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Abstract

Motivation: Phylogenetic placement is the task of placing a query sequence of unknown taxonomic origin into a
given phylogenetic tree of a set of reference sequences. A major field of application of such methods is, for example,
the taxonomic identification of reads in metabarcoding or metagenomic studies. Several approaches to phylogenet-
ic placement have been proposed in recent years. The most accurate of them requires a multiple sequence align-
ment of the references as input. However, calculating multiple alignments is not only time-consuming but also limits
the applicability of these approaches.

Results: Herein, we propose Alignment-free phylogenetic placement algorithm based on Spaced-word Matches
(App-SpaM), an efficient algorithm for the phylogenetic placement of short sequencing reads on a tree of a set of ref-
erence sequences. App-SpaM produces results of high quality that are on a par with the best available approaches
to phylogenetic placement, while our software is two orders of magnitude faster than these existing methods. Our
approach neither requires a multiple alignment of the reference sequences nor alignments of the queries to the
references. This enables App-SpaM to perform phylogenetic placement on a broad variety of datasets.

Availability and implementation: The source code of App-SpaM is freely available on Github at https://github.com/
matthiasblanke/App-SpaM together with detailed instructions for installation and settings. App-SpaM is furthermore
available as a Conda-package on the Bioconda channel.

Contact: matthias.blanke@biologie.uni-goettingen.de

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Phylogeny reconstruction is a fundamental field of research in bio-
informatics (Felsenstein, 2004). Here, the basic task is to reconstruct
a phylogenetic tree for a set of nucleic acid or protein sequences, rep-
resenting their evolutionary history. However, the de novo recon-
struction of phylogenetic trees is resource-intensive and requires a
well-curated set of biological sequences (Kapli et al., 2020). But if a
reliable phylogenetic tree is already known for a subset of the input
sequences, then it is possible to efficiently find the position of the
remaining sequences within this existing tree. This procedure is
called phylogenetic placement and a number of algorithms have
been proposed for this task during the last years (Barbera et al.,
2019; Brown and Truszkowski, 2013; Czech et al., 2019; Matsen
et al., 2012; Mirarab et al., 2012; Rabiee and Mirarab, 2020). By
now, phylogenetic placement is a common step in metabarcoding
studies for purposes such as taxonomic identification and micro-
biome analyses (Darling et al., 2014; DeSalle and Goldstein, 2019;

Mahé et al., 2017; Nguyen et al., 2014; Thompson et al., 2017).
This development is also facilitated by large curated databases for
marker genes such as 16S (DeSantis et al., 2006; Quast et al., 2013)
or ITS2 (Ankenbrand et al., 2015) that make reference sequences
readily available. It has also been argued that phylogenetic place-
ment is more accurate than taxonomic read assignment (Barbera
et al., 2019) and a variety of tools has been developed to analyse
and visualize resulting placements between different samples
(Barbera et al., 2021; Czech and Stamatakis, 2019; Czech et al.,
2020; Matsen and Evans, 2013). The phylogenetic placement has
also been used to update large phylogenetic trees (Balaban et al.,
2021) and for the tracking of virus variants (Singer et al., 2020;
Turakhia et al., 2021).

The first approaches to phylogenetic placement were pplacer
(Matsen et al., 2010) and EPA (Berger et al., 2011). Both programs
are based on probabilistic models of nucleotide substitutions. For a
set of reference sequences, they require a multiple alignment of these
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sequences—the reference MSA—together with the reference tree.
For a query read and a position in the tree, pplacer calculates the
likelihood for observing the read at this position. The program then
finds a position that maximizes this likelihood. It uses several heuris-
tics to rapidly calculate the likelihood values and has a runtime lin-
ear with respect to the number of reference taxa, number of queries
and sequence lengths. Similar to pplacer, EPA also calculates the
likelihood for each query read at each possible edge in the reference
tree. EPA-ng (Barbera et al., 2019) is a re-implementation of EPA
designed to parallelize the computations and comes with additional
improved placement heuristics. In addition to the reference align-
ment, all of the above approaches also require alignments of the
query reads against the reference MSA. This alignment is often per-
formed with hmmalign (Eddy, 1995; Finn et al., 2011).
Alternatively, phylogeny-aware alignment algorithms such as
PaPaRa (Berger and Stamatakis, 2011) or SEPP (Mirarab et al.,
2012) can be used.

In comparison to pplacer and EPA, the more recently developed
algorithm RAPPAS (Linard et al., 2019) does not align the read
sequences to the reference alignment. Instead, RAPPAS uses so-
called phylo-k-mers, which are calculated based on the reference tree
and reference MSA in a pre-processing step. For each column of the
reference alignment, for each edge e of the reference tree, and for
each possible k-mer w, the program calculates the probability to see
w at the corresponding position in a hypothetical sequence that
would branch off from the reference tree at edge e (note that w does
not need to be present in any of the reference sequences). If this prob-
ability is above a chosen threshold, the k-mer w is called a phylo-k-
mer. RAPPAS creates a database with all phylo-k-mers and their
associated probabilities to occur at a branch in the reference tree.
Once this database is constructed, new query reads can be rapidly
placed based on their k-mers that are also present in the database.

In contrast to the above methods, the recently proposed algo-
rithm APPLES (Balaban et al., 2020) is a distance-based approach.
The program chooses placement positions based on estimated phylo-
genetic distances between the reference sequences and the query
read sequences. Then, APPLES finds a placement position in the ref-
erence tree such that the distances between the query and the refer-
ence sequences in the resulting tree approach the estimated
phylogenetic distances. Here, a standard sum-of-squares criterion is
applied. The distances between query and reference sequences can
either be estimated from sequence alignments or by using an
alignment-free method; in the latter case, APPLES uses Skmer
(Sarmashghi et al., 2019).

In this paper, we present a new approach to phylogenetic place-
ment that we call Alignment-free phylogenetic placement algorithm
based on Spaced-word Matches (App-SpaM). Similar to APPLES,
App-SpaM also performs distance-based phylogenetic placement; it
neither needs a multiple alignment of the reference sequences nor
alignments of the query reads to the reference sequences. Thus, it
skips the time intensive alignment procedures that are needed for
most other software tools. Additionally, in contrast to existing
placement methods, App-SpaM can be applied to datasets where no
multiple sequence alignment of the references can be created.

App-SpaM is based on an approach that was originally imple-
mented in the program Filtered spaced-word Matches (FSWM;
Leimeister et al., 2017): For any two of the input DNA sequences,
FSWM estimates their Jukes–Cantor distances, i.e. the average num-
ber of nucleotide substitutions per position since the two sequences
have evolved from their last common ancestor. This estimate is
based on simple gap-free alignments of a fixed length, so-called
spaced-word matches, that are created with respect to a pre-defined
binary pattern of match and don’t care positions. This concept has
already been extended to calculate distances between an assembled
genome from one species and a set of unassembled reads from a se-
cond genome, or between sets of unassembled reads from two
genomes. This adaptation of FSWM is called Read-SpaM (Lau et al.,
2019).

App-SpaM is a fast implementation of the FSWM approach
designed to perform phylogenetic placement: given a set of reference
sequences, a reference tree for these sequences and a set of reads,

App-SpaM uses spaced-word matches to estimate pairwise phylo-
genetic distances between every query and every reference sequence.
It then uses one of several fast heuristics to perform phylogenetic
placement of the queries. The heuristics are either based on the cal-
culated query-reference distances or based on the number of identi-
fied spaced-word matches. We show that App-SpaM achieves a
placement accuracy that is comparable to alignment-based
approaches on a variety of datasets while it is faster than those exist-
ing methods.

2 Materials and methods

As input, our approach takes a set of N reference sequences, a
rooted and edge-weighted phylogenetic tree T—the reference tree—
with N leaves, where each leaf is labelled with one of the reference
sequences, and a set of query read sequences. Our algorithm can be
divided into three consecutive steps: (i) First, we find so-called
spaced-word matches between every query and every reference se-
quence; (ii) then, we estimate the phylogenetic distance between
every query and reference sequence based on a ‘filtered’ subset of
the identified spaced-word matches; (iii) at last, we determine a
placement position for each query sequence in the reference tree T.

2.1 Definitions
For a set R of characters called the alphabet, a sequence over R is an
ordered list of elements of R. For a sequence S, its length is denoted
by jSj, and for i 2 f1; . . . ; jSjg, the i-th element of S is denoted by
S½i�. The set of sequences of length n over R is denoted by Rn. In the
following, we are considering sequences over the set f0, 1g—so-
called patterns—over the nucleotide alphabet A ¼ fA;C;G;Tg, and
over the extended nucleotide alphabet A� ¼ A [ f�g. Here, ‘�’ is a
symbol not contained in A, a so-called wildcard character.

A spaced word is defined with respect to a given binary pattern
P 2 f0; 1g‘ of length ‘. A position j in the pattern is called a match
position if P½j� ¼ 1 and a don’t care position if P½j� ¼ 0. The number
of match positions in a pattern P is called the weight of P. A spaced
word W with respect to P is defined as a sequence of length jPj over
A�, with W½i� 2 A if and only if i is a match position of P. We say
that a spaced word W occurs in a sequence S over A at some position
i—or that (W, i) is a spaced-word occurrence in S—if S½iþ j� 1� ¼
W½j� for all match positions j of P.

For two sequences S1 and S2 and positions i1 and i2 in S1 and S2,
respectively, we say that there is a spaced-word match (SpaM) be-
tween S1 and S2 at ði1; i2), if S1½i1 þ j� 1� ¼ S2½i2 þ j� 1� for all
match positions j of P. In other words, there is a SpaM at (i1, i2), if
there is a spaced word W, such that ðW; i1Þ is a spaced-word occur-
rence in S1 and ðW; i2Þ is a spaced-word occurrence in S2. A spaced-
word match with respect to P can, thus, be seen as a local gap-free
alignment of length jPj with matching nucleotides at the match posi-
tions of P and possible mismatches at the don’t care positions, see
Figure 1 for an example. Furthermore, for a substitution matrix
assigning a score to any two symbols of the nucleotide alphabet A,
we define the score of a spaced-word match as the sum of all substi-
tution scores of nucleotide pairs aligned to each other at the don’t
care positions of P. Spaced-word matches—called spaced seeds in

Fig. 1. Toy example of a spaced-word match (SpaM) between two DNA sequences

S1 and S2 with respect to a binary pattern P¼1101001, representing match posi-

tions (‘1’) and don’t care positions (‘0’). The same spaced word AT*G**C occurs in

both sequences. A SpaM corresponds to a local gap-free pairwise alignment with

matching nucleotides at all match positions of P, while mismatches are allowed at

the don’t care positions. Note that, in practice, we are using much larger patterns

than in this example; by default, App-SpaM uses a single pattern with 12 match

positions and 32 don’t care positions.
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this context—have been originally introduced in sequence-database
searching (Li et al., 2003; Ma et al., 2002); later they were applied
in sequence classification (B�rinda et al., 2015) and alignment-free se-
quence comparison to estimate phylogenetic distances between
DNA and protein sequences (Leimeister et al., 2017, 2019;
Morgenstern et al., 2015; Röhling et al., 2020), see Morgenstern
(2020) for a review. The results of these methods depend on the
underlying binary pattern or set of patterns. It is well known that
finding optimal pattern sets is an NP hard problem (Li et al., 2006),
but efficient heuristics have been proposed for this task (Brejova
et al., 2004; Ilie et al., 2011; Kucherov et al., 2006).

2.2 Spaced-word matches between query and reference

sequences
In a first step, we determine a fixed set P of binary patterns with a
specified length and weight. For this, App-SpaM uses our previously
developed software rasbhari to calculate pattern sets (Hahn et al.,
2016). By default, App-SpaM uses a single pattern, thus jPj ¼ 1,
with a weight of w¼12 and 32 don’t care positions. Given a pattern
set P, first, we efficiently identify all spaced-word matches (SpaMs)
between the query reads and the reference sequences. More precise-
ly, for each pattern P 2 P, all spaced-word occurrences with respect
to P in the queries and references are stored in two lists L1 (referen-
ces) and L2 (queries) that are both sorted in lexicographic order. For
the sorting procedure, only the nucleotides at the match positions
are considered, the don’t care positions are ignored. For every
spaced-word occurrence (W, i), we also store all nucleotides of the
don’t care positions. Thus, for each possible spaced word W, all
occurrences of W in the read and reference sequences appear as con-
secutive blocks in the lists L1 and L2, respectively.

Once the sorted lists L1 and L2 have been established, they can
be traversed simultaneously, such that for each spaced word W, the
blocks with the occurrences of W in L1 and L2 are processed at the
same time. Each pair of occurrences ðW; i1Þ in L1 and ðW; i2Þ in L2

corresponds to a spaced-word match at (i1, i2) between a reference
sequence and a query read. For each such spaced-word match, we
calculate its score and we discard all SpaMs with a score smaller or
equal to a pre-set threshold t. The SpaMs with a score below t are
considered to be background or random spaced-word matches. All
remaining, high-scoring, SpaMs are referred to as filtered spaced-
word matches. These filtered spaced-word matches are regarded as
putative homologous matches. As in FSWM, we use the HOXD70
nucleotide substitution matrix (Chiaromonte et al., 2002) and a de-
fault threshold value of t¼0.

The above ‘filtering’ step is necessary since, in general, many of
the spaced-word matches detected by our program will be random
matches. In fact, for long input sequences with a low degree of simi-
larity, the majority of the SpaMs will be background matches. Our
inferred distance estimates are only unbiased if all background
matches can be filtered out while all homologous matches remain.
For dissimilar sequences, this assumption might not always hold and
distances can be slightly biased depending on the threshold t; exam-
ples are given in our previous paper (Leimeister et al., 2017). In this
previous paper, however, we could also demonstrate that, with the
filtering procedure, homologous and background SpaMs can be eas-
ily distinguished in most cases. The threshold t¼0 that we are using
by default works well for this purpose, but the value of t can be
adapted by the user, if desired. There is a difference, however, be-
tween App-SpaM and the original program FSWM, in the way the
filtered SpaMs are selected. In FSWM, each spaced-word occurrence
ðW; i1Þ in sequence S1 can be involved in at most one of the filtered
spaced-word matches. In contrast, a spaced-word occurrence in a
read sequence can be matched with multiple spaced-word occur-
rences in the reference sequences—and vice versa—in App-SpaM, as
long as the corresponding scores are larger than t.

For each query read Q and each reference sequence S, we store
the number s(Q, S) of SpaMs between Q and S with score larger
than t. Additionally, we calculate the proportion of mismatches at
the don’t care positions of all filtered SpaMs between Q and S, and
we estimate the phylogenetic distance d(Q, S) between Q and S

using the well-known Jukes–Cantor formula (Jukes and Cantor,
1969).

In practice, we compute the list L1 of spaced-word occurrences
from the reference sequences once and hold it in main memory. The
query sequences are processed in batches to limit the memory con-
sumption. Thus, the list L2 of spaced-word occurrences in the query
sequences is calculated and processed for each batch separately.
This also allows straightforward parallelization for multi-core sys-
tems: multiple batches of query reads can be processed simultan-
eously across multiple cores for datasets with many query
sequences.

2.3 Choosing a position for a read in the reference tree
In the following, we propose five heuristics to find a suitable pos-
ition in our reference tree T, where a query read sequence Q is added
to T. For an edge e in an edge-weighted tree, let l(e) denote the
length (‘weight’) of e. For each query Q, we first select an edge eQ in
T and insert a new internal node into this edge, thereby splitting eQ

into two new edges e1 and e2 with lðe1Þ þ lðe2Þ ¼ lðeQÞ. Then, we
add a new leaf that is labelled with Q, together with a new edge e0Q
that connects this new leaf with the newly generated internal node.
Finally, a length lðe0QÞ is assigned to the newly generated edge e0Q.

To find a suitable edge eQ for a query sequence Q and to assign
lengths to the newly generated edges, we are using either the phylo-
genetic distances d(Q, S) or the number of spaced-word matches
s(Q, S) with scores larger than t between Q and all reference sequen-
ces S. A detailed description how we determine the edge lengths for
e1, e2, and the newly inserted edge e0Q are given in the
Supplementary Section S1.1. In case we find no spaced-word
matches for a query read to any reference sequence, the query place-
ment is recorded at the root of T.

2.3.1 MIN-DIST

In this approach, we first select the reference sequence S that mini-
mizes the distance d(Q, S) over all reference sequences, and we de-
fine eQ to be the edge in T that is adjacent to the leaf labelled with S.
If multiple references have the same smallest distance to Q, one of
them is chosen randomly.

2.3.2 SpaM-COUNT

This works like the previous approach, but instead of selecting the
reference sequence S that minimizes the distance to Q, we select the
reference S that maximizes the number s(Q, S) of spaced-word
matches with score > t between S and Q.

2.3.3 LCA-DIST

Here, we identify the two reference sequences S1 and S2 with the
lowest distances dðQ; S1Þ and dðQ; S2Þ to Q. Let v be the lowest
common ancestor in T of the two leaves that are labelled with S1

and S2, respectively. The edge eQ is then defined as the edge in T
that connects v with its parental node.

2.3.4 LCA-COUNT

This is similar to the previous approach, but instead of using refer-
ence sequences S1 and S2 minimizing the distance with Q, we select
the two references S1 and S2 with the maximal number sðQ; S1Þ and
sðQ; S2Þ of spaced-word matches to Q with scores larger than t.

2.3.5 SpaM-X

The first four approaches will yield either only placement locations
at branches directly above the leaves, or only placement locations at
inner branches, respectively. Thus, in this approach, we combine the
SpaM-COUNT and LCA-COUNT approaches: For S1 and S2 as in
LCA-COUNT and a given X, we evaluate whether

jsðQ; S1Þ � sðQ; S2Þj >
sðQ; S1Þ þ sðQ; S2Þ

X

is true. If so, the query is placed according to SpaM-COUNT,
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otherwise, the query is placed according to LCA-COUNT. As a re-
sult, when dðQ; S1Þ is substantially larger than dðQ; S2Þ, then Q is
placed at the branch directly above S1. App-SpaM uses SpaM-X on
default with X¼4 (referred to as SpaM-4 in the following).

SpaMþAPPLES: As a sixth approach, in addition to five ver-
sions of App-SpaM, we used the distance values d(Q, S) as input for
the program APPLES (Balaban et al., 2020). APPLES performs a
least-squares optimization to find the position in the tree that fits the
calculated distances best. For a reference tree T, a query sequence Q
and input distances between Q and all reference sequences, it finds a
position for Q in T, such that the sum of the squared differences be-
tween the input distances and the distances in the resulting tree is
minimized.

2.4 Evaluation procedure
We primarily used the recently developed Placement Evaluation
WOrkflows (PEWO) (Linard et al., 2021) to evaluate the placement
accuracy and runtime of App-SpaM. For a given reference dataset,
consisting of a set of reference sequences, a reference MSA of these
sequences, and a reference tree in which the leaves are labelled with
the reference sequences, the pruning-based accuracy evaluation
(PAC) implemented in PEWO determines the placement accuracy of
an evaluated method as follows: First, a randomly chosen subtree is
removed (‘pruned’) from the reference tree. All sequences at the
leaves of the chosen subtree are removed from the reference MSA as
well. Next, artificial reads are generated by splitting the removed
sequences into segments of a given length; these reads are used as
query sequences. An algorithm under evaluation is then used to
place the queries onto the pruned reference tree.

To measure the placement accuracy of a method, PEWO uses
the so-called node distance (ND): For each query sequence Q, the
distance between the proposed placement position of Q and
the edge where the subtree was pruned is measured by counting the
number of nodes on the corresponding path. The average of these
distances over all query sequences is then a measure of accuracy for
one pruning event. This procedure is repeated with randomly
pruned subtrees and PEWO uses the average accuracy over all prun-
ing events as the overall accuracy of the evaluated method. PEWO
also provides a resources evaluation (RES) workflow to measure the
runtime and memory usage of programs. This includes the align-
ment of queries against the MSA of references for those methods
that are based on sequence alignments and the construction of the
phylo-k-mer database in RAPPAS.

We used the PEWO PAC workflow to evaluate the placement
accuracy of the five versions of App-SpaM that we outlined above.
In addition, we evaluated the combination of SpaM and APPLES.
Both programs were run with default parameter values. We also ran
our program with non-default parameter values for the pattern
weight w and the number of patterns by varying w 2 f8; 12;16g and
using between 1 and 5 different patterns per pattern set.

We compared the accuracy of App-SpaM to all programs that
are currently supported by PEWO with the PAC workflow. At pre-
sent, the programs pplacer, EPA, EPA-ng, RAPPAS and APPLES
are included in the PEWO package. The datasets used for this evalu-
ation vary with respect to the number and length of the reference
sequences, with respect to the degree of similarity between the refer-
ence sequences, and with respect to the sequence locus. A short over-
view of the reference datasets is given in Table 1; a more detailed
overview can be found in the Supplementary Section S1.3. In this
analysis, in addition to the default parameters, we included a variety
of parameter combinations for all placement programs. For
APPLES, we used the updated version 2.0.1 that automatically re-
estimates the branch lengths of the reference tree appropriately to
match the evolutionary model of query-reference distances. For each
reference dataset, we performed 100 pruning runs with randomly
sampled subtrees and recorded the average ND. As default, we used
a length of 150 base pairs (bp) for the simulated query reads. We
also performed additional test runs with longer read lengths for
three datasets (hiv-104, neotrop-512 and tara-3748).

To measure the runtime and memory requirements of the eval-
uated methods, we used PEWO’s RES workflow on two datasets of

differing sizes (CPU-652 and CPU-512). We recorded the average
runtime and memory usage over five repeats for each program. For
CPU-652, we placed 100 000 query sequences, and for CPU-512,
we placed 10 000 query sequences on the reference tree. In addition
to these evaluations, we performed an additional runtime test with
App-SpaM on the tara-3748 dataset, similarly to the runtime study
conducted in EPA-ng: We recorded the runtime of App-SpaM to
place up to 37 480 000 query reads with parallel execution on 30
cores. All of these tests were carried out on Intel(R) Xeon(R) E7-
4850 CPUs with 2 GHz.

Lastly, we also performed test runs using simulated sets of unas-
sembled sequencing reads as references, instead of contiguous refer-
ence sequences. In these experiments, we used the hiv-104 dataset
that consists of complete HIV genomes, and wol-43, a dataset of
complete microbial genomes of 43 different Wolbachia strains.
Because PEWO does not support unassembled reference sequences,
we used a simple leave-one-out procedure to assess the accuracy of
App-SpaM in this scenario. For this, we simulated reads with a
length of 150 bp and values for the sequencing coverage of 4, 2, 1,
0.5, 0.25, 0.125, 0.0625 and 0.03125 for all sequences. These ‘bags
of reads’ constitute the reference sequences for the evaluation. Then,
for a given coverage, a leaf is pruned from the reference tree, its cor-
responding reads are used as the query sequences, and the average
ND across all reads is measured. This is repeated one by one for all
references, and subsequently for all coverages. To assess the accur-
acy of App-SpaM in these tests, we used three control methods:
First, we compared the placement accuracy to the accuracy achieved
on contiguous (‘assembled’) reference sequences; this shows the de-
cline in accuracy depending on the sequencing coverage. Second, we
compared the achieved results to the accuracy when placing all
query reads at the root of the tree; and third, when placing all query
reads at the midpoint of the tree.

3 Results

Figure 2 shows the accuracy of the five different versions of App-
SpaM described above, together with the combination of
SpaMþAPPLES, on the bac-150 dataset and a query read length of
150 bp. On average, SpaM-4 performed best among the five meth-
ods while MIN-DIST was the least accurate. These results are con-
sistent across different values of w and across different datasets (see
Supplementary Section S2.1). In general, w has little influence on
the placement accuracy of App-SpaM and there is no value of w that
performs best in all situations. The second best of the five placement

Table 1. Datasets used for evaluation

Name Locus Mean length (bp) Query length (bp)

bac-150 16S 1256 150

hiv-104 Viral genomes 9096 150; 500

neotrop-512 16S 1766 150; 300

tara-3748 16S 1406 150; 300

bv-797 16S 1341 150

epa-218 16S 1483 150

epa-628 5.8S 780 150

epa-714 16S 1169 150

wol-43 Microbial genomes 52 768 066 150

CPU-652 16S 1315 150

CPU-512 16S 1766 150

Notes: Overview of datasets used in the evaluation. The columns show the

dataset names used in this manuscript, the locus from which the sequences in the

datasets originate from, the mean sequence length of the references and the simu-

lated read lengths used during evaluation. The name of each dataset includes the

number of reference sequences. The first nine datasets are used in the PAC work-

flow, the last two in the RES workflow.
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methods was LCA-COUNT followed by SpaMþAPPLES, while
LCA-DIST, MIN-DIST and SpaM-COUNT perform not as well.

Figure 3 shows the ND for App-SpaM and five other placement
methods on eight different datasets, again for a query read length of
150 bp. For each program, the placement accuracy for their default
parameter settings is shown. App-SpaM is the most accurate pro-
gram on the tara-3748 and epa-628 datasets, while EPA-ng per-
forms best on the hiv-104 and neotrop-512 datasets; on the
remaining four datasets, RAPPAS achieves the lowest average ND
value among all evaluated programs. The exact statistics as well as
results for other parameter settings for all programs are given in the
Supplementary Material.

Figure 4 shows the performance of the evaluated methods for
different query read lengths. Additionally, to read lengths of 150 bp,
here, we used the dataset hiv-104 with query read lengths of 500,
and the datasets neotrop-512 and tara-3748 with query read lengths
of 300. As expected, all programs are more accurate when longer
query reads are used. The ND improves on average by 29% for hiv-
104, by 27% for neotrop-512 and by 24% for tara-3748 across all
methods, compared to a read length of 150 bp. In general, likeli-
hood-based programs and RAPPAS benefit more from longer reads
than App-SpaM and APPLES. For likelihood-based programs and
RAPPAS, the ND drops on average by 30% across the three datasets
when using longer query reads. In contrast, App-SpaM has a 25%
lower ND and APPLES 12% lower ND on average across the three
datasets when using longer queries.

The accuracy of App-SpaM on unassembled reference sequences
is shown in Figure 5 for different values of the sequencing coverage
and for different values of the pattern weight w. For a coverage of 1,
the ND for App-SpaM with w¼12 increases—in comparison to
assembled references—by 30% on hiv-104 and by 31% on wol-43,
respectively. The accuracy decreases for lower and increases for
higher coverages of the reference sequences: With a coverage of 4,
the ND is only 14% larger for hiv-104 and 15% larger for wol-43 in
comparison to assembled references. On the hiv-104 dataset and a
coverage of 0.0625, App-SpaM’s inferred positions are only as good
as the control method that always places a query read at the mid-
point of the tree. However, with this low coverage of the viral
genomes, every reference genome is, on average, only represented by
3.8 reads with a length of 150 bp. For the same reason, no results
could be produced for a coverage of 0.03125 for hiv-104.

Runtime results for CPU-652 and CPU-512 are shown in
Table 2. We report the runtimes for all pre-processing steps, the
placement itself, as well as the total runtime (pre-processing plus
placement). For some programs, the runtimes vary greatly depend-
ing on the chosen parameters. For RAPPAS, the pre-processing
step—the assembly of the phylo-k-mer database—is relatively time-
consuming. This database, however, needs to be assembled only
once for a set of reference sequences. This is a considerable advan-
tage of RAPPAS if multiple sets of query reads are placed on the
same set of reference sequences. On these two datasets, App-SpaM

performs 30–60 times faster than the next fastest program (EPA-ng)
and 3–5 times faster than the placement step of RAPPAS. On CPU-
652, App-SpaM has the lowest memory footprint and on CPU-512
the second lowest behind APPLES (see Supplementary Section
S3.4). In the large runtime example on the tara-3748 dataset, App-
SpaM placed a total of 37 480 000 queries in 613 min with parallel
execution on 30 threads. When the pattern weight is increased to
w¼16 the runtime drops to 475 min.

4 Discussion

In this paper, we proposed a new method for phylogenetic place-
ment called App-SpaM. To estimate phylogenetic distances, App-
SpaM uses inexact word matches, so-called SpaMs, that are based
on a binary pattern of match and don’t care positions (Leimeister
et al., 2017). As previously shown, such spaced-word matches can
be used to accurately estimate phylogenetic distances based on the
number of mismatches per position at the don’t care positions. In
the present paper, we applied this approach to the problem of phylo-
genetic placement, by estimating distances between query and refer-
ence sequences.

We are using sets of filtered SpaMs as a substitute for full pair-
wise sequence alignments of the input sequences. A SpaM can be
seen as a pairwise local alignment of a given length that, by defin-
ition, does not include gaps. Thus, strictly spoken, this approach can
only deal with un-gapped homologies; insertions and deletions
(indels) can introduce a certain bias in our approach: If a local hom-
ology contains an indel, it is possible that an SpaM correctly aligns
homologous sequence positions to each other on one side of the
indel, but then aligns non-homologous positions on the other side.
Since the score of such an SpaM may still be above the filtering
threshold, such ‘partial homologies’ can pass our filtering procedure
and would then be used to estimate the phylogenetic distance be-
tween the two sequences. As a result, the average number of substi-
tutions per position—i.e. the Jukes–Cantor distance of the
sequences—would be over-estimated. We investigated the influence
of indels on the accuracy of the estimated distances based on simu-
lated sequence data (Leimeister et al., 2017). The result was that,
even in the presence of indels, our approach still provides fairly ac-
curate distance estimates.

Our extensive evaluation shows that App-SpaM’s accuracy is
close to the accuracy of the best-performing likelihood-based meth-
ods on most benchmark datasets that we used, see Figure 3. One ex-
ception is a set of complete viral genomes (hiv-104), where App-
SpaM performed not as accurate as the competing programs that we
evaluated. In contrast, App-SpaM achieved the best placement ac-
curacy out of all programs that we tested on two other datasets: a
large set of 16S sequences (tara-3748) and a set of fungal 5.8S
sequences (epa-628). The runtime of App-SpaM on these datasets
was considerably faster than for the alternative methods.

We also presented five different placement heuristics for App-
SpaM in this paper. Two of them performed best across all datasets,
namely LCA-Count and SpaM-4. There are situations, however,
where SpaM-4 is superior to LCA-Count. If a leaf labelled with
some reference sequence Si is far away from the other leaves in the
reference tree, but the distance between a query read q and Si is
small, then LCA-based methods would place q at the proximal
branch of the node connecting Si and its neighbour in the tree. The
query would, thus, be placed far away from Si. In contrast, our heur-
istic SpaM-4 would be able to correctly place q near the leaf labelled
with Si. Therefore, SpaM-4 is the default version of our program; we
advise the user to always use App-SpaM with the default settings.

In comparison to existing programs, besides APPLES, App-
SpaM does not rely on a multiple sequence alignment of the refer-
ence sequences. This gives App-SpaM distinct advantages over exist-
ing, alignment-based programs: Calculating a reference MSA in a
pre-processing step is time-consuming, and errors in the reference
alignment can be a source of errors in the placement results.
Moreover, if the homologies between the reference sequences are
not co-linear, due to evolutionary events such as genome rearrange-
ments, it is not possible to find a meaningful multiple alignment for

Fig. 2. Average ND over n¼100 pruning experiments on the bac-150 dataset. ND

was measured with PEWO for the five different versions of App-SpaM and the com-

bination of SpaM and APPLES. A single pattern with weight w¼ 12 and 32 don’t

care positions is used for all heuristics. Every box plot shows the overall distribution

over all 100 pruning experiments (black dots).
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Fig. 3. Average ND over n¼100 pruning experiments on all eight datasets (grey patches) for all six programs (coloured box plots). The y-axes show the ND, the x-axes are

divided into six categories that correspond to the six programs. Every box plot shows the overall distribution over all 100 pruning experiments (black dots). The program that

performs best on average is highlighted (red star).
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them in the first place. This advantage of App-SpaM also implies
that it does not require assembled reference sequences as input, but
can be applied to taxa for which only unassembled reads are avail-
able. Genome assembly is still a non-trivial task (Padovani de Souza
et al., 2019; Sohn and Nam, 2018), and wrongly assembled refer-
ence sequences can be a source of errors in phylogenetic placement.
Also, for a growing number of genomes, only unassembled reads are
available, often with low sequencing depth (Coissac et al., 2016;
Dodsworth, 2015). For this, as a proof of concept, we performed
phylogenetic placement on two datasets of viral and bacterial
genomes of varying coverage, respectively. Here, the placement ac-
curacy predominantly depends on the coverage of the reference
sequences. In general, with unassembled references, the placement is
not as accurate as when using assembled references but it
approaches similar accuracy if the sequencing coverage is sufficient-
ly high. However, the placement on unassembled references also
comes at the cost of an increased variance of the placement accur-
acy: Here, accurate placement is only possible for those query reads
where the corresponding homologous regions are also present in the
‘bags of reads’ of the references.

In this context, another certain difficulty for our SpaM approach
can be caused by low-complexity regions in the input sequences, e.g.
by long runs of ‘ATATATATAT’. If such runs would be present in
both compared sequences, a large number of SpaMs with 100%
matches at the don’t care positions would be found. For the viral
and bacterial sequences used in this paper, low-complexity regions
are not an issue. However, we would recommend to filter out low-
complexity regions prior to running our software on eukaryotic
sequences by using a software such as RepeatMasker (Smit and
Green, 2015).

Another drawback of App-SpaM, as well as APPLES, compared
to other programs, is their inability to describe the uncertainty of
inferred placement locations. While App-SpaM only reports a single
placement location for every query sequence, other programs can
specify multiple placement locations for a single query read and as-
sign weights to these locations according to their likelihood, so-
called likelihood-weight ratios.

We used the benchmarking system PEWO for our evaluations
to ensure clearly defined and reproducible evaluation workflows.
A certain draw-back of PEWO is the fact that it simulates query
reads by simply splitting the pruned reference sequences into seg-
ments of the desired read length; sequencing errors are not mod-
elled. To evaluate our method under more realistic conditions, we
performed additional test runs with simulated query reads
obtained with the simulation software ART (Huang et al., 2012),
within the PEWO framework. Unlike PEWO, ART models
sequencing errors. A conspicuous result of these test runs is that
our method outperformed all other approaches substantially when
we used reads simulated by the ART software (see Supplementary
Section S4).

Fig. 4. Average ND (n¼ 100) for different placement programs, for different read

lengths on three datasets. For hiv-104 read lengths of 150 and 500 bp, and for neo-

trop-512 and tara-3748 results for read lengths of 150 and 300 bp were used. SDs

across prunings are shown (black lines).

Fig. 5. Average ND on unassembled reference sequences with different sequencing

coverage on the wol-43 (n¼43) and hiv-104 (n¼ 104) datasets for App-SpaM with

default parameters. Results for read lengths of 150 bp and a pattern weight of 8 and

12 are shown (orange and red) with SDs. Three control methods serve as reference

for the performance of App-SpaM: The placement accuracy with assembled referen-

ces (long dashed blue), always placing a query at the midpoint of the tree (dashed-

dotted blue) and always placing a query at the root (dotted blue).

Table 2. Runtime comparison of programs

App-SpaM RAPPAS APPLES EPA-ng EPA pplacer

w¼ 12 w¼ 16 k¼ 6 k¼ 8

CPU-652

Pre-proc. — — 651 7253 3437 3437 3437 3437

Placement 152 79 710 454 2804 1315 194338 9257

Total 152 79 1361 7707 6241 4752 197775 12694

CPU-512

Pre-proc. — — 1070 12144 1879 1879 1879 1879

Placement 34 22 254 185 348 127 6626 1976

Total 34 22 1324 12329 2227 2006 8505 3855

Notes: Comparison of runtimes for all tested programs on two datasets. 10 000 queries were placed for CPU-512 and 100 000 queries for CPU-652. All run-

times are shown in seconds. For each dataset, we show the time for pre-processing (pre-proc.), placement and the total sum of pre-processing and placement with

default parameters. Pre-processing includes generating the query alignment or building the phylo-k-mer database for RAPPAS.
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There are several possibilities to further improve App-SpaM. The
placement heuristics that we implemented so far depend either on
the number of spaced-word matches or on the estimated phylogenet-
ic distances between a query read and the references. However, both
sources of information may complement one another, so improved
placement results might be obtained by combining both measures of
distance and similarity, respectively. Such a placement method could
also be used to express placement uncertainty similar to the
likelihood-weight ratios used by ML-based methods. Hence, we are
continuing to work on additional placement heuristics that use all
available information to fully utilize the spaced-word matches ap-
proach for phylogenetic placement. Moreover, while the runtime of
App-SpaM is already fast, the current implementation is not yet
optimized for speed and memory efficiency and multiple strategies
to further decrease the runtime are possible: All spaced words are
held in main memory in a non-optimized data format instead of
referencing the corresponding positions in the input sequences. This
significantly increases the runtime and memory usage and can be
improved by more efficient data handling. Given the test results
shown in this study, App-SpaM should already be a useful tool for
performing phylogenetic placement on large datasets and efforts
should be made to further improve its accuracy and efficiency.
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