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Abstract

Motivation: Antimicrobial peptides (AMPs) are increasingly being used in the development of new therapeutic drugs
in areas such as cancer therapy and hypertension. Additionally, they are seen as an alternative to antibiotics due to
the increasing occurrence of bacterial resistance. Wet-laboratory experimental identification, however, is both time-
consuming and costly, so in silico models are now commonly used in order to screen new AMP candidates.

Results: This paper proposes a novel approach for creating model inputs; using pre-trained language models to pro-
duce contextualized embeddings, representing the amino acids within each peptide sequence, before a convolution-
al neural network is trained as the classifier. The results were validated on two datasets—one previously used in
AMP prediction research, and a larger independent dataset created by this paper. Predictive accuracies of 93.33%
and 88.26% were achieved, respectively, outperforming previous state-of-the-art classification models.

Availability and implementation: All codes are available and can be accessed here: https://github.com/williamdee1/
LMPred_AMP_Prediction.

Contact: williamtimothydee@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Antimicrobial peptides (AMPs) are a set of naturally occurring mol-
ecules that exhibit a wide range of functions, including antibacterial,
anticancer, antifungal and antihypertensive properties (Bhadra
et al., 2018). When used to create therapeutic drugs, peptides are in-
creasingly showing efficacy in terms of treatment in a variety of im-
portant areas; ranging from cancer targeting to eliminating
bacterial, viral and fungal pathogens (Thundimadathil, 2012).

Current cancer therapies, such as radiotherapy and chemo-
therapy, often elicit harmful side-effects, and cancer cell resist-
ance to chemotherapeutic agents is a large and growing issue
(Rebucci and Michiels, 2013). Peptides have long been used as
biomarkers in the detection and diagnosis of specific cancers,
such as pancreatic, colorectal and lung (Xiao et al., 2013).
However, recently their use has been extended, as they have been
shown to bind to specific cancerous sites and so have been used as
carriers for targeted drugs (Wang et al., 2014). Certain peptides
have also been shown to exhibit an inhibitory effect in cancer
cells themselves (Rayaprolu et al., 2013).

Additionally, pathogenic bacteria are more frequently develop-
ing multi-drug resistance (Bhadra et al., 2018; World Health
Organization, 2014), rendering current antibiotic treatments inef-
fective. Given that AMPs are endogenous, they have shown a lower
likelihood for bacteria to develop resistance to them (Boman, 2003),
and so offer a complementary alternative to traditional drugs.

Identification of natural AMPs is therefore becoming
increasingly important. However, experimental identification is
both time-consuming and costly, hence the need for in silico pre-
diction models (Bhadra et al., 2018; Li and Wang, 2016).
Previous model-based methods have utilized a range of Machine
Learning approaches, including; Hidden Markov Models (Fjell
et al., 2007), Fuzzy K-Nearest Neighbour (FKNN; Xiao et al.,
2013), Random Forest (RF; Bhadra et al., 2018), Discriminant
Analysis (DA; Thomas et al., 2010) and Support Vector Machines
(SVM; Manavalan et al., 2017; Tyagi et al., 2013).

Whilst these methods achieved high levels of accuracy, the fea-
ture creation steps were often extensive, as they were reliant on gen-
erating inputs that represented the biological composition of each
peptide sequence. Bhadra et al. (2018) performed a survey of exist-
ing approaches to summarize the common data pre-processing steps
and found that prior research was most likely to use ‘compositional,
physicochemical, structural properties, sequence order and the pat-
tern of terminal residues’ in order to create the final feature set. In
the case of Manavalan et al. (2017), 436 additional features were
engineered—20 representing amino acid composition, 400 relating
to dipeptide composition, 5 associated with atomic composition and
11 referring to different physicochemical properties.

Compositional metrics, like those described above, fail to take se-
quence order into account—even though it is integral to the underlying
function of peptides. To account for this, some prior approaches used
Chou’s pseudo-amino acid composition (PseAAC; Chou, 2001),
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generating correlation factors between each amino acid, which partly
incorporated some relational information regarding sequence order
(Meher et al., 2017; Xiao et al., 2013). Similarly, Evolutionary Feature
Construction (Kamath et al. 2014) has also been used to detect func-
tional signals representing non-local, position-specific interactions at
the nucleotide level (Veltri et al., 2017).

Three recent papers have achieved improved model accuracies
by applying Natural Language Processing (NLP) techniques to cre-
ate vectorized embeddings of the amino acid sequences as the sole
input features (Su et al., 2019; Veltri et al., 2018; Wu et al., 2019).
This has the benefit of reducing the time taken, as well as the expert
biological knowledge needed, when creating model inputs.
Furthermore, NLP approaches have the potential to represent richer
positional information reflecting the specific locations of amino
acids within a given sequence.

Veltri et al. (2018) utilized the Bag of Words (BoW) method to
initially assign a unique numerical token to each amino acid in a se-
quence. This approach could recognize basic patterns, such as which
amino acids are the same, and the frequency of specific amino acids
in a sequence or throughout the dataset. However, BoW fails to cap-
ture component similarity. To partially alleviate this issue, an initial
embedding layer was used in the neural network architecture, to
convert the discrete vectors into a continuous and dense latent space
represented by a three number vector, which could then reflect more
complex relationships between inputs.

Su et al. (2019) built on this research by developing a multi-scale
deep neural network (MS DNN), containing multiple convolutional
layers, each using different filter lengths. This approach solely used
an embedding layer to capture the semantic similarity between
amino acids and found that long short-term memory (LSTM) layers
did not improve the predictive ability of their model. Furthermore,
Su et al. (2019) found that creating a fusion model by combining
their MS DNN with traditional compositional methods further
improved results.

Lastly, Wu et al. (2019) used the Word2Vec Skip-Gram algo-
rithm to create embeddings. This method learns by being given a
central word (or amino acid in this case) and then predicting the
most likely words in a fixed window surrounding it, allowing it to
reflect word similarity (Mikolov et al., 2013). One drawback of all
these approaches, however, is that they fail to convey the complex
contextual information encoded by the position of each amino acid.

In contrast, this paper proposes a novel method of creating
embedding vectors—by utilizing language representation models
that have been pre-trained on large protein databases to produce
contextualized embeddings. Language models (LMs) are built using
the Transformer architecture (Vaswani et al., 2017) and have pri-
marily been used for language-based tasks, given that they have
been pre-trained on large corpora such as the 2500 million words
found in Wikipedia (Devlin et al., 2019). They have been proven to
outperform humans in some assessments, such as the Stanford
Question Answering Dataset—a reading comprehension test
(SQuAD 2.0, 2021), as well as the two NLP approaches previously
mentioned. When these models are pre-trained on protein sequen-
ces, treating each amino acid as a word, and the sequence as a sen-
tence, they have shown an ability to generalize towards
understanding the ‘language of life’ itself, as Elnaggar et al. (2020)
applied them to accurately predict both per-residue protein second-
ary structure and per-protein subcellular localization.

The LMs selected for this report are the auto-encoder models;
Bidirectional Encoder Representations from Transformers (BERT;
Devlin et al., 2019) and Text-To-Text Transfer Transformer (T5;
Raffel et al., 2020), and the auto-regressive model XLNet (Yang
et al., 2020). These have already been pre-trained using the Summit
supercomputer on either the UniRef100 or the UniRef50 datasets,
consisting of 216 and 45 million protein sequences, respectively
(Suzek et al., 2015). The UniRef clusters are proteins sourced from
the UniProt database, with the number referring to the similarity
threshold set in the CD-HIT programme (Huang et al., 2010).
Therefore, UniRef100 contains all UniProt sequences, whereas
UniRef50 only contains sequences that do not share more than 50%
identity. Additionally, BERT and T5 were also pre-trained on the

Big Fat Database dataset, comprising 2122 million sequences
(Steinegger and Söding, 2018). All models were accessed via the
ProtTrans Github page (https://github.com/agemagician/ProtTrans).

BERT aims to predict data from artificially corrupted inputs. It
does this by adding [MASK] tokens during pre-training to replace a

percentage of input words at random and it then aims to predict this
masked word based on the surrounding context. In this manner, it is

able to capture bi-directional context. However, all masked words
are predicted in parallel and independently of one another, which
means that some of the overall context of a sentence can be lost dur-

ing training. Also, whilst the artificial [MASK] tokens are used dur-
ing pre-training, they are absent when the model is subsequently

fine-tuned on a specific task, which can result in a ‘pretrain-finetune
discrepancy’ (Yang et al., 2020).

XLNet is an auto-regressive model, which functions more simi-
larly to a feed-forward neural network; these models aim to predict
the next word from a set of words, given the context. However,

unlike auto-encoder models, the prediction is constrained to be uni-
directional. XLNet partially overcomes this drawback through
permutation language modelling, whereby the model maximizes the

expected log-likelihood of the sequence when all possible permuta-
tions of the sequence order are considered (Yang et al., 2020). By

learning context from randomly ordered sentences the resulting
model is in essence bi-directional without requiring masking.
Furthermore, XLNet utilizes a memory mechanism introduced by a

previous auto-regressive model—Transformer-XL (Dai et al.,
2019)—which allows for the processing of longer contextual

segments of data than BERT.
The T5 was introduced after Raffel et al. (2020) studied the current

landscape of transfer learning techniques for NLP and found that, gen-
erally, encoder–decoder models outperformed those only utilizing one
half of the Transformer architecture. The T5 model therefore uses both

parts of the Transformer, in contrast to BERT which only uses the en-
coder, and XLNet which only uses the decoder. T5 was also trained on
a new ‘Colossal Clean Crawled Corpus’, a comparatively clean and

natural text dataset that was several magnitudes larger than many pre-
vious training datasets. There is evidence that this additional complex-

ity, and the fact that positional encodings for each attention head can
be shared across all layers, gives T5 a performance advantage over the
other two LMs (Elnaggar et al., 2021).

A convolutional neural network (CNN) has been chosen as the
classifier based on its success in prior peptide prediction research

(Veltri et al., 2018; Wu et al., 2019), as well as its successful applica-
tion to other areas within bioinformatics, such as mapping protein

sequences to folds (Hou et al., 2018) or the prediction of RNA sec-
ondary structure (Zhang et al., 2019). The convolutional layers
apply filters that can interpret the spatial and temporal dependencies

between amino acids that have been represented by the contextual-
ized LM embeddings.

2 Methods

2.1 Datasets
Validation of the approach was performed on two datasets. One
which was sourced externally and has been used in prior AMP pre-

diction research—referred to as the ‘Veltri Dataset’. The second has
been constructed independently using publicly available resources—
the ‘LMPred Dataset’.

2.2 Veltri dataset
The Veltri dataset was sourced from the Antimicrobial Peptide
Scanner web page (https://www.dveltri.com/ascan/). This contains

1778 AMP and 1778 non-AMP samples and is split into the exact
training, validation and test sets that Veltri et al. (2018) used to

build and evaluate their model.
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2.3 LMPred dataset
The LMPred dataset has been built from a combination of external
sources. The aim was to produce the largest and most up-to-date
AMP dataset possible.

The positive samples (the AMPs) have been gathered from the free-
ly available datasets shared by Veltri et al. (2018) and Bhadra et al.
(2018) and combined with the peer-reviewed, natural AMPs taken
from the DRAMP 2.0 database (Kang et al., 2019). When duplicates

were removed, these sources contributed 7053 AMPs. The samples are
then filtered by removing AMPs <10 amino acids in length, as well as
those sharing 90% sequence identity according to the CD-HIT online

web server (Huang et al., 2010). After filtering, the remaining 3758
AMPs were included in the LMPred dataset, being 24% more than the

next largest collection used by Bhadra et al. (2018).
There is little incentive to experimentally prove a peptide is non-

AMP, and thus there are no large repositories of peptides that have
been shown to lack desirable activities. Therefore, without access to
a formal non-AMP database, negative samples were collected simi-

larly to prior research (Veltri et al., 2018; Xiao et al., 2013).
Sequences that had been reviewed and verified were downloaded
from the UniProt database (https://www.uniprot.org/). The data

were then filtered according to the following criteria:

• Any duplicate entries were removed.
• Only samples whose subcellular location was cited as ‘cyto-

plasm’ were retained to ensure the origination was similar to the

AMP samples.
• Any samples labelled as specifically having the activities: ‘anti-

microbial’, ‘antibiotic’, antiviral’, ‘antifungal’, ‘effector’ or

‘excreted’ were omitted.
• Datapoints with fewer than 10 amino acids and more than 255

amino acids were removed. The remaining samples then mirrored

the range of AMP sequence lengths in the positive sample dataset.
• Sequences which contained unnatural amino acids (Z, B, J, O, U

or X) were removed.
• Finally, sequences were screened for similarity using the CD-HIT

programme, using a 40% similarity threshold. The threshold can

be stricter for non-AMPs given the larger number of available

sequences, and this ensures a more diverse dataset overall.

Previous research found that if the negative sample sequence-
length distribution matched that of the positive samples, this

resulted in the highest classification accuracy models (Veltri et al.,
2018). Therefore, 3758 non-AMPs were selected from the remaining

pool of 33 722 to compile a final dataset that matched this criterion.
The dataset was then split using sklearn’s ‘train_test_split’ function
(https://scikit-learn.org/); 40% of the data were set aside for train-

ing, 20% for validation and the remaining 40% for testing.
The Supplementary Information includes the sequence-length

distributions of the AMP and non-AMP samples within the LMPred
dataset. The splitting of train, test and validation sets was performed

on a stratified basis to retain a similar distribution across all data-
sets. The data have been made freely available to download at
https://github.com/williamdee1/LMPred_AMP_Dataset.

2.4 LM embeddings
Instructions were followed on the ProtTrans Github page for how to
create word embeddings using each LM. An overview of this process

is as follows:

• Download the specific tokenizer and pre-trained LM hosted on

the ProtTrans Rostlab server.
• Convert the sequences of amino acids into a list and add spaces

in between each amino acid.
• Any unnatural amino acids (‘U, Z, O, B, J’) are mapped to ‘X’.

• The sequence IDs are encoded in batches by the tokenizer, pad-

ding with zeros to a specified max length so all inputs are the

same length.
• Torch tensors representing the input IDs and the mask used for

the attention mechanism are created.
• The embeddings are generated in batches of 10 to ensure mem-

ory constraints are not breached and the output is saved as a

numpy array.

Certain LMs produce special tokens, such as [CLS] or [SEP]
tokens, that are included in the embedding array. The CLS token is
created by some models to be used as an intelligent average one-di-
mensional vector summarizing the full two-dimensional embedding.
It is often used as the input for NLP classification tasks. The SEP
token separates any special tokens from the embeddings. In this pro-
ject, the full embeddings were used as not all LMs produce CLS
tokens and this ensures greater comparability across results.
Additionally, using the full embeddings ensures valuable informa-
tion is not lost and, instead, the neural network can decide how to
screen the data through the use of the filters, kernels and max-pool-
ing layers.

An example of a vectorized embedding produced by a pre-
trained LM is shown in Figure 1.

2.5 Model architecture
A CNN was chosen as the classifier for this paper and was built
using the Keras framework (https://keras.io/), which utilizes the
Tensorflow (Abadi et al., 2016) back-end.

Two different architectures were tested for each LM, altering
the number of convolutional, max pooling, dense and batch nor-
malization layers to investigate the impact on performance. These
architecture changes were not found to significantly impact results,
with the maximum difference being a 1.47% change in accuracy
for the T5 model pre-trained on the Big Fat Database. Full results
can be found within the Supplementary Information. The architec-
ture selected for the best-performing LM—T5 UniRef50—can be
found in Figure 2.

2.6 Hyperparameter tuning
For each set of LM embeddings, tuning was performed independent-
ly to ascertain the optimal hyperparameters for each resulting CNN
model. The tuning was performed using the Keras Tuner (https://
keras.io/keras_tuner), which provides a framework to apply differ-
ent search algorithms. Both the Hyperband (Li et al., 2016) and the
Bayesian Optimization (Snoek et al., 2012) tuning algorithms were
used. Utilizing the two methods in combination has been shown to
outperform using them separately as, ‘bandit-based approaches’
(like Hyperband) ‘lack guidance’, whereas Bayesian optimization
across the entire search space can be ‘computationally infeasible’
(Falkner et al., 2018). The tuning uses only the training and valid-
ation partitions of the data.

Tuning was performed for a maximum of 10 epochs for
Hyperband, and 15 for Bayesian Optimization, with an early stop-
ping call back after 6 epochs without a decrease in validation loss,
and a reduction of the learning rate by a factor of 1e�1 after 4
epochs without a decrease. The optimal parameters were the ones,
which produced the model with the lowest validation loss during
training.

2.7 Model training and evaluation
Once hyperparameters were selected for each LM-embedding ap-
proach, each CNN model was trained for 30 epochs with the opti-
mizer loss function set to ‘binary_crossentropy’ and metrics set to
‘accuracy’. Early stopping was set to 12 epochs, and the learning
rate was reduced by a factor of 1e�1 after 4 epochs without an im-
provement in validation loss. The model checkpoint call back saved
the model with the lowest validation loss during training.
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In terms of evaluation, each model was tested for accuracy (Ac.)
on the test set for both the Veltri and the LMPred datasets.
Accuracy is considered the goal metric as identifying positive and
negative samples correctly is equally important. Additionally, sensi-
tivity (Sn.), specificity (Sp.), Matthew’s correlation coefficient
(MCC) and the area under the ROC curve (AUC) were also calcu-
lated to provide a full overview of model performance. These met-
rics were calculated as follows using the number of true positive
(TN), true negative (TN), false positive (FP) and false negative (FN)
predictions:

Sn: ¼ TP

TPþ FN
(1)

Sp: ¼ TN

TNþ FP
(2)

Ac: ¼ TPþ TN

TPþ TNþ FPþ FN
(3)

MCC ¼ ðTP� TNÞ � ðFP� FNÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p : (4)

The area under the ROC curve (AUC) was calculated using the
sklearn metrics package.

The results were compared to that of the available webserver
models, produced by previous state-of-the-art AMP prediction

papers, when provided the same test sets. These include; the CAMP
server’s artificial neural network, support vector machine, discrimin-
ant analysis and random forest models (Thomas et al., 2010),

AmPEP’s random forest (Bhadra et al., 2018), iAMP-2L’s fuzzy K-
nearest neighbour (Xiao et al., 2013), iAMPpred’s support vector

machine (Meher et al., 2017) and Veltri’s CNN model (Veltri et al.,
2018).

2.8 Replicating Veltri’s prior approach
In order to ensure a robust comparison with Veltri et al.’s
(2018) method for AMP prediction, a replica of their CNN
was constructed. Firstly, it was tested on the Veltri dataset,

and its efficacy was compared to that of the original paper, to
verify it had been replicated correctly. This approach was then
tested on the LMPred test set, having been trained using the

additional training and validation samples provided by that
dataset, which the Veltri webserver model has not had access

to. Lastly, since some positive samples in the LMPred dataset
were sourced from the dataset used by Veltri et al. (2018), the
webserver model will have been trained on 457 AMPs it is then

asked to predict. Metrics will therefore also be included show-
ing the efficacy of the Veltri webserver model at predicting

only unseen data.

Fig. 1. An example of how the sequence ‘MQLSAPHCKKL’ would be represented after applying a pre-trained LM to create an embedding vector

Fig. 2. An illustration of the CNN architecture used in the best-performing LM embedding-based classifier—T5 Uniprot 50
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2.9 Technical settings
Creating word embeddings, as well as hyperparameter tuning, train-

ing and evaluation of the CNN models was performed using Google
Colab Pro (https://research.google.com/colaboratory/). A Tesla
P100-PCIE-16 GB GPU was used, as well as up to 24 GB of RAM

and 150 GB of disk resources.
Models using two convolutional layers (T5 UniRef50 and

XLNet) took 107 s per epoch to train and 166 s to load and predict
the 3007 test samples in the LMPred dataset. The size of those mod-
els was �1.16 GB. This is compared to 35 s per training epoch, 34 s

for testing and 5.2 MB in size, for the models using one convolution-
al layer (BERT UniRef100, BERT BFD and T5 UniRef100).

3 Results

3.1 Veltri dataset
Table 1 shows the performance of the CNN models, using the differ-

ent LM embeddings as inputs, when tested on the Veltri dataset.
These results have been compared with the results published in
Veltri et al.’s (2018) AMP peptide prediction paper, as well as Su

et al.’s (2019) multi-scale DNN and fusion model results.
The best-performing model—T5 pre-trained on the UniRef50

database—achieved an accuracy of 93.33%, being 0.84% higher
than that Su et al.’s (2019) fusion model results of 92.55% on the
same dataset. The T5 UniRef50 model also achieved state-of-the-art

MCC and auROC metrics, only being bested on specificity by the
T5 BFD model and on sensitivity by the CAMP Random Forest web-

server model (Thomas et al., 2010).
The auto-regressive model, XLNet, underperformed the two

auto-encoder (BERT and T5) LM-based approaches, as well as the
approach used by Veltri et al. (2018). This underperformance was
noted across every metric. However, all models using NLP techni-

ques to create embeddings, and CNNs as the classifier, displayed
higher accuracies than those using compositional biological infor-

mation and machine learning models.

3.2 LMPred dataset
Table 2 shows the performance of the CNN models when tested on
the LMPred dataset, compared to the available webserver model
predictions when provided the same test data. Similar results were
found to Section 3.1, with the T5 auto-encoder LM, pre-trained on
UniRef50, producing embeddings that resulted in the CNN with the
highest accuracy (88.26%).

The performance difference between the models created by this
paper and the available web server models was more noticeable,
likely due to the increased number of samples (111% more than the
Veltri dataset) leading to a higher difficulty classification task. The
T5 UniRef50 CNN produced 12.4% higher accuracy than the Veltri
webserver model, which increased to a 17.8% gap when the Veltri
webserver was only presented with unseen test data. Su et al. (2019)
did not develop a web server model, meaning this dataset could not
be tested with their fusion approach.

To differentiate between the impact of the increased number of
training and validation samples, and the embedding approach taken,
a replica of Veltri’s approach was built, utilizing the training and
validation data of the LMPred dataset. This approach resulted in an
uplift of 2.6% versus the Veltri webserver model, but still fell 9.6%
short of the best LM-based CNN’s accuracy—implying that this is
the true performance difference between approaches for this dataset.

Consistent with the results found for the Veltri dataset, all models
leveraging NLP techniques and CNN’s scored higher accuracies than
those utilizing specialist biological feature sets and traditional machine
learning models. The T5 model trained on the BFD also displayed the
highest specificity, whilst the Veltri and the IAMPred (Meher et al.,
2017) webserver models produced the highest sensitivity. The XLNet
embeddings proved to be inferior to both BERT and T5 and did not
perform significantly better than the replica Veltri model.

4 Discussion

This paper has proposed a novel method for producing model inputs
for classifying AMPs. By utilizing the contextualized embeddings

Table 1. Comparison with state-of-the-art methods—Veltri dataset

Approach Method Sn. (%) Sp. (%) Ac. (%) MCC AUC (%)

External models

AntiBP2 SVM 87.91 90.80 89.37 0.7876 89.36

CAMP ANN 82.98 85.09 84.04 0.6809 84.06

CAMP DA 87.08 80.76 83.92 0.6797 89.97

CAMP RF 92.70 82.44 87.57 0.7554 93.63

CAMP SVM 88.90 79.92 84.41 0.6910 90.63

iAMP-2L FKNN 83.99 85.86 84.90 0.6983 84.90

IAMPred SVM 89.33 87.22 88.27 0.7656 94.44

gkmSVM SVM 88.34 90.59 89.46 0.7895 94.98

Veltri CNN 89.89 92.13 91.01 0.8204 96.48

Su MS DNN 91.01 93.64 92.41 0.8486 97.23

Su FUSION 89.89 94.96 92.55 0.8523 97.30

Models created by this paper

Veltri (Replica) CNN 88.48 92.70 90.60 0.8125 96.12

BERT (Uni 100) CNN 90.31 93.82 92.06 0.8418 97.29

BERT (BFD) CNN 91.99 92.13 92.06 0.8413 97.55

T5 (Uni 50) CNN 92.28 94.38 93.33 0.8668 97.89

T5 (BFD) CNN 88.62 95.79 92.21 0.8463 97.41

XLNet (Uni 100) CNN 88.48 91.01 89.75 0.7952 95.78

Notes: The performance of the webserver models and the Veltri et al.

model was sourced from the original Veltri et al. (2018) paper, whilst Su et al.

(2019) was sourced directly. These results have been compared with the mod-

els built in this paper—being the replica of the Veltri model, as well as the

models built using the different LM embeddings. The highest scoring model

for each metric has been highlighted in bold.

Table 2. Comparison with state-of-the-art methods—LMPred dataset

Method Sn. (%) Sp.(%) Ac.(%) MCC AUC (%)

External webserver models

AmPEP RF 56.62 43.48 50.05 0.1050 n/aa

CAMP ANN 77.51 72.54 75.02 0.5011 n/aa

CAMP DA 81.04 71.41 76.22 0.5269 80.16

CAMP RF 84.70 72.74 78.72 0.5785 83.05

CAMP SVM 83.03 71.88 77.45 0.5525 80.27

iAMP-2L FKNN 76.18 74.60 75.39 0.5079 n/aa

IAMPred SVM 89.55 55.92 72.73 0.4828 82.28

Veltri CNN 90.09 66.95 78.52 0.5863 86.45

Veltri—Unseen

Datab

CNN 86.42 66.95 74.94 0.5277 84.42

Models created by this paper

Veltri (Replica) CNN 75.98 85.11 80.55 0.6134 85.82

BERT (Uni 100) CNN 84.43 84.91 84.67 0.6934 90.84

BERT (BFD) CNN 86.83 88.16 87.50 0.7500 93.58

T5 (Uni 50) CNN 88.89 87.63 88.26 0.7653 94.66

T5 (BFD) CNN 86.16 88.96 87.56 0.7515 93.68

XLNet (Uni 100) CNN 82.63 78.92 80.78 0.6160 88.87

Ten-fold cross-validation

T5 (Uni 50) CNN 88.66 85.54 87.12 0.7437 93.86

Notes: Results produced when testing models created within this paper, as

well as external webserver models, on the LMPred test dataset. The highest

scoring model for each metric has been highlighted in bold.
aThe web server did not output prediction probabilities, so AUC could not

be calculated.
bRefers to only the samples not already seen by the Veltri webserver model

being submitted as the part of the LMPred test set.
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produced by pre-trained LMs, the resulting CNN achieved
improved classification accuracy compared to the existing state-of-
the-art methods across two datasets. This provides further evidence
that NLP techniques can replicate some of the ‘language of life’,
which previously required extensive time and biological knowledge
in the feature engineering stages to represent.

The results support the research of Elnaggar et al. (2021) who
found that true bi-directionality of contextual embedding was ex-
tremely important for protein structure prediction. This implies that
the structure of amino acids is important bi-directionally and it is
likely that the permutation modelling that XLNet uses, whilst it can
work for sentences, is not so applicable in the case of peptide or pro-
tein sequences. The more distant dependency modelling that XLNet
allows appears to be less beneficial in this use case, as the BERT-
based embeddings do not suffer from lacking it.

Furthermore, this research also supported Elnaggar et al.’s (2021)
results that found T5 to be the superior model for prediction—as the
T5 model trained on UniRef50 generated the highest accuracy metric
when tested on both datasets. This demonstrates the benefits of using
the whole Transformer architecture to build the pre-trained LM, rather
than just the encoder (BERT) or decoder (XLNet).

Also similar to Elnaggar et al.’s (2021) findings, there was no
conclusive evidence that pre-training the LMs on larger datasets
resulted in embeddings that improved predictive accuracy. On both
the Veltri and the LMPred dataset, the T5 model trained on the BFD
produced lower accuracy than the one trained on the UniRef50
dataset. The BERT BFD model did outperform the BERT
UniRef100 model, but only on the larger, LMPred dataset. More di-
verse pre-training datasets may prove to be the optimal approach
for this problem. This is implied by the results, as UniRef50 only
includes the sequences from UniProt that do not share more than
50% sequence similarity. Additionally, the T5 model is also trained
on a large, diverse ‘cleaned’ corpus, compared to the smaller and
more uniform corpora used to initially produce BERT. The abun-
dance of noise in these databases, i.e., in UniRef100 caused by dupli-
cated sequences, may have proved detrimental to overall learning.

Future research could investigate the effectiveness of the pre-
trained LMs not considered in scope by this paper. These include the
ELECTRA and ALBERT models, as well as the Transformer-XL
model when it is released on the ProtTrans Github page (https://
github.com/agemagician/ProtTrans). This work would likely pro-
vide further support to the evidence found in this paper that auto-
encoder models produce more context-rich embeddings, which can
be more effectively used as inputs into CNN models predicting
AMPs. It would be interesting to note whether these performance
trends are similar across AMPs with differing activities (i.e. anti-
cancer compared to antihypertensive peptides).

Further work could also split the AMPs into explicit cohorts, i.e.
based on sequence length, or the frequency of specific amino acids,
similar to Yan et al.’s (2020) paper predicting AMPs shorter than 30
amino acids in length. This approach may reveal that different LMs
excel at predicting different cohorts, a hypothesis that may be sup-
ported by the evidence that longer-term dependency modelling is more
important in the case of longer sentences for NLP tasks, or in this
case—longer sequences. Lastly, Su et al. (2019) showed that a fusion
model combining compositional information with deep learning
embedding approaches can outperform using either method separately.
It could therefore be productive to investigate the impacts of combining
all the different approaches cited within this paper, to evaluate which
combinations produces the optimal classification model.
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