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Abstract

Summary: Although knowing where a protein functions in a cell is important to characterize biological processes, this
information remains unavailable for most known proteins. Machine learning narrows the gap through predictions
from expert-designed input features leveraging information from multiple sequence alignments (MSAs) that is re-
source expensive to generate. Here, we showcased using embeddings from protein language models for competitive
localization prediction without MSAs. Our lightweight deep neural network architecture used a softmax weighted ag-
gregation mechanism with linear complexity in sequence length referred to as light attention. The method significantly
outperformed the state-of-the-art (SOTA) for 10 localization classes by about 8 percentage points (Q10). So far, this
might be the highest improvement of just embeddings over MSAs. Our new test set highlighted the limits of standard
static datasets: while inviting new models, they might not suffice to claim improvements over the SOTA.

Availability and implementation: The novel models are available as a web-service at http://embed.protein.proper-
ties. Code needed to reproduce results is provided at https://github.com/HannesStark/protein-localization.
Predictions for the human proteome are available at https://zenodo.org/record/5047020.

Contact: christian.dallago@tum.de or assistant@rostlab.org

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

1.1 Prediction bridges gap between proteins with and

without location annotations
Proteins are the machinery of life involved in all essential biological proc-
esses (Supplementary Appendix: Biological Background). Knowing
where in the cell a protein functions, natively, i.e. its subcellular location
or cellular compartment (for brevity, abbreviated by location), is import-
ant to unravel biological function (Nair and Rost, 2005; Yu et al.,
2006). Experimental determination of protein function is complex, cost-
ly and selection biased (Ching et al., 2018). In contrast, protein sequen-
ces continue to explode (The UniProt Consortium, 2021). This increases
the sequence-annotation gap between proteins for which only the se-
quence is known and those with experimental function annotations.
Computational methods have been bridging this gap (Rost et al., 2003),
e.g. by predicting protein location (Almagro Armenteros et al., 2017;
Goldberg et al., 2012, 2014; Savojardo et al., 2018). The standard tool

in molecular biology, namely homology-based inference (‘HBI’), accur-
ately transfers annotations from experimentally annotated to sequence-
similar un-annotated proteins. However, HBI is either unavailable or un-
reliable for most proteins (Goldberg et al., 2014; Mahlich et al., 2018).
Machine-learning methods perform less well (lower precision) but are
available for all proteins (high recall). The best methods use evolutionary
information as computed from families of related proteins identified in
multiple sequence alignments (‘MSAs’) as input (Almagro Armenteros
et al., 2017; Goldberg et al., 2012; Nair and Rost, 2005). Although the
marriage of evolutionary information and machine learning has influ-
enced computational biology for decades (Rost and Sander, 1993), due
to database growth, MSAs have become costly.

1.2 Protein language models better represent sequences
Recently, protein sequence representations (embeddings) have been
learned from databases (Steinegger and Söding, 2018; The UniProt
Consortium, 2021) using language models (‘LMs’) (Alley et al.,
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2019; Bepler and Berger, 2019; Elnaggar et al., 2021; Heinzinger
et al., 2019; Rives et al., 2021) initially used in natural language
processing (‘NLP’) (Devlin et al., 2019; Peters et al., 2018; Raffel
et al., 2020). Models trained on protein embeddings via transfer
learning tend to be outperformed by approaches using MSAs
(Heinzinger et al., 2019; Rao et al., 2019). However, embedding-
based solutions can outshine HBI (Littmann et al., 2021) and
advanced protein structure prediction methods (Bhattacharya et al.,
2020; Rao et al., 2020; Weißenow et al., 2021). Yet, for location
prediction, embedding-based models (Elnaggar et al., 2021;
Heinzinger et al., 2019; Littmann et al., 2021) remained inferior to
the state-of-the-art (‘SOTA’) using MSAs, such as DeepLoc
(Almagro Armenteros et al., 2017).

In this work, we leveraged protein embeddings to predict cellular
location without MSAs. We proposed a deep neural network archi-
tecture using light attention (LA) inspired by previous attention
mechanisms (Bahdanau et al., 2015).

2 Related work

The best previous predictions of location prediction combined HBI,
MSAs and machine learning, often building prior expert-knowledge
into the models. For instance, LocTree2 (Goldberg et al., 2012)
implemented profile-kernel [support-vector machines (‘SVMs’)]
(Cortes and Vapnik, 1995), which identified k-mers conserved in
evolution and put them into a hierarchy of models inspired by cellu-
lar sorting pathways. BUSCA (Savojardo et al., 2018) combined
three compartment-specific SVMs based on MSAs (Pierleoni et al.,
2006; Savojardo et al., 2017). DeepLoc (Almagro Armenteros et al.,
2017) used convolutions followed by a bidirectional long short-term
memory (‘LSTM’) module (Hochreiter and Schmidhuber, 1997)
employing the Bahdanau-Attention (Bahdanau et al., 2015). Using
the BLOSUM62 substitution metric (Henikoff and Henikoff, 1992)
for fast and MSAs for slower, refined predictions, DeepLoc rose to
become the SOTA. Embedding-based methods (Heinzinger et al.,
2019) have not yet consistently outperformed this SOTA, although
ProtTrans (Elnaggar et al., 2021), based on very large datasets,
came close.

3 Methods

3.1 Data
3.1.1 Standard setDeepLoc

Following previous work (Elnaggar et al., 2021; Heinzinger et al.,
2019), we began with a dataset introduced by DeepLoc (Almagro
Armenteros et al., 2017) for training (13 858 proteins) and testing
(2768 proteins). All proteins have experimental evidence for 1 of 10
location classes (nucleus, cytoplasm, extracellular space, mitochon-
drion, cell membrane, endoplasmatic reticulum, plastid, Golgi ap-
paratus, lysosome/vacuole and peroxisome). The 2768 proteins
making up the test set (dubbed setDeepLoc), had been redundancy
reduced to the training set (but not to themselves), and thus share
�30% pairwise sequence identity (‘PIDE’) and E-values �10– 6 to
any sequence in training. To avoid overestimations by tuning hyper-
parameters, we split the DeepLoc training set into: training-only
(9503 proteins) and validation sets (1158 proteins; �30% PIDE;
Supplementary Appendix: Datasets).

3.1.2 Novel setHARD
To catch over-fitting on a static standard dataset, we created a new
independent test set from SwissProt (The UniProt Consortium,
2021). Applying the same filters as DeepLoc (only eukaryotes; all
proteins �40 residues; no fragments; only experimental annota-
tions) gave 5947 proteins. Using MMseqs2 (Steinegger and Söding,
2017), we removed all proteins from the new set with �20% PIDE
to any protein in any other set. Next, we mapped location classes
from DeepLoc to SwissProt, merged duplicates, and removed multi-
localized proteins (protein X both in class Y and Z). Finally, we clus-
tered at �20% PIDE leaving only one representative of each cluster

in the new, more challenging test set (dubbed setHARD; 490 pro-
teins; Supplementary Appendix: Datasets).

3.2 Models
3.2.1 Input embeddings

As input to the ‘LA’ architectures, we extracted frozen embeddings
from protein language models (pLMs), i.e. without fine-tuning for
location prediction (details below). We compared embeddings from
five main and a sixth additional pre-trained pLMs (Table 1): (i)
‘SeqVec’ (Heinzinger et al., 2019) is a bidirectional LSTM based on
ELMo (Peters et al., 2018) that was trained on UniRef50 (Suzek
et al., 2015). (ii) ‘ProtBert’ (Elnaggar et al., 2021) is an encoder-
only model based on BERT (Devlin et al., 2019) that was trained on
BFD (Steinegger and Söding, 2018). (iii) ProtT5-XL-UniRef50
(Elnaggar et al., 2021) (for simplicity: ‘ProtT5’) is an encoder-only
model based on T5 (Raffel et al., 2020) that was trained on BFD
and fine-tuned on Uniref50. (iv) ‘ESM-1b’ (Rives et al., 2021) is a
transformer model that was trained on UniRef50. (v) ‘UniRep’
(Alley et al., 2019) is a multiplicative LSTM (mLSTM)-based model
trained on UniRef50. (vi) Bepler&Berger (dubbed ‘BB’) is a bidirec-
tional LSTM by Bepler and Berger (2019), which fused modeling the
protein language with learning information about protein structure
into a single pLM. Due to different training objectives, this pLM
was expected suboptimal for our task. As results confirmed this ex-
pectation, we confined these to Supplementary Appendix:
Additional Results.

Frozen embeddings were preferred over fine-tuned embeddings
as the latter previously did not improve (Elnaggar et al., 2021) and
consumed more resources/energy. ProtT5 was instantiated at half-
precision (float16 weights instead of float32) to ensure the encoder
could fit on consumer graphical processing units (GPUs) with lim-
ited vRAM. Due to model limitations, for ESM-1b, only proteins
with fewer than 1024 residues were used for training and evaluation
(Supplementary Appendix: Datasets).

Embeddings for each residue (NLP equivalent: word) in a protein
sequence (NLP equivalent: document) were obtained using the bio-
embeddings software (Dallago et al., 2021). For SeqVec, the per-
residue embeddings were generated by summing the representations
of each layer. For all other models, the per-residue embeddings were
extracted from the last hidden layer. Finally, the inputs obtained
from the pLMs were of size din � L, where L is the length of the pro-
tein sequence, while din is the size of the embedding.

3.2.2 Implementation details

The LA models were trained using filter size s¼9, dout ¼ 1024, the
Adam (Kingma and Ba, 2015) optimizer (learning rate 5�10– 5)
with a batch size of 150, and early stopping after no improvement in
validation loss for 80 epochs. We selected the hyperparameters via

Table 1. ‘Implementation’ details for SeqVec (Heinzinger et al.,

2019), ProtBert (Elnaggar et al., 2021), ProtT5 (Elnaggar et al.,

2021), ESM-1b (Rives et al., 2021), UniRep (Alley et al., 2019) and

BB (Bepler and Berger, 2019)

SeqVec ProtBert ProtT5 ESM-1b UniRep BB

Parameters 93M 420M 3B 650M 18.2M 90M*

Dataset UniRef50 BFD BFD UniRef50 UniRef50 Pfam

Sequences 33M 2.1B 2.1B 27M 27M 21M

Embed time (s) 0.03 0.06 0.1 0.09 2.1 0.1

Attention heads 0 16 32 20 0 0

Bits per float 32 32 16 32 32 32

Size (GB) 0.35 1.6 3.6 7.3 0.06 0.12

Notes: Estimates marked by *; differences in the number of proteins

(Sequences) for the same set (Dataset) originated from versioning. The

embedding time (in seconds) was averaged over 10 000 proteins taken from

the PDB (Berman et al., 2000) using the embedding models taken from bio-

embeddings (Dallago et al., 2021).

2 Stärk, Dallago et al.


article-lookup/doi/10.1093/bioadv/vbab035#supplementary-data

article-lookup/doi/10.1093/bioadv/vbab035#supplementary-data

article-lookup/doi/10.1093/bioadv/vbab035#supplementary-data

article-lookup/doi/10.1093/bioadv/vbab035#supplementary-data


random search (Supplementary Appendix: Hyperparameters).
Models were trained either on an Nvidia Quadro RTX 8000 with
48 GB vRAM or an Nvidia GeForce GTX 1060 with 6 GB vRAM.

3.2.3 LA architecture

The input to the ‘LA’ classifier (Fig. 1) was a protein embedding
x 2 R

din�L where L is the sequence length, while din is the size of the
embedding (which depends on the model) (Table 1). The input was
transformed by two separate 1D convolutions with filter sizes s and
learned weights WðeÞ;WðvÞ 2 R

s�din�dout . The convolutions were
applied over the length dimension to produce attention coefficients
and values e; v 2 R

dout�L

ei;j ¼ bi þ
Xdin

k¼1

Xds2e

l¼�bs2c
W
ðeÞ
l;k;ixk;jþl; (1)

where b 2 R
dout is a learned bias. For j 62 ½0;LÞ, the x:;j were zero vec-

tors. To use the coefficients as attention distributions over all j, we
softmax-normalized them over the length dimension, i.e. the atten-
tion weight ai;j 2 R for the j-th residue and the i-th feature dimen-
sion was calculated as:

ai;j ¼
expðei;jÞ
PL

l¼1

expðei;lÞ
: (2)

Note that the weight distributions for each feature dimension i
are independent, and they can generate different attention patterns.
The attention distributions were used to compute weighted sums of
the transformed residue embeddings vi;j. Thus, we obtained a fixed-
size representation x0 2 R

dout for the whole protein, independent of
its length.

x0i ¼
XL

j¼1

ai;jvi;j; (3)

pðcjxÞ ¼ softmaxcðf ðx0�mÞÞ: (4)

3.2.4 Methods used for comparison

For comparison, we trained a two-layer feed-forward neural net-
work (‘FNN’) proposed previously (Heinzinger et al., 2019). Instead
of per-residue embeddings in R

din�L, the FNNs used sequence-
embeddings in R

din , which derived from residue embeddings aver-
aged over the length dimension (i.e. mean pooling). Furthermore,
for these representations, we performed embeddings distance-based
annotation transfer (dubbed ‘EAT’) (Littmann et al., 2021). In this

approach, proteins in setDeepLoc and setHARD were annotated by
transferring the location from the nearest neighbor (L1 embedding
distance) in the training set.

For ablations on the architecture, we tested LA without the soft-
max aggregation (‘LA w/o Softmax’) that previously produced x0, by
replacing it with averaging of the coefficients e. Then, with ‘LA w/o
MaxPool’, we discarded the max-pooled values vmax as input to the
FNN instead of concatenating them with x0. With ‘Attention from
v’, we computed the attention coefficients e via a convolution over
the values v instead of over the inputs x. Additionally, we tested
using a simple stack of convolutions (kernel-size 3, 9, and 15) fol-
lowed by adaptive pooling to a length of 5 and an FNN instead of
LA (‘Conv’ 6 ‘AdaPool’). Similarly, ‘Query-Attention’ replaces the
whole LA architecture with a transformer layer that used a single
learned vector as query to summarize the whole sequence. As the
last alternative operating on LM representations, we considered the
‘DeepLoc LSTM’ (Almagro Armenteros et al., 2017) with ProtT5
embeddings instead of MSAs (http://www.cbs.dtu.dk/services/
DeepLoc).

To evaluate how traditional representations stack up against
pLM embeddings, we evaluated MSAs [‘LA(MSA)’] and one-hot
encodings of amino acids [‘LA(OneHot)’] as inputs to the LA
model.

3.2.5 Evaluation

Following previous work, we assessed performance through the
mean 10-class accuracy (Q10), giving the percentage of correctly
predicted proteins in 1 of 10 location classes. As additional measures
tested [i.e. F1 score and Matthew correlation coefficient (MCC)]
(Gorodkin, 2004) did not provide any novel insights, these were
confined to the Supplementary Appendix: Additional Results. Error
estimates were calculated over 10 random seeds on both test sets.
For previous methods [DeepLoc and DeepLoc62 (Almagro
Armenteros et al., 2017), LocTree2 (Goldberg et al., 2012),
MultiLoc2 (Blum et al., 2009), SherLoc2 (Briesemeister et al.,
2009), CELLO (Yu et al., 2006), iLoc-Euk (Chou et al., 2011),
YLoc (Briesemeister et al., 2010) and WoLF PSORT (Horton et al.,
2007)] published performance values were used (Almagro
Armenteros et al., 2017) for setDeepLoc. For setHARD, the web-
server for DeepLoc (http://www.cbs.dtu.dk/services/DeepLoc) was
used to generate predictions using either profile or BLOSUM inputs,
whose results were later evaluated in Q10 and MCC. As a naive
baseline, we implemented a method that predicted the same location
class for all proteins, namely the one most often observed (in Results
referred to as ‘Majority’). We provided code to reproduce all results
(https://github.com/HannesStark/protein-localization).

4 Results

4.1 Embeddings outperformed MSAs
The simple embedding-based annotation transfer (EAT) already out-
performed some advanced methods using MSAs (Fig. 2). The FNNs
trained on ProtT5 (Elnaggar et al., 2021) and ESM-1b (Rives et al.,
2021) outperformed the SOTA DeepLoc (Almagro Armenteros
et al., 2017) (Fig. 2). Methods based on ProtT5 embeddings consist-
ently reached higher performance values than other embedding-
based methods (*ProtT5 versus rest in Fig. 2). Results on Q10 were
consistent with those obtained for MCC (Supplementary Appendix:
Additional Results).

4.2 LA architecture best
The LA architecture introduced here consistently outperformed
other embedding-based approaches for all pLMs tested (LA* versus
EAT/FNN* in Fig. 2). Using ProtBert embeddings, LA outper-
formed the SOTA (Almagro Armenteros et al., 2017) by 1 and 2 per-
centage points on setHARD and setDeepLoc [LA(ProtBert) Fig. 2].
For both test sets, LA improved the previous best on either set by
around 8 percentage points with ProtT5 embeddings.

Fig. 1. Sketch of LA. The LA architecture was parameterized by two weight matrices

WðeÞ;WðvÞ 2 R
s�din�dout and the weights of an FNN f : R2dout 7!R

dclass
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4.3 Standard dataset over-estimated performance
The substantial drop in performance measures (by about 22 percent-
age points) between the standard setDeepLoc and the new challeng-

ing setHARD (Fig. 2: light-gray versus dark-gray, respectively)
suggested substantial over-fitting. Mimicking the class distribution

from setDeepLoc by sampling with replacement from setHARD led
to higher values [Q10: DeepLoc62¼63%; DeepLoc¼54%;
LA(ProtBert) ¼ 62%; LA(ProtT5) ¼ 69%)]. DeepLoc performed

worse on setHARD with than without MSAs (only BLOSUM;
Fig. 2: DeepLoc vs. DeepLoc62). Otherwise, the relative ranking

and difference of models largely remained consistent between the
two datasets setDeepLoc and setHARD.

4.4 Low performance for minority classes
The confusion matrix of predictions for setDeepLoc using
LA(ProtT5) highlighted how many proteins were incorrectly pre-

dicted to be in the second most prevalent class (cytoplasm), and that
the confusion of the two most common classes mainly occurred be-

tween each other (Fig. 3: nucleus and cytoplasm). As for other
methods, including the previous SOTA (Almagro Armenteros et al.,
2017), performance was particularly low for the most under-

represented three classes (Golgi apparatus, lysosome/vacuole and
peroxisome) that together accounted for 6% of the data. To attempt
boosting performance for minority classes, we applied a balanced
loss, assigning a higher weight to the contributions of under-repre-
sented classes. This approach did not raise accuracy for the minority

classes but lowered the overall accuracy, thus it was discarded.

4.5 LA mechanism crucial
To probe the effectiveness of the LA aggregation mechanism on
ProtT5, we considered several alternatives for compiling the atten-
tion (LA w/o Softmax & LA w/o MaxPool & Attention from v &

DeepLoc LSTM & Conv þ AdaPool), and used the LA mechanism
with non-embedding input [LA(OneHot) & LA(MSA)]. Q10

dropped substantially without softmax- or max-aggregation.
Furthermore, inputting traditional protein representations (one-hot
encoding, i.e. representing the 20 amino acids by a 20-dimensional

vector with 19 zeroes) or MSAs, the LA approach did not reach the
heights of using pLM embeddings [Table 2: LA(OneHot) &
LA(MSA)].

4.6 Model trainable on consumer hardware
Extracting ProtT5 pLM embeddings for all proteins used for evalu-
ation took 21 min on a single Quadro RTX 8000 with 48 GB
vRAM. Once those input vectors had been generated, the final LA
architecture, consisting of 19 million parameters, could be trained
on an Nvidia GeForce GTX 1060 with 6 GB vRAM in 18 h or on a
Quadro RTX 8000 with 48 GB vRAM in 2.5 h.

5 Discussion

5.1 LA predicting location: beyond accuracy, four

observations for machine learning in biology
The LA approach introduced here constituted possibly the largest
margin to date of pLM embeddings improving over SOTA methods

Fig. 2. LA architectures performed best. ‘Performance’: bars give the 10-class accuracy (Q10) assessed on setDeepLoc (light-gray bars) and setHARD (dark-gray bars).

‘Methods’: Majority, CELLO*, LocTree2*, DeepLoc*, DeepLoc62; MSA-based methods marked by star. ‘EAT’ used the mean-pooled pLM embeddings to transfer annota-

tion via distance, while ‘FNN(pLM)’ used the mean-pooled embeddings as input to a FNN. ‘LA(pLM)’ marked predictions using LA on top of the pLMs from: UniRep (Alley

et al., 2019), SeqVec (Heinzinger et al., 2019), ProtBert (Elnaggar et al., 2021), ESM-1b (Rives et al., 2021) and ProtT5 (Elnaggar et al., 2021). Horizontal gray dashed lines

mark the previous SOTA (DeepLoc and DeepLoc62) on either set. Estimates for standard deviations are marked in red for the new methods. Overall, LA significantly outper-

formed the SOTA without using MSAs, and values differed substantially between the two datasets (light versus dark gray)

Fig. 3. Mostly capturing majority classes. Confusion matrix of LA predictions on

ProtT5 (Elnaggar et al., 2021) embeddings for setDeepLoc (Almagro Armenteros

et al., 2017) (see Supplementary Appendix: Additional Results for setHARD).

Darker color means higher fraction; the diagonal indicates accuracy for the given

class; vertical axis: true class; horizontal axis: predicted class. Labels are sorted

according to prevalence in ground truth with the most common class first (left or

top). Labels: Nuc, Nucleus; Cyt, Cytoplasm; Ext, Extracellular; Mit,

Mitochondrion; Mem, cell Membrane; End, Endoplasmatic Reticulum; Pla, Plastid;

Gol, Golgi apparatus; Lys, Lysosome/vacuole; Per, Peroxisome; pred, distribution

for predicted (proteins predicted in class X/total number of proteins); true, distribu-

tion for ground truth (proteins in class X/total number of proteins)
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using MSAs. Although this improvement might become crucial to
revive location prediction, ultimately this work might become even
more important for other lessons learned:

i. The LA solution improved substantially over all previous

approaches to aggregate per-residue embeddings into per-

protein embeddings for predictions. Many protein function

tasks require per-protein representations, e.g. predictions of

Gene Ontology, Enzyme Classifications, binary protein–protein

interactions (to bind or not), cell-specific and pathway-specific

expression levels. Indeed, LA might help in several of these

tasks, too.

ii. Although static, standard datasets (here the DeepLoc data)

jumpstart advances and help in comparisons, they may become

a trap for over-estimates of performance through over-fitting.

Indeed, the substantial difference in performance between

setDeepLoc and setHARD highlighted this effect dramatically.

Most importantly, our results underlined that claims of the type

‘method NEW better than SOTA’ should not necessarily consti-

tute wedges for advancing progress. For instance, NEW on

setStandard reaching P(NEW)>P(SOTA) does not at all imply

that NEW outperformed SOTA. Instead, it might point more to

NEW over-fitting setStandard.

iii. The new datasetHARD also pointed to problems with creating

too well-curated datasets, such as setDeepLoc: one aim in

selecting a good dataset is to use only the most reliable experi-

mental results. However, those might be available for only

some subset of proteins with particular features (e.g. short,

well-folded). Experimental data are already extremely biased

for the classes of location annotated (Marot-Lassauzaie et al.,

2021). Cleaning up might even increase this bias and thereby

limit the validity of prediction methods optimized on those

data. Clearly, existing location data differ substantially from en-

tire proteomes (Marot-Lassauzaie et al., 2021).

iv. setHARD also demonstrated that, unlike the protein structure

prediction problem (Jumper et al., 2021), the location predic-

tion problem remains unsolved: while Q10 values close to 90%

for setDeepLoc might have suggested levels close to—or even

above—the experimental error, setHARD revealed values of

Q10 below 70%. In fact, while most proteins apparently mostly

locate in one compartment, for others the multiplicity of loca-

tions is a key to their role. This issue of travelers vs. dwellers,

implies that Q10 cannot reach 100% as long as we count only

one class as correctly predicted for each protein, and if we

dropped this constraint, we would open another complication

(Marot-Lassauzaie et al., 2021). In short, the new dataset

clearly generated more realistic performance estimates.

5.2 LA beats pooling
The central challenge for the improvement introduced here was to
convert the per-residue embeddings (NLP equivalent: word embed-
dings) from pLMs [BB (Bepler and Berger, 2019), UniRep (Alley
et al., 2019), SeqVec (Heinzinger et al., 2019), ProtBert (Elnaggar
et al., 2021), ESM-1b (Rives et al., 2021) and ProtT5 (Elnaggar
et al., 2021)] to meaningful per-protein embeddings (NLP equiva-
lent: document). Qualitatively inspecting the influence of the LA
mechanism through a UMAP comparison (Fig. 4) highlighted the
basis for the success of the LA. The EAT surpassed some MSA-
based methods without any optimization of the underlying pLMs
(Fig. 2). In turn, inputting frozen pLM embeddings averaged over
entire proteins into FNNs surpassed EAT and MSA-based methods
(Fig. 2). The simple FNNs even improved over the SOTA,
DeepLoc, for some pLMs (Fig. 2). However, LA consistently dis-
tilled more information from the embeddings. Most likely, the im-
provement can be attributed to LA coping better with the immense
variation of protein length [varying from 30 to over 30 000 residues
(The UniProt Consortium, 2021)] by learning attention distributions
over the sequence positions. LA models appeared to have captured
relevant long-range dependencies while retaining the ability to focus
on specific sequence regions such as beginning and end, which play
a particularly important role in determining protein location for
some proteins (Almagro Armenteros et al., 2017; Nair and Rost,
2005).

5.3 Embeddings outperformed MSA: first for function
Effectively, LA trained on pLM embeddings from ProtT5 (Elnaggar
et al., 2021) was at the heart of the first method that clearly
appeared to outperform the best existing method [DeepLoc
(Almagro Armenteros et al., 2017; Heinzinger et al., 2019)] in a
statistically significant manner on a new representative dataset not
used for development (Fig. 2). To the best of our knowledge, it was
also the first in outperforming the MSA-based SOTA in the predic-
tion of subcellular location in particular, and of protein function in
general. Although embeddings have been extracted from pLMs
trained on large databases of un-annotated (unlabeled) protein
sequences that evolved, the vast majority of data learned originated
from much more generic constraints informative of protein structure
and function. Clearly, pre-trained pLMs never had the opportunity
to learn protein family constraints encoded in MSAs.

5.4 Better and faster than MSAs
When applying our solution to predict location for new proteins (or
at inference), the embeddings needed as input for the LA models
come with three advantages over the historically most informative
MSAs that were essential for methods, such as DeepLoc (Almagro
Armenteros et al., 2017) to become top. Most importantly, embed-
dings can be obtained in far less time than is needed to generate
MSAs and require fewer compute resources. Even the lightning-fast
MMseqs2 (Steinegger and Söding, 2017), which is not the standard
in bioinformatics (other methods 10–100� slower), in our experi-
ence, required about 0.3 s per protein to generate MSAs for a large
set of 10 000 proteins. One of the slowest but most informative
pLMs (ProtT5) is three times faster, while the third most inform-
ative (ProtBert) is five times faster (Table 1). Moreover, these
MMseqs2 stats derive from runs on a machine with >300 GB of
RAM and 2 �40 cores/80threads CPUs, while generating pLM
embeddings required only a moderate machine (8 cores, 16 GB
RAM) equipped with a modern GPU with >7 GB of vRAM.
Additionally, the creation of MSAs relied on tools, such as
MMseqs2 that are sensitive to parameter changes, ultimately an
extra complication for users. In contrast, generating embeddings
required no parameter choice for users beyond the choice of the
pLM (best here ProtT5). However, retrieving less specific evolution-
ary information [e.g. BLOSUM (Henikoff and Henikoff, 1992)]

Table 2. Comparison of ‘LA(ProtT5)’ to different architectures and

inputs

Method setDeepLoc setHARD

LA(ProtT5) 86.0 6 0.3 65.2 6 0.6

LA w/o Softmax 85.3 6 0.3 64.7 6 0.7

LA w/o Maxpool 84.7 6 0.2 63.8 6 0.7

Attention from v 85.4 6 0.3 64.7 6 0.9

DeepLoc LSTM 79.4 6 0.9 59.3 6 0.8

Conv þ AdaPool 82.0 6 0.9 60.7 6 2.0

Query-Attention 75.3 6 0.5 52.41 6 0.4

LA(OneHot) 43.5 6 1.5 32.5 6 2.4

LA(MSA) 43.7 6 1.3 33.3 6 1.8

Note: Methods described in Section 3.2. Standard deviations are estimated

from 10 runs with different weight initializations. The best performing

method is highlighted in bold.
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constituted a simple hash-table lookup. Computing such input could
be instantaneous, beating even the fastest pLM SeqVec. Yet, these

generic substitution matrices have rarely ever been competitive in
predicting function (Bromberg et al., 2008; Ng and Henikoff, 2003).
One downside to use embeddings is the one-off expensive pLM pre-

training (Elnaggar et al., 2021; Heinzinger et al., 2019). In fact, this
investment pays off if and only if the resulting pLMs are not

retrained. If they are used unchanged—as shown here—the advan-
tage of embeddings over MSA is increasing with every single new
prediction requested by users (over 3000/months just for

PredictProtein) (Bernhofer et al., 2021). In other words, every day,
embeddings save more over MSAs.

5.5 Over-fitting through standard dataset?
For location prediction, the DeepLoc data (Almagro Armenteros
et al., 2017) has become a standard. Static standards facilitate

method comparisons. To solidify performance estimates, we created
a new test set (setHARD), which was redundancy reduced both with

respect to itself and all proteins in the DeepLoc data (comprised of
training plus testing data, the latter dubbed setDeepLoc). For
setHARD, the 10-state accuracy (Q10) dropped, on average, 22 per-

centage points with respect to the static standard, setDeepLoc
(Fig. 2). We argue that this large margin may be attributed to some

combination of the following coupled effects.

i. Previous methods may have been substantially overfitted to the

static dataset, e.g. by misusing the test set to optimize hyper-

parameters. This could explain the increase in performance on

setHARD when mimicking the class distributions in the training

set and setDeepLoc.

ii. The static standard set allowed for some level of sequence-

redundancy (information leakage) at various levels: certainly

within the test set, which had not been redundancy reduced to

itself (data not shown), maybe also between train and test set.

Methods with many free parameters might more easily exploit

such residual sequence similarity for prediction because proteins

with similar sequences locate in similar compartments. In fact,

this may explain the somewhat surprising observation that

DeepLoc appeared to perform worse on setHARD using MSAs

than the generic BLOSUM62 (Fig. 2: DeepLoc62 vs.

DeepLoc). Residual redundancy is much easier to capture by

MSAs than by BLOSUM (Henikoff and Henikoff, 1992) (for

computational biologists: the same way in which PSI-BLAST

can outperform pairwise BLAST (Altschul et al., 1997)].

iii. The confusion matrix (Fig. 3) demonstrated how classes with

more experimental data tended to be predicted more accurately.

As setDeepLoc and setHARD differed in their class compos-

ition, even without over-fitting and redundancy, prediction

Fig. 4. Qualitative analysis confirmed LA to be effective. UMAP (McInnes et al., 2018) projections of per-protein embeddings colored according to subcellular location

(setDeepLoc). Both plots were created with the same default values of the python umap-learn library. Top: ProtT5 embeddings (LA input; x) mean-pooled over protein length

(as for FNN/EAT input). Bottom: ProtT5 embeddings (LA input; x) weighted according to the attention distribution produced by LA (this is not x0 as we sum the input features

x and not the values v after the convolution)
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methods would perform differently on the two. In fact, this can

be investigated by recomputing the performance on a similar

class-distributed superset of setHARD, on which performance

dropped only by 11, 24, 18 and 17 percentage points for

DeepLoc62, DeepLoc, LA(ProtBert) and LA(ProtT5),

respectively.

Possibly, several effects contributed to the performance from
standard to new dataset. Interestingly, different approaches behaved
alike: both for alternative inputs from pLMs (SeqVec, ProtBert and
ProtT5) and for alternative methods (EAT, FNN and LA), of which
one (EAT) refrained from weight optimization.

5.6 What accuracy to expect for the next 10 location

predictions?
If the top accuracy for one dataset was Q10 �60% and Q10 �80%
for the other, what could users expect for their next 10 queries: ei-
ther 6 correct or 8, or between 6 and 8? The answer depends on the
query: if those proteins were sequence similar to proteins with
known location (case: redundant): the answer would be eight.
Conversely, for new proteins (without homologs of known loca-
tion), 6 in 10 will be correctly predicted, on average. However, this
assumes that the 10 sampled proteins follow somehow similar class
distributions to what has been collected until today. In fact, if we
applied LA(ProtT5) to a hypothetical new proteome similar to exist-
ing ones, we can expect the distribution of proteins in different loca-
tion classes to be relatively similar (Marot-Lassauzaie et al., 2021).
Either way, this implies that for novel proteins, there seems to be sig-
nificant room for pushing performance to further heights, possibly
by combining LA(ProtBert)/LA(ProtT5) with MSAs.

6 Conclusion

We presented a LA mechanism in an architecture operating on
embeddings from several pLMs (BB, UniRep, SeqVec, ProtBert,
ESM-1b and ProtT5). LA efficiently aggregated information and
coped with arbitrary sequence lengths, thereby mastering the enor-
mous range of proteins spanning from 30 to 30 000residues. By im-
plicitly assigning a different importance score for each sequence
position (each residue), the method succeeded in predicting protein
subcellular location much better than methods based on simple
pooling. More importantly, for three pLMs, LA succeeded in out-
performing the SOTA without using MSA-based inputs, i.e. the sin-
gle most important input feature for previous methods. This
constituted an important breakthrough: although many methods
had come close to the SOTA using embeddings instead of MSAs
(Elnaggar et al., 2021), none had ever overtaken as the methods pre-
sented here. Our best method, LA(ProtT5), was based on the largest
pLM, namely on ProtT5 (Fig. 2). Many methods were assessed on a
standard dataset (Almagro Armenteros et al., 2017)]. Using a new,
more challenging dataset (setHARD), the performance of all meth-
ods appeared to drop by around 22 percentage points. While class
distributions and dataset redundancy (or homology) may explain
some of this drop, over-fitting might have contributed more.
Overall, the drop underlined that many challenges remain to be
addressed by future methods. For the time being, the best method
LA(ProtT5) is freely available via a webserver (embed.protein.pro-
perties) and as part of a high-throughput pipeline (Dallago et al.,
2021). Predictions for the human proteome are available via
Zenodo https://zenodo.org/record/5047020.
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