼ 1).

3 Results

3.1 Cross-validation of gene–function prediction
We used the following cross-validation approach to test the accur-
acy of gene–function prediction. We randomly set gene–function
relationships Yij to zero, trained the linear regression model and
then determined how well those removed gene–function relation-
ships could be predicted. To avoid artificial dependencies between
functions, we included only ‘leaves’ of the function hierarchy in the
subset of functions on which the model was tested and required that
functions were supported by at least 10 genes. A balanced test set
was created by randomly picking n entries of the matrix Y ¼ fYijg
that had the value 1, n entries that had the value �1, and 2n entries
that were zero. We repeated the procedure k times to create k inde-
pendent test sets. For each test set, the selected elements of Y were
set to zero, and a model was trained using this new matrix Y. From
the resulting gene–function scores, we then computed receiver-
operating characteristic (ROC), and precision-recall curves (PRCs).
Strictly speaking, zero-entries of Y, i.e. the lack of a gene–function
relationship in the curated content are not true negative examples in
a training or test set, since they do not mean that there was experi-
mental evidence of no functional effect. However, we can assume
that the vast majority of zero-entries in Y are true negative exam-
ples, and the few ‘false’ negative examples do not significantly affect
test results.

Two prediction tasks were considered. For the first task, we
predicted the presence of a gene–function relationship using an
absolute gene–function score threshold jsj for the complete test
set with 4n examples. For the second task, we used the signed
score itself to predict the sign of the effect, i.e. whether it is acti-
vating or inhibiting, and the test set was limited to the 2n non-
zero examples. There are two subcases corresponding to the pre-
diction of either activation (versus inhibition) or inhibition (ver-
sus activation) among edges with unknown sign, which means
there are two distinct PRCs. The ROC is symmetric w.r.t. these
two subcases, i.e. the second subcase can be obtained from the
first by transforming true (TPR) and false-positive rates (FPR)
according to TPR ! 1� TPR, and FPR ! 1� FPR, or simply by
‘flipping’ the ROC curve.

Two metrics are used to assess the capability of our signed gene–
function prediction model: The AUC, which measures overall how
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ranking by score discriminates between true positives and negatives,
and the precision in the limit of low recall (here set to 5%) which
measures how precise the predictions for the highest-scoring genes
are. We use the latter metric because we are particularly interested
in the identification of the most relevant, key genes causally affect-
ing a given function or disease. In all cross-validation experiments,
we set n¼1000 and k¼50.

Figure 2a shows average AUC and precision at 5% recall for ab-
solute and sign prediction as a function of the embedding dimension
K for all models E1, E2 and E3. The neural network model E2 uses
a single intermediate layer with N2 ¼ 1000 nodes, and the z-score
cutoff for the graph-based model E3 was set to z¼1.5. Error bars
shown correspond to the measured standard deviation across the k
replicated runs. We observed that increase of the number of nodes in
the intermediate layer, or inserting an additional layer (E2) did not
result in significant change, and larger cutoff values z lead to a de-
crease of AUC and precision (E3). From Figure 2a, one can obtain
‘optimal’ embedding dimensions for which AUC and precision are

both large. Embedding dimensions greater than this optimal dimen-
sion will lead to over-fitting, while smaller embedding dimensions
result in under-fitting of the model. This can be seen for all three
cases, E1, E2 and E3, with slightly different behavior of AUC and
precision curves. For the spectral case E1 (absolute prediction), the
AUC curve shows a very broad peak with maximum AUC �0:68,
while precision (at 5% recall) has a plateau around 95% for dimen-
sions larger than 500, and drops sharply toward lower embedding
dimensions. The behaviors of cases E1 and E2 are very close to each
other (for absolute and sign prediction) with the AUC (for absolute
prediction) dropping slightly more strongly toward high dimensions
for the latter. For E3, performance is also similar except that the
AUC is lower for absolute prediction, and the maximum (at
AUC¼0.629) appears shifted to lower embedding dimensions likely
because the model included many fewer genes, but it could also indi-
cate a better representation compression. Figure 2b shows ROC and
PRCs for the cases K¼500 (E1), K¼350 (E2) and K¼100 (E3). All
three models reach an average precision of nearly 95% for absolute
prediction and about 90% for sign prediction, while the AUC for
sign prediction is about 0.70. For the spectral approach, E1 we also
evaluated models that require each included gene to have a min-
imum number of downstream-regulated genes in the bipartite graph
G (see Supplementary data, Section 2.1).

Overall, we find that both the spectral model E1 and the neural
network-based model E2 perform equally well in our cross-
validation experiments, and both perform significantly better than
the graph-based model E3 on the AUC for absolute prediction. Since
embeddings for E2 are generally much more expensive to compute
we therefore chose to concentrate on the spectral model E1 for some
of the following applications. For the application to drug–disease
prediction (see Section 3.4 below), we also performed a comparison
between all three models.

As noted in Supplementary data, Section 1, there are about twice
as many positive signs as negative signs in the bipartite graphs
derived from the QKB. An interesting question is whether this im-
balance has any effect on our results. This is discussed in
Supplementary data, Section 2.2.

3.2 Function embeddings: discovery of latent biological

relationships
The similarity of embedding vectors encoding functions and diseases
is expected to reflect underlying biological relationships. In order to
test this, we examined how functional contexts are represented in
embedding space, constructed a global t-distributed stochastic
neighbor embedding (tSNE) map of diseases and visualized relation-
ships between diseases and associated biological functions (for the
latter, see Supplementary data, Section 3).

One result of the word2vec algorithm (Mikolov et al., 2013) is
the association of semantic relationships with simple linear vector
operations. For instance, in the most famous example, the vector
representation of the word ‘king’ is related to the word ‘queen’ by
the (approximate) identity ‘king’ ¼ ‘queen’ – ‘female’ þ ‘male’. In
order to find similar relationships in our function embedding space,
we consider functions that describe biological processes in a particu-
lar context. As an example, we examine functions of the form ‘X of
Y’, where the biological process X is from the set Adhesion,
Proliferation, Cell movement, Differentiation, and Y is a cell type
(e.g. T lymphocytes, complete list given in Supplementary Table S1).
Linear relationships between embeddings can be visualized by per-
forming principal component analysis (PCA), and projecting embed-
ding vectors on the two main principal components which are
shown in Figure 3a and b for the process pairs Adhesion versus
Proliferation, and Cell movement versus Differentiation. Pairs of
functions with different processes, but the same cell type context are
connected by straight line segments. If a linear vector relationship
like in the ‘king’-‘queen’ example above holds, then these line seg-
ments are expected to be parallel. From Figure 3a and b, it is seen
that this is approximately the case for most of the function pairs. In
order to make a quantitative assessment of this observation, we
computed the standard deviation of the distribution of angles that

(a)

(b)

Fig. 2. Cross-validation: (a) Average AUC and precision at 5% recall for absolute

and sign prediction as a function of the embedding dimension K for models E1, E2

and E3. (b) ROC and PRCs for the cases K¼500 (E1), K¼ 350 (E2) and K¼ 100

(E3). Error bars and shaded areas reflect standard deviations across 50 independent

cross-validation runs

Embedding models of cause–effect relationships 5

https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbac022#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbac022#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbac022#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbac022#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbac022#supplementary-data


Fig. 3. Discovery of latent biological relationships from function embeddings. (a, b) Two-dimensional projection of embedding vectors of functions of the form ‘X of Y’ where

X is one of the biological processes Adhesion, Proliferation, Cell movement and Differentiation; and Y is one of the cell type contexts given in Supplementary Table S1 (e.g. T

lymphocytes). (c) Global tSNE visualization of disease embedding vectors. Diseases from different disease categories (cardiovascular, neurological, immunological, infective,

congenital or cancer) tend to cluster together. Note that cancer and the other disease categories are not exclusive, for instance, some cancers were also classified as immuno-

logical or neurological, and the non-cancer classification took precedence
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line segments form with the horizontal axis, and compared it to the
standard deviation of angles of line segments with randomly
shuffled endpoints. The resulting estimated P-values obtained by
random sampling are p ¼ 1� 10�5 for the Adhesion–Proliferation
pair, and p ¼ 4� 10�7 for the Cell movement–Differentiation pair,
clearly showing the statistical significance of this result.

A global tSNE visualization of embedding vectors for diseases
(after first reducing dimensionality to 20 using PCA) is shown in
Figure 3c. It is seen that, except for the center of the tSNE map, dis-
eases from the same disease category (cardiovascular, neurological,
immunological, infective, congenital and cancer) tend to cluster to-
gether, indicating that function embedding vectors capture biologic-
al similarity and dissimilarity between diseases.

3.3 Application: inferred disease networks
To explore how the top-scoring genes for a given disease relate to its
associated functions, we selected three examples, psoriasis, pulmon-
ary hypertension and Alzheimer’s disease, which represent a wide
spectrum of ‘systemic’ diseases with distinct underlying mechanisms
and manifestations. For each of these diseases, we determined top-
scoring genes and functions and their signs (see Supplementary
Tables S2–S7). In order to give priority to the most ‘specific’ func-
tions (rather than more general terms), we did not include functions
that are parents in the process hierarchy of other functions in the
list. Redundancy was further decreased by bundling functions from
the same context (e.g. cell type), and considering only the highest
scoring function from each bundle. For each disease, we constructed
a bipartite graph connecting the 15 top-scoring genes and 20 top-
scoring functions through edges if the absolute value of the corre-
sponding gene–function score is greater than a certain threshold
(here: jz-scorej > 3), and its sign is consistent with the signs of the
adjacent gene and function.

Figure 4 and Supplementary Figures S4 and S5 show networks
constructed this way for all three diseases above. In the following,
we discuss the psoriasis network. Similar discussions for the other
two diseases are given in the Supplementary data (Section 4).

Psoriasis is a chronic inflammatory skin disease with a strong
genetic component (Greb et al., 2016). The disease has multiple
forms and also may affect organs other than the skin. The network
shown in Figure 4 highlights the main immune axis represented by
the IL17-IL23 T helper components (Activation of Th1 cells,
Activation of Th17 cells). IL17 and IL23, as well as TNF, are known
to be involved in the pathogenesis of psoriasis. One of the hallmarks
of psoriasis is keratinocyte proliferation and immune cell infiltra-
tion. This and the disease phenotype (Scaling of skin, Degradation
of connective tissue) are well represented among the functions
shown in the network (Activation of keratinocytes, Adhesion of per-
ipheral blood monocytes, Cell movement of naive B cells, Influx of
neutrophils, Migration of Langerhans cells). A number of genes
shown are purely predicted from QKB content (BANF1,
HSD17B14, IL1RL2, KLK5, NFKBIZ and TNIP1). An independent
literature search uncovered known or suspected involvement of
these genes in the disease: BANF1 has been suggested to be associ-
ated with increased proliferation of keratinocytes in psoriatic lesions
(Takama et al., 2013). Kallikreins (like KLK5) were found in the
serum of patients with psoriasis which suggests that they might be
involved in the pathogenesis (Komatsu et al., 2007). The expression
of NFKBIZ (a nuclear inhibitor of NF-jB) in keratinocytes has been
found to trigger not only skin lesions but also systemic inflammation
in mouse psoriasis models (Lorscheid et al., 2019). Loss of TNIP1 in
keratinocytes leads to deregulation of IL-17-induced gene expression
and increased chemokine production in vitro and psoriasis-like in-
flammation in vivo (Ippagunta et al., 2016).

This demonstrates that these networks indeed capture known
underlying disease mechanisms and also have the potential to gener-
ate novel insights.

3.4 Application: drug–disease prediction
In the following, we demonstrate that the embeddings computed
with our approach can also be used for independent prediction

tasks. As an example, we consider the prediction of drug effects on
diseases. Since the QKB also contains literature-derived information
about the effect of drugs on gene expression, it is straightforward to
extend the gene embedding model also to drug molecules by simply
adding them to the expression bipartite graph G (Fig. 5a). In total,
we included 1111 drugs for which embedding vectors were
computed.

Using known drug indications for a given disease, we train a sim-
ple multilayer perceptron (MLP) by employing drug embeddings as
feature vectors (Fig. 5b), and then assess how well this model per-
forms in predicting new drug–disease associations. Known drug–dis-
ease relationships used for this purpose were curated (as part of the
QKB) from drug labels (approved indications) and phase 3 and 4
clinical trials, which is described in more detail in Supplementary
data, Section 5.1.

Here, we only focus on diseases that are associated with a suffi-
cient number of approved drugs or drugs in clinical trials. For train-
ing the MLP (for a given disease), those drugs are used as positive
examples, while a set of negative examples is randomly drawn from
all the other drugs. Both sets of positive and negative examples are
equal in size to create balanced training and test sets, utilizing a 70/
30 random split for cross-validation. Training and testing are then
repeated 100 times to compute average ROC and PRCs.

Results are shown in Figure 5c and d for the spectral model E1
(K¼500) for several diseases using either only approved drugs, or
also including drugs in clinical trials. It is seen that the performance
in the first case is generally better than in the second (e.g.
AUC¼0.790 versus AUC¼0.635 for Hypertension) which may be
caused by approved drugs being more similar to each other than the
larger set of drugs in clinical trials, thus leading to a more coherent
predictive model. Overall, it is seen that drug embedding vectors,
obtained from literature-curated causal gene expression relation-
ships indeed capture information about drug effects on diseases. For
comparison, we have also performed the drug–disease prediction
experiments for the other models E2 and E3 (see Supplementary
data, Section 5.2).

It shall be noted that one limitation of these results is the sparsity
of the training data, i.e. only a few diseases are targeted by a suffi-
cient number of drugs to perform a meaningful split into training
and test sets. Also, no additional effort was made in the selection of
included drugs other than their approval status or inclusion in a clin-
ical trial. We did not distinguish between drugs that have very gen-
eral indications to manage symptoms and others that have not.

3.5 Comparison to gene embeddings based on other

information
We compared our gene embeddings to those obtained with gene2vec
(Du et al., 2019; based on coexpression) and Mashup (Cho et al.,
2016; based on protein–protein interactions). For the gene–function
prediction task (Section 3.1), we find that our approach outperforms
gene2vec, while performing at the same level as Mashup. We also
find that top-scoring gene sets computed with our approach are
mostly disjoint from those computed with Mashup. For a discussion,
see Supplementary data, Section 6.

4 Discussion

We have used signed cause–effect relationships curated from the bio-
medical literature to construct high-dimensional embeddings of
genes, biological functions and diseases. Gene embeddings are based
on literature-derived downstream expression signatures in contrast
to embeddings obtained with existing approaches that leverage ei-
ther coexpression, or protein binding networks. Function embed-
dings are constructed using gene embedding vectors with a linear
model trained on signed gene–function relationships.

Three separate methods were applied to construct gene embed-
dings, a ‘spectral’ approach based on a low-rank matrix approxima-
tion, a neural network-based approach to capture non-linear effects
and a graph-based method utilizing the node2vec algorithm. All
three methods performed similarly, reaching on average close to
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95% precision for top-scoring genes (90% precision for distinguish-
ing between activating and inhibiting effects) in cross-validation
experiments for the gene–function prediction task.

By analyzing various examples, we showed that function embed-
ding vectors capture hidden biological relationships as well as se-
mantic context similar to word embeddings. As an application, we
determined top-scoring genes and related functions for three dis-
eases, Alzheimer’s disease, pulmonary hypertension and psoriasis, to
build disease-specific networks. These networks show key genes
known to be involved in disease progression, and they capture
underlying cellular and physiological processes. We were able to
predict a number of disease genes that were not present in the

training data (i.e. connected to the disease in the QKB) but could be
validated through an independent literature search. It shall be noted
that a current constraint of our method is that only a fraction of
genes (�30%) can be covered, limited by content curation and avail-
able literature coverage.

In order to demonstrate the applicability of our approach to
other prediction tasks, we extended gene embeddings also to drug
molecules and used a simple MLP, trained on known drug–disease
associations from drug labels and clinical trials, to predict new
drug–disease associations. We find that drug embedding vectors,
obtained from literature-curated causal gene expression relation-
ships indeed capture information about drug effects on diseases.

Fig. 4. Psoriasis network. Bipartite graph connecting the 15 top-scoring genes and 20 top-scoring functions through edges with high absolute gene–function scores (jz-

scorej > 3). The network shows disease-underlying biological functions and known disease genes, as well as genes that are predicted to be implicated in psoriasis based on

QKB content. Each node (gene or function) carries a color-coded sign (positive: orange, negative: blue) depending on whether that gene or function is positively- or anti-corre-

lated with psoriasis. The edge style indicates whether gene–function relationships are supported by content of the QKB (solid), or purely inferred (dashed). Genes marked with

an asterisk (*) have known associations with psoriasis in the QKB
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Our work illustrates that prior knowledge from the biomedical
literature can be used collectively to generate new insights, going be-

yond the findings reported in individual research articles.
Applications of knowledge-driven embedding models are manifold.
As already implied by the disease networks discussed here, the ap-

proach can be used to create new hypotheses for biological mecha-
nisms, identify new potential gene targets for drug repurposing or

predict possible new disease indications in a given therapeutic
context.
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