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Abstract
Functional beta-diversity analysis on numerous microbiomes interprets the linkages between metabolic functions

and their meta-data. To evaluate the microbiome beta-diversity, widely used distance metrices only count over-

lapped gene families but omit their inherent relationships, resulting in erroneous distances due to the sparsity of

high-dimensional function profiles. Here we propose Hierarchical Meta-Storms (HMS) to tackle such problem. HMS

contains two core components: (i) a dissimilarity algorithm that comprehensively measures functional distances

among microbiomes using multi-level metabolic hierarchy and (ii) a fast Principal Co-ordinates Analysis (PCoA)

implementation that deduces the beta-diversity pattern optimized by parallel computing. Results showed HMS can

detect the variations of microbial functions in upper-level metabolic pathways, however, always missed by other

methods. In addition, HMS accomplished the pairwise distance matrix and PCoA for 20 000 microbiomes in 3.9 h on

a single computing node, which was 23 times faster and 80% less RAM consumption compared to existing methods,

enabling the in-depth data mining among microbiomes on a high resolution. HMS takes microbiome functional

profiles as input, produces their pairwise distance matrix and PCoA coordinates.

Availability and implementation: It is coded in C/Cþþ with parallel computing and released in two alternative
forms: a standalone software (https://github.com/qdu-bioinfo/hierarchical-meta-storms) and an equivalent R
package (https://github.com/qdu-bioinfo/hrms).

Contact: suxq@qdu.edu.cn or Jinhua Li lijh@qdu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Microbiome functional profiling is thought to be superior to taxo-
nomic profiling (Langille, 2018), for it quantifies the genes and
metabolic pathways of microorganisms that answers ‘what a micro-
bial community can do’ (Knight et al., 2018), linking the dynamics
of metabolic activities to environment conditions (Fuhrman, 2009)
and health status (Lloyd-Price et al., 2016). Functional features can
be directly parsed out from metagenomic shotgun whole-genome
sequencing (WGS) data by tools like HUMAnN (Abubucker et al.,
2012; Franzosa et al., 2018), yet limited by the high experiment and
computation cost (Morgan and Huttenhower, 2012). Amplicon-
based methods [e.g. PICRUSt (Douglas et al., 2020; Langille et al.,
2013), Taxa4Fun (Asshauer et al., 2015), PanFP (Jun et al., 2015)]

can infer molecular functions from 16S rRNA gene, however, the ac-
curacy is deviated from WGS approaches due to amplification bias
and inadequate amplicon-genome linkages. Recently, Meta-Apo
(Jing et al., 2021) was developed for the calibration of amplicon-
derived functions, which provides a new solution for large-scale
functional survey with cheap cost of amplicon sequencing and high
resolution of WGS, thus enables the understanding of the global
microbiome data space on a broader range (Su et al., 2020).

Functional beta-diversity analysis on massive number of micro-
biomes interprets the relations between metabolic features and their
meta-data (Huttenhower et al., 2012). How to quantitatively assess
functional dissimilarities (or distances) among microbiomes is the
basis for beta-diversity analysis. Commonly used geometry- or sta-
tistics-based metrics such as Jensen–Shannon Divergency (JSD) and
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Bray–Curtis distance mainly rely on detecting the overlapped gene fam-
ilies (e.g. KEGG Ortholog; KO) but ignore their inherent connections
or relationships, causing the erroneous results in beta-diversity pattern.
Specifically, as the distribution of global microbes is sparse among eco-
system (Thompson et al., 2017), it is natural that two microbiomes
may share few identical KOs due to their distinct community members
(Hacquard et al., 2015). However, we cannot simply assert a small
similarity between them, since different gene families may also contrib-
ute to the same metabolic pathway (Fig. 1A). On the other side, previ-
ously we have introduced phylogeny-based distance algorithms [e.g.
Meta-Storms (Su et al., 2012) and Dynamic Meta-Storms (Jing et al.,
2020)] for taxonomical comparison using evolutionary affinity of
microbes, but such a definite tree-like structure of species is not applic-
able for functional profiles, for a single gene family is always involved
in multiple metabolic pathways (Fig. 1A).

After calculating a pairwise distances, multi-dimensional scaling
methods like Principal Co-ordinates Analysis (PCoA) are always
employed to illustrate and visualize the beta-diversity pattern of
microbiomes and their phenotypes such as environmental condition
or host healthy status. PCoA maps all samples into a 2- or 3-dimen-
sional coordinate system by dimension reduction of pairwise dis-
tance matrix. Nevertheless, most existing PCoA implementations
[e.g. ‘ape’ package (Paradis et al., 2004) and ‘vegan’ package
(Dixon, 2003 ) in R] have not been adapted to multi-core processors
that widely exists in current computer systems, causing an low util-
ization rate of advanced hardware.

2 Methods

In this work, we propose Hierarchical Meta-Storms (HMS) software
for rapid and comprehensive beta-diversity analysis on microbiome
functional profiles. This software contains two core components, (i)
a hierarchical dissimilarity algorithm that comprehensively calcu-
lates functional distances among microbiomes by employing a
multi-level metabolic pathway hierarchy and (ii) a fast PCoA imple-
mentation optimized by multi-thread parallel computing for

thousands of samples. HMS takes microbiome functional profiles
[e.g. parsed by HUMANn2 (Franzosa et al., 2018), PICRUSt2
(Douglas et al., 2020) or Meta-Apo (Jing et al., 2021)] as input, pro-
duces their pairwise distance matrix and PCoA coordinates.

2.1 Hierarchical-based algorithm for comprehensive

dissimilarity calculation of microbiome functional

profiles
After functional profiling, a microbial community is represented by
a series of functions or gene families (e.g. KO) and their relative
abundances. Each function contributes to multiple metabolic path-
ways, which are pre-defined and annotated by a hierarchical struc-
ture (e.g. KEGG BRITE 3-level hierarchical classification that
integrated in this package; Fig. 1A). When comparing two microbial
communities, HMS firstly measures their difference by the relative
abundances of gene families (e.g. KO in Fig. 1A) using Bray–Curtis
distance (Dist0 in Equation 1; Supplementary Equation S1). To con-
sider the effect of inter-function relations on microbiome distances,
gene families are then collapsed to pathways for further dissimilarity
calculation and iterated over all levels in the hierarchical structure.
Specifically, for each KO, HMS adds its relative abundance to bot-
tom-level (level 3) pathways linked with this KO and obtains the
Bray–Curtis distance of this pathway level (Disti in Equation 1,
i¼3) after adding all KOs. This procedure is then iterated on higher
layers until the top level (level 1), respectively, and the overall dis-
similarity between two samples is the weighted mean value of dis-
tances on gene family and all pathway levels (Equation 1).

Dist ¼
P3

i¼0 Disti � WiP3
i¼0 Wi

(1)

In this equation, since relative abundances of upper-level path-
ways are the linear combination of lower levels that reduced the
functional resolution, we set a linear weight on the three-level
BRITE pathways according to their level (e.g. Wi ¼ i, i>0), and set

Fig. 1. The hierarchical structure of functional profiles. (A) KOs and KEGG BRITE 3-level classification of pathways. (B) For Synthetic Dataset I, group m1 shares more KOs

with m2 than m3, but m1 is more similar to m3 since their KOs belongs to the exactly the same metabolic pathway branches. (C) For Synthetic Dataset II, it is spares and

zero-inflated for KO distribution that few KOs are in common among different groups
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the weight of KO as 4 (W0 ¼ 4) for its highest resolution (refer to
Supplementary Methods for detailed time complexity analysis).

2.2 Parallel computing strategy for pairwise comparison

and beta-diversity pattern parsing
A pairwise distance matrix contains the HMS dissimilarities among
all sample pairs, which is fundamental for beta-diversity analysis. In
an n-dimension pairwise distance matrix (denoted by DistMatrix in
Equation 2) for n samples, each element is a dissimilarity value
between two microbiomes, e.g. dij denotes the distance between
sample i and sample j (1 <i<n and 1 <j<n). The distance matrix is
symmetric (dij ¼ dji) and the diagonal elements are always zeros
(dii ¼ 0), so only half of the matrix (e.g. the upper triangle matrix
with n�ðn�1Þ

2 elements) need to be generated.

DistMatrix ¼
d11 � � � d1n

..

. . .
. ..

.

dn1 � � � dnn

2
64

3
75 (2)

Then based on the pairwise distance matrix, the PCoA maps all
microbiome samples to a lower k-dimension coordinate system (e.g.
k¼2 or 3 space; refer to Supplementary Methods for detailed pro-
cedure) to visualize and interpret their relations according to meta-
data, e.g. whether samples could be sorted by environmental condi-
tions or healthy status.

As the operation of each element in a distance matrix and PCoA
dimension reduction is independent and irrelevant to others, the
whole calculation procedure can be divided into sub-tasks and par-
allelized for speedup. In our implementation, HMS assigns each of
the sub-tasks to one thread and invocates multiple threads by
POSIX OpenMP library on multi-core CPUs for parallel computing.
Furthermore, all computing sub-tasks are dynamically scheduled at
the running time (by setting OpenMP scheduling as ‘dynamic’) for a
balanced loading of CPU cores to ensure a high efficiency.

3 Results

3.1 Datasets and experiment design
In this work, we prepared two synthetic datasets and three real
datasets (Table 1) to assess the performance of HMS in accuracy,
comprehensiveness, running time and memory usage for functional
beta-diversity analysis. Synthetic Dataset I contains functional KO
profiles of 30 artificial microbiomes that evenly divided into three
groups (m1, m2 and m3). KO compositions of each group followed
the pattern as Figure 1B and samples in the same group consist of
similar KOs but only with subtle variations on relative abundances.
Synthetic Dataset II was simulated in the same way as Dataset I by
following the community pattern in Figure 1C. Real Dataset I con-
tains KO profiles of 20 000 microbiomes randomly selected from
Microbiome Search Engine database (mse.ac.cn) (Su et al., 2018).
Real Datasets II and III were produced by Human Microbiome
Project Phase 1 (Turnbaugh et al., 2007): Read Dataset II contains
KO profiles of 5350 human microbiomes (gut, oral, skin and va-
gina) inferred from 16S rRNA gene amplicons by PICRUSt2
(Douglas et al., 2020), and Real Dataset III contains KO profiles of

2354 human microbiomes (gut, oral, skin and vagina) reconstructed
from WGS data by HUMANn2 (Franzosa et al., 2018). Since R has
already been widely applied in bioinformatics analysis(Kramer
et al., 2014), we set R-based distance methods (Bray–Curtis, Cosine,
Euclidean and JSD) and PCoA (‘vegan’ package and ‘ape’ package
in R) as benchmarks for comparison to HMS.

3.2 Benchmark the accuracy and comprehensiveness of

hierarchical-based dissimilarity using synthetic data
3.2.1 Erroneous pattern among groups

For Synthetic Dataset I, as shown in Figure 1B, samples in group m1
share more common KOs with group m2 (2 KOs, green-dotted cir-
cle) than m3 (only 1 KO, red-dotted circle). But actually, the overall
metabolic functions and pathways of group m1 are more similar to
those of m3 since their gene families belong to the identical path-
ways on KEGG BRITE hierarchy branches, e.g. on level-3 all path-
ways are exactly the same; in contrast, m1 and m2 differed from
each other for only shared 2 of 5 pathways on level-3. Here we cal-
culated pairwise distances of all 30 samples in Synthetic Dataset I
using four metrics of Bray–Curtis, Cosine, Euclidean, JSD and our
HMS, respectively. From the PCoA and clustering (‘hclust’ function
in R) results in Figure 2, we observed that only HMS correctly gen-
erated the expected relations among the three groups that dist(m1,
m2) > dist(m1, m3), but Bray–Curtis distance, Cosine distance,
Euclidean distance and JSD delivered the opposite results thus lead
to erroneous patterns.

3.2.2 Anomalous layout by sparse distribution

For Synthetic Dataset II, KO distribution of samples was spares and
zero-inflated (Xu et al., 2015) that few KOs were in common among
different groups (Fig. 3). As the dataset design, group m1 was close
to m2 for their KOs were located at the same hierarchical branches
than m3, and all methods produced the expected relation of dist(m1,
m2) < dist(m1, m3) among three synthetic groups. However,
PCoA layouts of the benchmark methods were anomalous that
failed in assessing the beta-diversity within each group. For example,
10 samples of group m3 were clustered as fully overlapped points in
benchmark PCoA coordinates. The reason was that the high dimen-
sionality and sparsity of KO profiles enlarged distances among
groups, while omitted the variation of samples in the same group.
By taking additional upper-level metabolic pathways for distance
measurement, HMS differentiated three groups while in-group beta-
diversity was kept, thus reduced the zero-inflation effects of func-
tional profiles that may disturb the beta-diversity pattern.

3.3 Benchmark the efficiency of parallel computing in

distance matrix calculation and PCoA
To test the efficiency of the HMS software, we performed the dis-
tance matrix calculation and PCoA for different numbers of samples
(from 2000 to 20 000) that randomly selected from Real Dataset I,
and compared the total running time and maximum RAM usage to
the benchmark methods of R-based distance and PCoA methods. All
tests were performed on a single non-shared computing node with
80 threads (supported by 40 physical cores). Calculations on each
sample number were repeated for 10 times, and the mean running

Table 1. The datasets to assess the performance of HMS on accuracy, running time and memory usage

Dataset No. of samples Sample source Sample type

Synthetic Dataset I 30 Synthetized from KO gene families Synthetic sample

Synthetic Dataset II 30 Synthetized from KO gene families Synthetic sample

Real Dataset I 20 000 Microbiome Search Engine database Real sample, inferred from 16S rRNA gene amplicons by

PICRUSt2(mse.ac.cn)

Real Dataset II 5350 Human Microbiome Project, Phase I Real sample, inferred from 16S rRNA gene amplicons by

PICRUSt2

Real Dataset III 2354 Human Microbiome Project, Phase I Real sample, reconstructed from WGS data by

HUMANn2
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time and memory consumption was obtained to avoid interferences
from computer system. When processing 20 000 samples, HMS
completed the pairwise distance matrix in 73 min that is 36 times
faster than the benchmark methods, yet saved over 82% memory by
a peak RAM usage of 2.5 GB (Fig. 4A; Supplementary Fig. S1A in
log-scale; Supplementary Table S1). Then for the PCoA, HMS also
exhibited the advantages in both speed (161 min, 17 times faster)
and resource usage (7.5 GB, 80% less memory) compared to the
benchmark methods (Fig. 4B; Supplementary Fig. S1B in log-scale;
Supplementary Table S2). Therefore, HMS achieved an overall 23
times speedup (HMS: 3.89 h; mean of benchmark methods: 89.55 h)
in parsing the functional beta-diversity pattern, which is crucial and
valuable as the number of metagenomic functional profiles is expo-
nentially growing.

3.4 Performance of functional beta-diversity analysis on

real datasets
Furthermore, the capability and reliability of HMS in processing
real microbiomes were verified by Real Datasets II and III in two
subtests. Subtest 1. PCoA of different distance matrices: For the two
real datasets, we calculated their pairwise distance matrix by HMS
and aforementioned three benchmark distance metrics, and plotted
the principle coordinates by a unified PCoA method (‘vegan’ pack-
age in R). For both two real datasets, the hierarchical dissimilarity
algorithm was able to cluster and distinguish microbiomes by their
source habitats (ANOSIM test R¼0.90 and R¼0.92 for Real
Datasets II and III, P-value < 0.01; ‘anosim’ function of ‘vegan’
package in R), as well as Bray–Curtis, Cosine and JSD (Fig. 5),
showing the applicability of HMS distance on real microbiomes.
Notably, the Euclidean distance produced a disordered PCoA layout
on Real Dataset III (WGS data of human microbiome) due to the
sparse KO profiles among different body sites (Thompson et al.,
2017). Subtest 2. Different PCoA methods on the same distance

matrix: We then took the HMS distance matrix as input, and
deduced the principle coordinates by PCoA of HMS, ‘vegan’ pack-
age and ‘ape’ package in R, respectively, and assessed the consist-
ency of three results using Monte-Carlo test (10 000 times
permutation; ‘procuste.randtest’ function of ‘ade4’ package in R).
Results in Figure 6 suggested that results by HMS and benchmark
methods were strongly correlated without significant difference
(R>0.99, P-value < 0.01), hence the HMS PCoA provides the inter-
pretation of beta-diversity pattern with equivalent precision as other
implementations but much higher speed (Fig. 4B).

4 Conclusion and discussion

A massive number of microbiomes from various habitats have al-
ready been generated to characterize the dynamics between micro-
bial metabolic features and their surroundings. Typically,
microbiome functional profiles are sparse since gene families are
unique and non-shared across samples from multiple habitats.
Although some approaches like Carnelian (Nazeen et al., 2020) can
find a few metabolic pathways as biomarkers for different samples,
such a small fraction is not adequate for the ‘whole-community-
level’ comparison when using geometry- or statistics-based metrics
(Xu et al., 2015). In this work, we proposed a hierarchical-based al-
gorithm for comprehensive distance measurement among micro-
biome functional features, which provides higher sensitivity in
detecting variations in upper-level metabolic pathways but ignored
by other metrics, reducing the zero-inflation effects of functional
profiles. This release version has integrated the KOs and BRITE
pathways, making HMS direct accepts functional profiles from
HUMANn2 (Franzosa et al., 2018), PICRUSt2 (Douglas et al.,
2020; Langille et al., 2013) or Meta-Apo (Jing et al., 2021) as input.
The COG (Cluster of Orthologous Genes) (Galperin et al., 2015)
and MetaCyc (Caspi et al., 2016) pathways will also be supported in

Fig. 2. PCoA and hierarchical clustering results on Synthetic Dataset I. Only HMS generates the expected beta-diversity pattern that dist(m1, m2) > dist(m1, m3)

Fig. 3. PCoA and hierarchical clustering results on Synthetic Dataset II. Layouts of the benchmark methods are anomalous that failed in assessing the beta-diversity within

each group, while HMS kept the in-group variations
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the further versions, as well as the customized hierarchical function-
al annotations to expand the usability and compatibility.

On the other hand, it is possible that a single study can survey
over 10 000 microbiomes, e.g. Earth Microbiome Project
(Thompson et al., 2017) and American Gut Project (McDonald
et al., 2018). Such high throughput of multi-habitat profiling also
introduces new challenges for computing the similarity of microbial
functions in speed. Although the hierarchical-based algorithm is the-
oretically more complex and time-consuming (refer to ‘running time

of HMS with single-core’ in Supplementary Tables S1 and S2), the
optimized parallelization strategy achieved a 23� faster compared
to the existing R-based implementations that only allow serial runs.
Notably, the parallelized PCoA module in HMS could also be used
as a general-purpose multi-dimensional scaling method for beta-di-
versity illustration and visualization. Therefore, by two alternative
implementations of standalone software and R plug-in package, the
HMS enables the beta-diversity pattern depiction for thousands of
microbiomes on a single computing node or even a personal

Fig. 5. PCoA of real human microbiome functional profiles analysed from (A) 16S rRNA gene amplicons in Real Dataset II and (B) WGS in Real Dataset III

Fig. 4. Running time and peak memory usage of distance matrix calculation and PCoA. (A) For pairwise comparison, HMS is 36 times faster than the benchmark methods, yet

saves over 82% memory usage. (B) For PCoA, HMS is 17 times faster than the benchmark methods and saves over 80% memory usage
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computer, which promotes the understanding of roles and effects of
microbial communities from functional aspect on a large scale.

Code and data availability

The HMS software is available at GitHub repository under a GNU
GPL license. It is released in two alternative forms: a standalone
software package and an equivalent R package for invocation in R
scripts.

The standalone package (https://github.com/qdu-bioinfo/hier
archical-meta-storms) is developed by Cþþ for direct installation
and use under Linux or MAC operating systems. A shell-based auto-
matic installer is integrated in the package for easy installation by
only one-line command. In the current version, the complete bac-
teria KOs and BRITE hierarchical annotations of pathways have
been integrated. After installation, the HMS takes microbiome func-
tional profiles of KO relative abundance as input, computes and out-
puts a pairwise distance matrix and the principle coordinates of
PCoA for all input samples. The detailed tutorial is available in the
package as well as an example demo dataset for quick start.

In addition, we also encapsulate the Cþþ source codes as an R
package (https://github.com/qdu-bioinfo/hrms) by RcppArmadillo
framework, making the kernel functions of distance calculation and
PCoA callable by R interpreter in both R terminal and R scripts.
Coupled with various R-based plug-ins of statistics, machine learn-
ing and graph plotting, the HMS will contribute in further develop-
ments and applications of microbiome functional data mining.

All datasets in this manuscript are also publicly available at
GitHub (https://github.com/qdu-bioinfo/hierarchical-meta-storms).
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