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Abstract

Motivation: Creating or extending computational models of complex systems, such as intra- and intercellular bio-
logical networks, is a time and labor-intensive task, often limited by the knowledge and experience of modelers.
Automating this process would enable rapid, consistent, comprehensive and robust analysis and understanding of
complex systems.

Results: In this work, we present CLARINET (CLARIfying NETworks), a novel methodology and a tool for automatic-
ally expanding models using the information extracted from the literature by machine reading. CLARINET creates
collaboration graphs from the extracted events and uses several novel metrics for evaluating these events individu-
ally, in pairs, and in groups. These metrics are based on the frequency of occurrence and co-occurrence of events in
literature, and their connectivity to the baseline model. We tested how well CLARINET can reproduce manually built
and curated models, when provided with varying amount of information in the baseline model and in the machine
reading output. Our results show that CLARINET can recover all relevant interactions that are present in the reading
output and it automatically reconstructs manually built models with average recall of 80% and average precision of
70%. CLARINET is highly scalable, its average runtime is at the order of ten seconds when processing several thou-
sand interactions, outperforming other similar methods.

Availability and implementation: The data underlying this article are available in Bitbucket at https://bitbucket.org/
biodesignlab/clarinet/src/master/

Contact: yaa38@pitt.edu or nmzivanov@pitt.edu

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Computational modeling has an important role in the process of
explaining complex systems. It allows for capturing their dynamics,
it helps identify gaps in our understanding and thus, often leads to
new questions and the search for missing information (Epstein,
2008). In biology, model creation is often highly dependent on
human input, it requires reading hundreds of papers to extract use-
ful information, incorporating background and common-sense
knowledge of domain experts and conducting wet lab experiments
(Fisher and Henzinger, 2007). Moreover, the amount of biological
data is constantly growing, further augmenting the issues of data in-
consistency and fragmentation. Therefore, automating the process
of creation and extension of models is critical for consistent, com-
prehensive and reproducible studies of biological systems.

Mechanistic models have been used to explain how biomolecular
signaling pathways regulate cell functions. Usually, modelers start
with a few seed components and their interactions to build a

baseline model, which summarizes the modeler’s knowledge about
the system. Depending on the questions to be answered by the
model, the baseline model is often further extended with the infor-
mation extracted from literature or obtained from the domain
experts (Miskov-Zivanov, 2015). Several machine reading engines
have been developed recently focusing on biomedical literature and
extracting hundreds of thousands of events from thousands of
papers within hours (Valenzuela-Escárcega et al., 2017). In order to
add this information to existing models, or to build new models
from it, one needs methods and tools for systematic selection of the
most useful information from this large machine reading output.

The biomolecular signaling pathway models can be assembled
using the INDRA tool (Gyori et al., 2017), which relies on collecting
and scoring new information extracted either from literature by nat-
ural language processing algorithms or from pathway databases. To
select the most valuable information, each statement is evaluated,
and its overall belief score is computed as the joint probability of
correctness implied by the evidence. On the other hand, another
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tool, FLUTE (Holtzapple et al., 2020), has been recently proposed
to further filter the extracted interactions using public databases in
order to eliminate incorrect or nonrelevant information extracted by
machine readers. FLUTE also allows users to select confidence
thresholds for interactions. While INDRA and FLUTE are powerful
automated tools that can be used to extract and filter useful infor-
mation from literature, they do not automatically extend existing
models with new information.

In Liang et al. (2017), the authors proposed a method that starts
with a baseline model and systematically selects interactions that
were automatically extracted from published papers. The goal of
Liang et al. (2017) was to build a model that satisfies desired system
properties or to identify new therapeutic targets. As results in Liang
et al. (2017) demonstrate, automatic model extension is a promising
approach for accelerating modeling, and consequently, disease treat-
ment design. The authors in Liang et al. (2017) organize the infor-
mation extracted from literature into layers, based on their
proximity to the baseline model. Another extension method that
uses genetic algorithm has been proposed recently in Sayed et al.
(2018a). The genetic algorithm-based approach was able to select a
set of extensions that led to the desired behavior of the final
expanded model. The disadvantages of the genetic algorithm-based
approach include nondeterminism, as the solution may vary across
multiple algorithm executions on the same inputs, and a significant
increase in runtime with an increase in the size of the model and in
the amount of new extracted information.

In this work, we propose a novel method and a tool, CLARINET
(CLARIfying NETworks) that automatically and efficiently extends
existing models, by selecting the most relevant and useful informa-
tion. When compared with the work in Liang et al. (2017),
CLARINET is more practical as it provides connected set of exten-
sion events that are at the same time connected to the baseline
model. In contrast to the genetic algorithm-based method (Sayed
et al., 2018a), CLARINET is more efficient and provides determinis-
tic solutions. Therefore, the main contributions of the work pre-
sented here include:

1. An automated, fast methodology and a tool that utilizes the

knowledge published in the literature and suggests model

extensions.

2. A novel approach to study events extracted from literature as a

collaboration graph, including several metrics that rely on the

event occurrence and co-occurrence frequency in literature.

3. A parametrizable tool that allows users to explore different se-

lection criteria, when automatically identifying the best

extensions for their models.

2 Clarinet inputs

CLARINET has two inputs, a machine reading output of selected lit-
erature, and a baseline model that will be extended with the infor-
mation from the reader output. In this section, we provide a brief
description of the kind of information that is extracted from litera-
ture and the type of baseline models that CLARINET can extend.

2.1 Information extraction from literature
The biomedical literature reading engines (Burns et al., 2016;
Valenzuela-Escárcega et al., 2017) are capable of extracting hun-
dreds of thousands of cell signaling events from thousands of papers,
in a few hours. As part of these events, the reading engines identify
entities, i.e. the participants of biochemical reactions, usually pro-
teins, chemicals, genes or even biological processes. For each
extracted entity, reading engines provide its name, the unique stand-
ard identifier (ID) found in public databases [e.g. UniProt (Bateman
et al., 2017), GO (Ashburner et al., 2000), and HMDB (Wishart
et al., 2018)] and the entity type. The extracted events usually repre-
sent interactions between the entities, that is, various intracellular
events, such as mechanisms of post-translational modification (e.g.
binding, phosphorylation, ubiquitination, etc.), transcription,

translation, translocation, as well as qualitative events of increasing
or decreasing amount or activity. Besides the entity and event infor-
mation, machine reading also provides the event evidence, the pub-
lished paper and the sentence from which the event was extracted.

In Figure 1a, we show, using a tabular format, the main compo-
nents of five entities in a typical machine reading output
(Valenzuela-Escárcega et al., 2017) obtained from two sentences
(listed under Evidence). Each row of the machine reading output
represents one extracted event, a directed signed interaction between
regulator entity and regulated entity. It is worth noting that even the
state-of-the-art machine reading engines still output some number of
erroneous events, or events that are missing entities, or events that
include interactions not useful for modeling, and therefore, event fil-
tering methods often need to be applied (Holtzapple et al., 2020).
Furthermore, not all extracted events can be used as model exten-
sions, as some are just corroborating or even contradicting models.
Since filtering and classifying machine reading output is beyond the
scope of the work presented here, in the rest of this paper, we will
assume that the extracted events have already been filtered and clas-
sified, and we will use only the potential model extensions, the event
set that we will refer to as Extracted Event Set (EES). As the same
event can be extracted from many different papers, we define N as a
total number of events in EES, and M as a number of distinct events
in EES (N�M).

2.2 Dynamic and causal network models
The underlying static structure of a dynamic or a causal network
model of intracellular signaling can be described as a directed graph
G(V, E), with a set of nodes V and a set of edges E (Za~nudo et al.,
2018). Each node v 2 V corresponds to one model element, and
each edge e(vi, vj) 2 E represents a directed interaction in which
node vi, is a regulating element, and node vj is a regulated element.
Here, we will refer to the set of positive and negative regulators of
an element (activators and inhibitors, respectively) as its influence
set. Besides their network structure, dynamic models also contain
update functions that are used to change states of model elements,
and thus, enable simulation of model element behavior in time
(Albert et al., 2008; Sayed et al., 2018b).

To represent all the details of a model, including its network
structure and the update functions, we use the BioRECIPES tabular
element-based format proposed in Sayed et al. (2018c), as it is able
to capture all the relevant information for dynamic and causal mod-
eling. An example of a model element (FOXP3) and its influence set
represented using the BioRECIPES format is shown in Figure 1b.
The BioRECIPES format includes a number of element and influence
set attributes, such as name, type (protein, gene or a chemical), iden-
tifier from a database [e.g. UniProt (Bateman et al., 2017)], variable
that represents the element state, all regulators in the influence set
(including the notation used for update functions, as seen in

Fig. 1. CLARINET inputs: (a) example of five events extracted by reading engines,

represented in a tabular form; (b) model element FOXP3, and its influence set (posi-

tive and negative regulators), represented in a tabular BioRECIPES format, where ‘!’

is a logical NOT, ‘()’ are used for logical AND and ‘,’ is a logical OR [the influence

set notation is described in Sayed et al. (2018c)] (c) graphical representation of

FOXP3 and its influence set
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Figure 1(b)), and evidence statements with the text from which the
event was obtained (if any).

We note here that both ‘entities’ in machine reading output
described in Section 2.1, and ‘elements’ in the models that we study
correspond to components of biological systems, and that both the
literature extracted ‘events’ and the ‘interactions’ between model
elements correspond to biological interactions (e.g. biochemical
reactions). In the rest of this paper, we will represent events/interac-
tions using graphs and refer to them as ‘edges’ (when discussing
graphs) or ‘events’ (when discussing models or EES). For example,
the events extracted from the sentences in Figure 1a and combined
into an influence set of FOXP3 in Figure 1b, are shown as a graph in
Figure 1c. We note here that these directed graphs are different from
the undirected event collaboration graphs that will be discussed in
detail in Section 3.1.

3 Clarinet methodology

In this section, we describe the main steps and components of the
CLARINET methodology, which are also outlined in Figure 2.

3.1 Event collaboration graph creation and individual

assessment
Following the notion of collaboration graphs that are often used
to model social networks (Grossman and Ion, 1995), we intro-
duce the event collaboration graph (ECLG). In social networks,
nodes represent participants and edges connect pairs of nodes
that have collaborative relationships. Similarly, we define an
ECLG as a weighted undirected graph G (V, E, Wv, We), where V
is a set of graph nodes, each representing a distinct event
extracted from literature, E is a set of graph edges, each edge indi-
cating a co-occurrence in the same paper of the two events corre-
sponding to its adjacent nodes. Wv and We are sets of node and
edge weights, respectively.

We will refer to the ECLG created from the EES as an original
ECLG. We compute the weights Wv and We based on the frequency
of the event occurrence and co-occurrence in the EES using several
metrics proposed in this and the following subsection.

3.1.1 Individual assessment (IA)

As a measure of the frequency of occurrence, within EES, of each
distinct event that belongs to ECLG, we propose a frequency class
(FC) metric. This metric is similar to the frequency class metric in
computational linguistic (also called Häufigkeitsklasse), which
measures word frequency in a corpus of words (Brown et al., 1992;
Weeber et al., 2000) and has a number of uses and effects. In this
work, we will use frequency class to identify the most and the least
frequent events. We will show later in Section 5 that CLARINET is
able to select the most relevant events in an accurate way using the
frequency class metric. Instead of computing FC for words in a text,
given the EES (with N total events and M distinct events), we

compute frequency class FCIA
i , for each extracted distinct event,

i¼1,..,M:

FCIA
i ¼ 0:5� log2

fi

fmax

� �
(1)

where b..c is the floor function. We denote the frequency of each dis-
tinct event i, that is, the overall number of occurrences of event i
within EES, as fi. We also identify all distinct events for which fmax

¼ max(ffi: i¼1,..,Mg). As can be concluded from Equation (1), the
FCIA value of the most frequent event is 0, while any event half as

frequent as the most frequent event will have FCIA value equal 1
(due to logarithm with base 2).

For each node that belongs to the ECLG, we find its FCIA and
we rank all the events in ascending order, i.e. from the most to the
least frequent event. By setting a threshold for FCIA, we can remove

the least frequent events from the ECLG, i.e. all events with FCIA

larger than this threshold. This allows for extending models with the

high confidence, and likely more relevant, events. Additionally, we
can keep only the events that co-occur in literature with the most
frequent event(s), by removing nodes in ECLG that are not con-

nected to the nodes with FCIA ¼ 0.
Thus, using the FCIA metric, we automatically select a subset of

EES events to be considered for a model extension, called candidate
extensions. We will refer to the ECLG obtained automatically after

individual assessments and the removal of selected nodes as a candi-
date ECLG.

We note here that, unlike simple naı̈ve event count, the FC met-

ric helps classify events within an EES into several classes, thus
allowing modelers to examine events within or across these classes.

Moreover, setting a threshold based on a simple event count is arbi-
trary and does not account for the occurrence frequency of the other
events. On the other hand, FCIA is computed for each event with re-

spect to the most frequent event, allowing modelers to use a thresh-
old and discard the less frequent events.

3.2 Pair assessment and clustering
To identify groups of events that would be most useful when added

to the model together, we cluster the candidate ECLG with respect
to the weights on its edges (literature co-occurrence-based links be-
tween events).

3.2.1 Pair assessment (PA)

We measure the co-occurrence of pairs of events within the EES, by
computing a frequency class of pairs, FCPA, and a weighted inverse
frequency of pairs, IFPA. We define the frequency class of a pair of

events i and j within the EES, FCPA
i;j , as:

FCPA
i;j ¼ 0:5� log2

fi;j

fmax;pair

$ %
(2)

where the co-occurrence frequency of events i and j, that is, the

Fig. 2. Illustration of CLARINET framework: (Left) CLARINET inputs: EES and Baseline model. (Right) Flow diagram of the CLARINET processing steps and outputs

CLARINET 3



number of different papers in which both events i and j occur, is
denoted as fi, j, while fmax;pair ¼ max(ffi, j: i¼1,.,M, j¼1,.,M, i 6¼ jg).

We also propose an additional pair assessment (PA) metric,
IFPA

i;j , that combines the inverse relative frequency of events i and j,
N/fi and N/fj, respectively, where N is the total number of events in
EES, with a co-occurrence frequency of this pair of events, fi, j:

IFPA
i;j ¼ fi;j� ln

N

fi

� �
þ ln

N

fj

� � !
(3)

As can be noticed, the IFPA value increases proportionally to the
number of times a pair of events occurs, and it is offset by the sum
of the logarithms of the inverse occurrence frequencies of individual
events. This inverse factor in the IFPA metric provides several bene-
fits over the FCPA metric, especially in the case of rare but important
extracted events. Specifically, using the inverse relative frequency of
an interaction, N/fi, increases the likelihood of selecting rare events,
and therefore, their impact on the model. The logarithm is used to
dampen the effect of the fraction. On the other hand, for frequent
events, this fraction is low but still positive.

In order to identify groups of events that would be most useful
when added to the model together, we cluster the ECLG using the
community detection algorithm proposed by Blondel et al. 2008,
which has been shown to generate communities of very good qual-
ity, outperforming other community detection methods. In the con-
text of the ECLG definition from Section 3.1, given the graph G (V,
E, Wv, We), with the node weight set Wv being a set of FCIA values,
and the edge weight set We a set of either FCPA or IFPA values, we
provide here a brief overview of the community detection algorithm.
As defined in Blondel et al. (2008), modularity Q is a measure of the
quality of network partitioning into communities (referred to as
clusters in our work) computed as the density of edges inside com-
munities relative to the edges between communities:

Q ¼ 1

2m

X
u;v

wu;v �
rurv

2m

� �
� d cu; cvð Þ (4)

where wu, v represents the weight of an edge between nodes u and v,
m is the sum of all edge weights in the network, cu and cv are com-
munities of nodes u and v, ru and rv are sums of the weights of the
edges connected to nodes u and v, respectively; d(cu, cv) ¼ 1, if u and
v belong to the same community, otherwise, it is 0. In order to maxi-
mize Q, the algorithm has two phases that are repeated iteratively.
The first phase starts by assigning each node in the network to its
own community, and then, for each node u, we compute the change
in modularity, DQu, v, that would occur if node u were to be moved
from its current community to the community of each of its neigh-
bor nodes in the network:

DQu;v ¼
Sv þ 2ru;v

2m
� Sv;tot þ ru

2m

� �2
" #

� Sv

2m
� Sv;tot

2m

� �2

� ru

2m

� �2
" #

(5)

where Sv is the sum of weights of the edges inside community cv that
node u is moving into, Sv;tot is the sum of the weights of the edges in-
cident to nodes in cv, ru is the sum of the weights of the edges inci-
dent to node u, ru, v is the sum of the weights of the edges from node
u to nodes in cv, and m is the sum of all the weights of all the edges
in the network. Once this value is calculated for all communities
that u is connected to, u is placed in the community that resulted in
the greatest modularity increase. If no increase is possible, u remains
in its original community. This process is applied repeatedly for all
nodes as long as there is increase in Q.

After Q reaches a local maximum, the second phase of the algo-
rithm creates a new network where nodes are the communities from
the previous phase, the first phase proceeds with this new network,
and the iterations are repeated until there is no more increase in Q.
We will refer to the communities in the undirected candidate ECLG
that result from applying this algorithm as generated clusters. We

show examples of candidate ECLG and the corresponding ECLG
with generated clusters in Figure 2.

Next, from the total NC generated clusters, we are interested in
selecting those clusters that would be most useful for extending the
model and answer the questions that initiated the literature search.
To rank the clusters, we will use the two PA literature support met-
rics. For each cluster Cl, we find the average values of FCPA

i;j , and
IFPA

i;j , across all pairs (i, j) of connected events i and j within the clus-
ter Cl, FCPA

lavg
and, IFPA

lavg
, respectively:

FCPA
lavg
¼ 1

Pl

X
ði;jÞ

FCPA
i;j

� �
(6)

IFPA
lavg
¼ 1

Pl

X
ði;jÞ

IFPA
i;j

� �
(7)

where Pl ¼ jElj is the total number of edges in cluster Cl.

3.3 Interpreted clusters and model support metrics
To add events from generated clusters to a baseline model, we con-
vert the generated clusters, where nodes are events, and edges are lit-
erature-based co-occurrences between events, into interpreted
clusters (weighted directed graphs), with nodes/edges being entities/
events.

In addition to ranking the information extracted from literature
based on the literature support metrics, we also introduce a model
support metric, Node Overlap (NO), which measures the connectiv-
ity of the clusters to the baseline model. More formally, following
the definitions from Section 2.2, we denote the baseline model graph
as GBM(VBM, EBM), and the graph formed by the EES as GEES(VEES,
EEES). For each interpreted cluster Cl; we can also define
GCl ðVCl ;ECl Þ, and it is clear from the clustering algorithm that
VEES ¼ [Nc

l¼1VCl . We define the set of overlapping nodes between
cluster Cl and the baseline model as VCl ; ON¼ VBM \ VCl and the set
of new nodes in Cl as VCl ; new ¼ VCl (VBM \ VCl ). NO is then com-
puted for every interpreted cluster Cl to determine the ratio between
the overlapping nodes and the total number of nodes:

NOl ¼
VCl ; ON

VCl
� 100 (8)

We also determine whether there are any return paths between
clusters and the baseline model. Formally, given the definition of an
edge in Section 2.2, if there exists a path of connected edges epath(vs1,
vtp) ¼ [ei1(vs1, vt1), ei2(vs2¼vt1, vt2), ei3(vs3¼vt2, vt3), . . ., eip(vsp¼vtp-

1, vtp)], we say that epath(vs1, vtp) is a return path, if fvs1, vtpg2VBM,
and all edges ei1, . . ., eip belong to clusters in the set of interpreted
clusters. The baseline model and the clusters on such return path
form a candidate extended model.

3.4 Selection of best cluster
We rank all generated clusters with respect to each, average FCPA

and average IFPA, and their corresponding interpreted clusters with
respect to the NO value. We also determine which clusters belong to
return paths. Finally, we say that cluster Cl is assumed to be the best
candidate for a model extension if it satisfies the following rule:�

FCPA
lavg
¼ min ðfFCPA

iavg
: i ¼ 1::NCgÞAND IFPA

lavg

¼ maxðfIFPA
iavg

: i ¼ 1::NCgÞ
�

OR ðNOl

> 50% AND Cl belongs to at least one return pathÞ (9)

As can be seen from Equation (9), a cluster Cl is considered for a
model extension if it satisfies either both of the literature support
criteria or both of the model support criteria. For the literature sup-
port criteria, from Equations (2) and (3), Cl must have the lowest
FCPA

lavg
value and the highest IFPA

lavg
. This means that the events belong-

ing to Cl are the most supported in the literature, among all the
events of the EES. On the other hand, for the model support criteria,
if the cluster Cl has more than a 50% node overlap with the baseline
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model and it belongs to at least one return path, then Cl will be
highly connected to the baseline model. Consequently, the cluster Cl

should be considered for model extension.
We introduced Equation (9) in order to provide a guided and

comprehensive way to expand dynamic network models, by adding
the events that are not only just frequent in literature but are also
connected to the baseline model through return paths.

4 Experimental setup

In order to evaluate the performance of CLARINET under different
conditions and scenarios, and in the absence of an established and
standardized set of benchmarks, we selected three published models
that were (i) created and curated manually with input from domain
experts, (ii) validated against experimental results, (iii) are of differ-
ent size and from different contexts and (iv) allow for generating the
extension event sets in a different manner. Furthermore, to evaluate
how well CLARINET can expand a baseline model, and reconstruct
the gold model, we created baseline models of different sizes and
with different network structures when compared to the gold mod-
els. Using these benchmarks, we demonstrated that CLARINET can
assemble relevant and useful models in a fully automated manner,
starting only with a baseline model and the machine reading output,
and without a knowledge of what is in the gold model.

4.1 Baseline and gold models
Here, we detail the steps of creating baseline models in our three
case studies. The network characteristics of all studied model net-
works are listed in Figure 3a, and a brief background for the three
modeled systems is provided in the Supplementary Material.

The first benchmark gold model that we used is the naı̈ve T-cell
differentiation (T-cell) model from Hawse et al. (2015) (Tcellgold).
In Miskov-Zivanov et al. (2013), the authors present a manually cre-
ated logical model of the naı̈ve T-cell differentiation that recapitu-
lated key experimental observations and generated several
predictions, and we will use this model as the baseline model
(Tcellbaseline) for this study. The model in Hawse et al. (2015) is a
manually extended version of the original model from Miskov-
Zivanov et al. (2013). Tcellbaseline has 9% less nodes and 18% less
edges when compared to Tcellgold.

Our second benchmark gold model is a manually created discrete
dynamic T-cell large granular lymphocyte (T-LGL) leukemia model
from Zhang et al. (2008) (TLGLgold). This model was used in
Saadatpour et al. (2011) to perform a comprehensive dynamical and
structural analysis, which in turn led to identifying 19 model ele-
ments as potential therapeutic targets. We created the baseline
model for this study (TLGLbaseline) by removing all direct regulators
of these 19 key players in T-LGL, which resulted in a significantly
smaller number of nodes and edges in the baseline model network,
compared to the TLGLgold model, i.e. 32% less nodes and 41% less
edges (Fig. 3a).

The third benchmark gold model that we used is the pancreatic
cancer cell (PCC) model from Telmer et al. (2019) (PCCgold), a dis-
crete manually created model of the major signaling pathways, me-
tabolism and gene regulation, and accounting for the tumor
microenvironment. The PCC model was used in Telmer et al. (2019)
to explore pancreatic cancer receptor stimulation and mutation re-
sponse in time through simulations. This model describes the hall-
marks of cancer (processes of apoptosis, autophagy, cell cycle
progression, inflammation, immune response, oxidative phosphoryl-
ation and proliferation) and suggests combinations of inhibitors as
therapies. Based on evidence from literature (Wang et al., 2016),
mTORC1 initiates autophagy, TGFb regulates apoptosis and KRAS
mutations enhance proliferation. Thus, to evaluate how well
CLARINET can reconstruct critical signaling pathways, we created
the baseline model for this study (PCCbaseline) by removing the paths
between mTORC1 and autophagy, between TGFb and apoptosis,
and between KRAS and proliferation. This resulted in the removal
of 6% nodes and 25% edges from the original PCCgold model (see
Fig. 3a).

4.2 Extracted event sets
In this work, we use an open-source reading engine REACH
(Valenzuela-Escárcega et al., 2017) to quickly obtain information
from the literature. REACH is available online and can also be run
through INDRA (Gyori et al., 2017). To create the EES for the T-
cell study, among 32 references cited by (Hawse et al., 2015), we
selected 12 most relevant papers, that is, papers in which T cell is
mentioned together with one or more of the key elements of the
Tcellbaseline model from Miskov-Zivanov et al. (2013). We then used
REACH to extract events from these papers. The size of the EES for
this and the other two studies is reported in Figure 3a under column
‘Before’. We used a similar approach when creating the EES for the
PCC study, having REACH engine read 19 papers cited in Telmer
et al. (2019), as those papers provided evidence for the manually
constructed PCC model in Telmer et al. (2019). However, as the
rows ‘Total nodes’ and ‘Total edges’ in Figure 3a show, the EES
obtained for the PCC study was much larger than the EES for the T-
cell study.

We used a different approach when assembling the EES for the
T-LGL study. Instead of relying on the same literature that was used
to manually build the published gold standard model TLGLgold, we
created a search query ‘T cell large granular lymphocyte (T-LGL)
leukemia and proliferation and apoptosis’, and we used it as an in-
put to the literature search engine [PubMed (Roberts, 2001)]. From
the papers that PubMed returned, we selected the 38 papers that
PubMed identified as ‘Best match’. The final step was the same as
with the other two studies, the EES is extracted using REACH.
Interestingly, while an order of magnitude larger than the EES for
the T-cell study, the EES obtained using a search query was smaller
than the one we obtained for the PCC study, emphasizing the fact
that the number of events found within a single paper can vary
significantly.

5 Results

To evaluate CLARINET and demonstrate its features, we conducted
several experiments using the three models described in Section 4.
We explored how well CLARINET performs in various scenarios,
small versus large model extension, controlled versus query-based
extension and extension of a smaller published model versus recon-
struction of a truncated model.

5.1 Model extension with CLARINET
While CLARINET is fully automated, and parametrizable, to dem-
onstrate its flexibility and the outcomes of parametrizations, we also
show here results for intermediate steps.

For each baseline model and EES, CLARINET creates an ECLG
(as described in Section 3.1), similar to the one shown in Figure 3b
(T-cell). For all nodes (events) in the original ECLG, CLARINET
then computes FCIA according to Equation (1). As stated previously,
events with FCIA ¼ 0 are the most frequent ones, thus strongly sup-
ported by literature, with multiple evidence statements. The users
can enter a value for the FCIA as a threshold for removing less fre-
quent events (i.e. events found less often in the selected set of
papers); otherwise, CLARINET assumes the average FCIA value
within the EES as a default threshold. We found that an average
value in all three case studies is FCIA ¼ 2, and using this default
threshold, we removed events with FCIA > 2 from the ECLG. In
Section 5.3, we will discuss the influence of this threshold on the
performance of CLARINET. Using FCIA ¼ 2, CLARINET removed
20, 150 and 205 less frequent events from EES in the T-cell, T-LGL
and PCC studies, respectively.

In Figure 3b, we highlight with black color the nodes that are
being removed from the ECLG for our T-cell study. The number of
nodes and edges in the ECLG before and after this step is shown in
Figure 3a. As can be noticed, after the removal of the less frequent
nodes, not only the size of the ECLG changed but also other graph
parameters changed. For instance, the mean number of papers per
interaction, which maps to the average degree of nodes (events),
increased after the removal of the less frequent nodes. The removal

CLARINET 5


article-lookup/doi/10.1093/bioadv/vbab006#supplementary-data


led to a denser graph, with strongly connected components, which is
in agreement with both the increased neighborhood connectivity of
the nodes and the high clustering coefficient.

CLARINET can use an additional selection criterion (Section
3.1), to keep only the nodes of the reduced ECLG that are neighbors
of the nodes representing most frequent (FCIA ¼ 0) events, and it
removes the rest of the nodes from the reduced ECLG. In other
words, CLARINET can remove events that do not co-occur with
any of the most frequent events. In Figure 3b, the subgraph enclosed
in a green box is an ECLG that we would obtain for the T-cell study
if we applied this additional selection criterion.

Next, after applying the literature support metrics and obtaining
the candidate ECLG, following the method from Section 3.2,
CLARINET assigns weights to all edges in the candidate ECLG,
using two different sets of weights, FCPA and IFPA, for two separate
clustering procedures. CLARINET partitioned the candidate ECLG
into six, nine and seven edge-weighted generated clusters, for T cell,
T-LGL and PCC, respectively. These clusters include interactions
from 6, 18 and 10 out of the 12, 38 and 19 papers that were selected
at the beginning (Fig. 3a). Using the two different metrics (FCPA and
IFPA) to weigh edges did not affect the number of generated clusters
and the edges within each cluster for our three studies; however,
while the IFPA values had a larger discrepancy between clusters, the
FCPA values seem to be much closer to one other.

To select the best-generated cluster(s) that would be most useful
when added to the baseline model, following Equations (6) and (7),
CLARINET computes for each cluster the average FCPA and IFPA

values and ranks the clusters according to these values. Since the
FCPA and IFPA values computed for any given edge are usually dif-
ferent, the clusters’ average FCPA and IFPA values are also different,
and therefore, the ranking of clusters with respect to these values
can differ as well. For each case study, we show the average FCPA

and IFPA values for generated clusters in Figure 3c. As can be
noticed, for the T-cell case, the ranking of clusters from lowest to
highest average FCPA value is C2, C6, C4, C1, C5, C3, and the ranking of
clusters from highest to lowest average IFPA value is C2, C6, C5, C4, C1,
C3. From these rankings, we see that cluster C2 is suggested as the
best cluster in both cases, that is, it has the lowest average FCPA

value, and the highest average IFPA value among all six clusters. On
the other hand, in the T-LGL case study (Fig. 3c), the FCPA-based
ranking is C3, C1, C9, C7, C5, C4, C6, C2, C8, whereas the IFPA-based
ranking is C3, C1, C9, C7, C5, C6, C4, C2, C8. For the PCC model, the cor-
responding cluster rankings are C2, C7, C1, C4, C5, C6, C3 and C2, C7, C5,
C6, C3, C1, C4, respectively.

Next, CLARINET transforms these generated clusters into inter-
preted clusters and explores the connection between the interpreted
clusters and the baseline model. Figure 3c shows the NO values
[equation (8)], for the clusters of each case study. In the T-cell case
study, clusters C3 and C5 have the highest NO value, i.e. the highest
percentage overlap with the baseline model. For T-LGL, clusters C1

and C2 are the ones with the highest NO, whereas for PCC, clusters
C2, C4 and C7 all have high NO values. We can conclude from these
results that the NO measure identifies different clusters, compared
to the ones with the highest FCPA and IFPA weights. This demon-
strates the versatility of CLARINET and the flexibility it provides to
users in choosing different strategies for automated model
extension.

In addition to the metrics discussed above, the user may also be
interested in extending a baseline model to include a particular elem-
ent and to study its effects on the model. In such cases, if there are
two or more clusters in the set of interpreted clusters that we
obtained, all containing regulators and regulated elements of the
element of interest, CLARINET can instead consider those clusters
for extension. We are especially interested in combining these clus-
ters if they can be connected through a return path, which starts and
ends in the model, as defined in Section 3.3. If the user selects this
option, CLARINET can find return paths, thus enabling users to
add key regulatory pathways that are not in the baseline model.

To illustrate the return paths, the set of events that are included
in the top ECLG cluster enclosed by the blue box in Figure 3b, is
also shown as interactions in interpreted cluster C3 in Figure 3d. It
can be seen from Figure 3d that Foxo1_ext, which is a new element
in the EES, is activating PTEN, which is also an element in the base-
line model, Tcellbaseline. If we add only the cluster from Figure 3d to
Tcellbaseline, we will be able to study the effect of Foxo1_ext, as it
will become an input to Tcellbaseline. However, with such extension,
we will not be able to study the effect of the other parts of the model
on Foxo1_ext, given that Foxo1_ext is not regulated by any other
element in Tcellbaseline. Therefore, CLARINET can search for other
clusters that include Foxo1_ext regulators. One such cluster is C2
(Fig. 3e).

Cluster C2 also corresponds to the bottom cluster enclosed by a
blue circle in Figure 3b. In the set of the six interpreted clusters that
CLARINET obtained for our T-cell model case study, clusters C2
and C3 form a return path with Tcellbaseline, as shown in Figure 3f.
Thus, the final set of events that CLARINET formed by merging the
two clusters in Figure 3f, contains all the elements of the full model
Tcellgold from Hawse et al. (2015) (FOXO1, NEDD4, MEK1,
CK2), which were missing in Tcellbaseline from Miskov-Zivanov
et al. (2013).

Similarly, for T-LGL case study, in the set of the nine interpreted
clusters that CLARINET obtained, clusters C3 and C9 form a return
path with the baseline model, TLGLbaseline. Therefore, CLARINET
provides the set of events formed by merging clusters C3 and C9 as
our finally selected set of TLGLbaseline extensions. Finally, for the
PCC case study, in addition to the return path that CLARINET
found between clusters C2, C7, and the baseline model, PCCbaseline,
making the union of these two clusters a good candidate for exten-
sion, CLARINET also found return paths between an individual
cluster C2 and PCCbaseline. Similar to the T-cell study, CLARINET

Fig. 3. (a) Description of each use case in terms of the size of both baseline and gold standard models, followed by the values of several graph metrics for the ECLG before and

after the removal of less frequent events, for T-cell, T-LGL and PCC case studies. (b) Candidate ECLG for the T-cell case study. (c) (Top) Average literature support metrics

FCPA
avg and IFPA

avg for generated clusters. (Bottom) Node overlap (NO) between the clusters and the baseline model for the three case studies. (d–f) Cluster interpretation and

preparation for extension: (d), (e) Interpreted clusters’ influence graphs, C3, C2, respectively, for T-cell case study, nodes are biological entities, pointed arrows represent activa-

tion, blunt arrows represent inhibition. Baseline model nodes are in gray and the new nodes with suffix ‘_ext’ are in white. (d) Cluster C3 with upstream element Foxo1_ext

highlighted in yellow, (e) cluster C2 with downstream element Foxo1_ext. The return path from C2 to C3 is (‘MTOR—TBK1_ext—AKT– Foxo1_ext—PTEN’), highlighted in

red, the first node and last node of the path are MTOR and PTEN, respectively, (f) the result of merging C3 and C2
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was also able to closely reproduce TLGLgold and PCCgold models
published in Zhang et al. (2008) and Telmer et al. (2019), as further
detailed in the following.

5.2 Precision and recall
To evaluate the relevance and the completeness of the entities and
events that CLARINET selects, we computed its precision and re-
call. This was done by comparing the final models, Tcellfinal,
TLGLfinal and PCCfinal, that were obtained using CLARINET, with
the gold standard models, Tcellgold (Hawse et al., 2015), TLGLgold

(Zhang et al., 2008) and PCCgold (Telmer et al., 2019), respectively
(see Supplementary Fig. S1).

The precision value indicates the relevance by determining the
percent of events (or entities) that are selected by CLARINET, and
which are at the same time a part of the gold standard model. These
are usually called true positives, and therefore, we will refer to these
entities and events as true entities and events. In Figure 4, we show
precision results for all three final models (FCIA ¼ 2), for both enti-
ties and events. For the T-cell case, CLARINET achieves high preci-
sion for both events and entities, 0.86 and 0.87, respectively. This
means that just 14% of the events and 13% of the entities that
CLARINET selected are false positives (i.e. they are not in the gold
standard model). On the other hand, for the T-LGL case, the event
precision is 0.45 and the entity precision is 0.5, and in the PCC case,
it is 0.61 and 0.5, respectively. While in the T-LGL and PCC studies
almost half of the events and entities are false positives, it is import-
ant to note that these two studies have much larger EES, compared
to the T-cell study and also compared to their baseline models, and
thus, have more candidates to add to the model. Additionally, the
events that are in the gold standard models are not necessarily the
only valid events. In other words, there could be other events in lit-
erature, and which CLARINET suggested in its output, that are also
useful and important, and should be included in the model.
Therefore, the precision of CLARINET that we report here is likely
smaller than its actual precision due to these additional important
events that CLARINET finds but are not in the gold standard
model.

To investigate this further, we conducted the following exercise
for the T-LGL study. We used INDRA (Gyori et al., 2017) to com-
pute a belief score for each event that CLARINET selected.
Interestingly, we found that INDRA generated a belief score with a
value greater than or equal to 0.7 (out of 1) for 27 events and 21
entities, not all of which were in the CLARINET’s true event and
true entity sets. When we changed the status of these additional enti-
ties and events from false positives to true positives, this has
increased the entity precision to 0.7 and event precision to 0.64.
Moreover, these events form more than one return path with the
baseline model, i.e. they are highly connected to the baseline model.
Additionally, if preferable, one can reduce the number of false posi-
tives by increasing the threshold for the NO value, as will be dis-
cussed in the following subsection.

To evaluate the completeness of CLARINET results, we com-
puted its recall with respect to the gold standard models. We will
refer to all entities and events in gold standard models as correct
entities and events. We compute recall as the ratio between true
events (or entities) selected by CLARINET and the total number of
correct events (or entities) found in the EES. We note here that we

only account for those events from the gold standard model that is
in the EES, as it is possible that there are events in the gold standard
model that are not in the reading output and in the baseline model,
and therefore, not present in CLARINET’s input. This is due to the
reading engine not recognizing in papers all the events, while the
human reader who cited the papers was able to find the events and
manually include them in the model.

For the T-cell study, a recall value of 1 has been reported for
both events and entities. This means that none of the correct events
or entities are missed by CLARINET, that is, there are zero false
negatives. For PCC case, the event recall value is 0.8 and the entity
recall value is 0.7. Here, CLARINET achieved better values for re-
call than for precision. This again demonstrates the ability of
CLARINET in identifying the useful and relevant entities and events
in a given EES. Similarly, in the T-LGL case recall values are higher
than precision values. As shown in the figure, the entity recall is
0.74 and the event recall of 0.63, i.e. CLARINET missed approxi-
mately 26% of correct entities and 37% of correct events. The
slightly lower recall in this study, when compared to the T-cell and
PCC studies, is not surprising. Given the significant portion of
events (41%) removed from the TLGLgold model to obtain
TLGLbaseline, and the literature co-occurrence criteria, it is not sur-
prising that CLARINET found in the large EES many additional
entities and events that have stronger connections with the baseline
model than the ones that are in the gold model.

5.3 Parameter selection
We explored the effect on precision and recall when varying the two
key parameters from Equation (9), the thresholds for FCIA and NO
values. Varying the FCIA threshold, affected the size of candidate
ECLG. Consequently, this affected the number and the size of gener-
ated clusters. Increasing the FCIA threshold, i.e. including more of
the less frequent events in the analysis, increases the size of the can-
didate ECLG and will increase the number of generated clusters
(Supplementary Table S1). As can be seen from Figure 4, the best
results were obtained for FCIA threshold of 2 for T-cell and PCC
cases. For T-LGL, the FCIA threshold of 2 or 3 resulted in similar
precision and recall, while the threshold equal to 2 had a better
event recall value.

Overall, the FCIA threshold of 2 achieved the best results for all
cases. As a reminder, this value is the average FCIA value that we
obtained for the EES of each case, and the user can choose to specify
this threshold value as an input to CLARINET. It is also important
to keep in mind that the low FCIA threshold results in selecting the
most frequent nodes, with the expense of ignoring any infrequent
nodes that may be of interest, and the high FCIA threshold leads to
larger number of clusters and longer runtimes, without much
benefit.

In Figure 4, we also show the effect of three different thresholds
for NO on precision and recall. As can be noticed, any NO thresh-
old below 50%, will not affect the precision and recall values.
Increasing this NO parameter to a value higher than 50% will en-
sure a more connected cluster to the model, and thus, fewer false
positives. However, this may not be a desirable solution in the cases
when we are interested in identifying other entities and events that
are not necessarily in the model. Our analysis suggests that an NO
value of 50% or more, along with finding return paths, is sufficient

Fig. 4. Precision and recall of CLARINET when compared to the gold standard model for T-cell, T-LGL and PCC use cases. EnPr, EvPr, EnRe and EvRe denote entity preci-

sion, event precision, entity recall and event recall, respectively
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in determining how well a cluster is connected to the model, while
not missing potentially useful new information from the literature.

5.4 Scalability
We also investigated how scalable CLARINET is when applied on
models and EES with different sizes. We have run and tested
CLARINET on a 3.3 GHz Intel Core i5 processor. We have found
that, for the T-cell case, having both small model and small EES (see
Fig. 3a), CLARINET took 2.5 s to run and generate clusters. For the
T-LGL study, with only a slightly bigger model, but a large EES,
CLARINET took 10.1 s. And finally, for the PCC case, when we
applied CLARINET on a large model and a much larger EES com-
pared to the previous two cases, the runtime was 25.4 s. Therefore,
CLARINET can very efficiently extend baseline models that already
have several hundred nodes, while exploring candidates from an
EES with tens of thousands of events.

5.5 Comparison with other extension methods
To evaluate our new automated extension method against previ-
ously presented work (Liang et al., 2017; Sayed et al., 2018a), we
applied each method on the EES that we obtained in the T-cell
model case study, and we compared the selected groups of exten-
sions. We show the selected candidate extensions obtained with
the methods (Liang et al., 2017) and (Sayed et al., 2018a) in
Supplementary Figure S2a and b, respectively. The extension
method proposed in Liang et al. (2017) adds candidate extensions
to the baseline model in layers. For example, all candidate exten-
sions with both nodes in the baseline model belong to layer 0,
those with one node in the baseline model are in layer 1, and so
on. Therefore, the output of the method proposed in Liang et al.
(2017) includes elements that do not regulate other model ele-
ments (thus, called ‘hanging’), and they can be seen in
Supplementary Figure S2a. This makes their methodology less
practical, especially if it is applied on a large-scale model and
large EES. Compared to the work in Liang et al. (2017),
CLARINET approaches the model extension challenge in a more
inclusive way, by combining several metrics, based on occurrence
and co-occurrence frequencies in published literature, and the
connectivity to the baseline model. This way, CLARINET pro-
vides groups of connected events that are also well connected
with the baseline model through return paths (Fig. 3f).

We also show in Supplementary Figure S2b, several groups of
extensions selected by (Sayed et al., 2018a). Due to the nondeter-
ministic behavior of the genetic algorithm, there is more than one
set of extensions selected with this method. However, all the selected
subsets share the same characteristics, they contain several discon-
nected components, and they lack the main regulations for PTEN,
which is one of the key elements in Tcellgold (Hawse et al., 2015).
Interestingly, the extensions are connected through a return path,
AKT!Foxo1_ext!PTEN, which means the interactions are con-
nected to Tcellbaseline. However, when compared to the manually
extended model, there are still some missing interactions such as
CK2!PTEN, MEK1!PTEN and NEDD4!PTEN. Moreover,
similar to the results obtained for the method from Liang et al.
(2017), there are several candidate extensions that include hanging
nodes, and therefore, do not affect the model.

As shown in Supplementary Figure S3, the genetic algorithm-
based (Sayed et al., 2018a) method achieves a better entity and event
precision than the method in Liang et al. (2017). The low event pre-
cision 0.3, and low entity precision 0.21 in Liang et al. (2017), is
due to the large number of false positives. On the other hand, the en-
tity and event precision of the genetic algorithm-based method are
0.57 and 0.53, respectively. Both methods have similar entity recall
values of approximately 0.8 in Liang et al. (2017) and 0.7 in Sayed
et al. (2018a), however, the genetic algorithm-based method missed
a number of events, resulting in a low event recall of 0.4, whereas
the event recall value of Liang et al. (2017) is 0.8. On the other
hand, as shown in Supplementary Figure S3, CLARINET outper-
formed the results in Liang et al. (2017) and Sayed et al. (2018a).
For the T-cell case study, entity and event precision values are 0.87

and 0.86, respectively. Moreover, the recall value is 1 for both enti-
ties and events.

Thus, from the comparisons, we conducted for this case study,
using the literature and model support metrics, CLARINET outper-
forms the methods from Liang et al. (2017) and Sayed et al. (2018a)
in selecting the best set of model extensions.

6 Conclusion

We presented here our tool, CLARINET, and its underlying meth-
odology that integrates information from published literature and
expert-built models to rapidly assemble or extend models.
CLARINET is parametrizable, it allows users to select different ex-
tension criteria, depending on the context, focus and goals of their
models. By automatically extending models with the information
published in the literature, our methodology allows for rapid collec-
tion of the existing information in a consistent and comprehensive
way, while facilitating information reuse and data reproducibility,
and replacing hundreds or thousands of manual experiments, there-
by reducing the time needed for the advancement of knowledge. We
tested CLARINET on three previously published biological net-
works of different sizes with different machine reading outputs that
varied in size from hundreds to tens of thousands. CLARINET was
able to reproduce these manually built networks with an average re-
call of 0.8, while also identifying new interactions with high confi-
dence, all within several seconds.
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