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Abstract

The connectivity of Artificial Neural Networks (ANNs) is different from the one observed in

Biological Neural Networks (BNNs). Can the wiring of actual brains help improve ANNs

architectures? Can we learn from ANNs about what network features support computation

in the brain when solving a task? At a meso/macro-scale level of the connectivity, ANNs’

architectures are carefully engineered and such those design decisions have crucial impor-

tance in many recent performance improvements. On the other hand, BNNs exhibit complex

emergent connectivity patterns at all scales. At the individual level, BNNs connectivity results

from brain development and plasticity processes, while at the species level, adaptive recon-

figurations during evolution also play a major role shaping connectivity. Ubiquitous features

of brain connectivity have been identified in recent years, but their role in the brain’s ability to

perform concrete computations remains poorly understood. Computational neuroscience

studies reveal the influence of specific brain connectivity features only on abstract dynamical

properties, although the implications of real brain networks topologies on machine learning

or cognitive tasks have been barely explored. Here we present a cross-species study with a

hybrid approach integrating real brain connectomes and Bio-Echo State Networks, which we

use to solve concrete memory tasks, allowing us to probe the potential computational impli-

cations of real brain connectivity patterns on task solving. We find results consistent across

species and tasks, showing that biologically inspired networks perform as well as classical

echo state networks, provided a minimum level of randomness and diversity of connections

is allowed. We also present a framework, bio2art, to map and scale up real connectomes

that can be integrated into recurrent ANNs. This approach also allows us to show the crucial

importance of the diversity of interareal connectivity patterns, stressing the importance of

stochastic processes determining neural networks connectivity in general.

Author summary

Artificial Neural Networks (ANNs) and Biological Neural Networks (BNNs) exhibit dif-

ferent connectivity patterns. ANNs’ have tyically carefully hand-crafted architectures that

play an important role in their performance. On the other hand, BNNs’ wiring shows self-

organized emergent patterns resulting from processes such as development and neuronal

plasticity.
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Although ubiquitous properties of brain connectivity have beed identified and associ-

ated with abstract dynamical properties of the brain, the implications of real brain net-

works topologies on concrete machine learning tasks have been barely explored. The goal

of this hybrid, cross-species study was to give a step in that direction by probing real brain

connectomes on concrete machine learning tasks. Our approach integrates real brain con-

nectomes and Bio-Echo State Networks, which we use to solve concrete memory tasks. To

achieve that, we also present here a framework, bio2art, to map and scale up real connec-

tomes that can be integrated into recurrent ANNs.
We find results consistent across species and tasks, showing that biologically inspired

networks perform as well as classical echo state networks, provided a minimum level of

randomness and diversity of connections is allowed. Out findings stress the importance of

stochasticity in neural networks connectivity, especially regarding the heterogeneity of

interareal connectivity.

Introduction

Recent breakthroughs in Artificial Neural Networks (ANNs) have prompted a renewed inter-

est in the intersection between ANNs and Biological Neural Networks (BNNs). This interest

follows two research avenues: improving the performance and explainability of ANNs and

understanding how real brains compute [1].

Many recent improvements of ANNs rely on novel network architectures, which play a fun-

damental role in task performance [2, 3]. In other words, such connectivity patterns allow for

better representation of the outer world (i.e., the data) and/or they let the networks learn bet-

ter, e. g., promoting faster convergence. Also, although ANNs have typically a fixed architec-

ture at a meso/macro level, at the lower level of weights and connections between layers,

ANNs can develop complex connectivity pattern as a result of training [4]. Nevertheless,

ANNs employ architectures that are not grounded in empirical insights from real brains net-

work topology. For example, ANNs do not follow ubiquitous organization principles of BNNs

and, although the measured density of connectomes depends on the experimental spatial reso-

lution at hand, BNNs are in general sparser than ANNs [1, 5]. Given that Biological Neural

Networks (BNNs) present complex, non-random connectivity patterns, it is hypothesized that

this “built-in” structure could be one key factor supporting their computation capabilities. In

consequence, a focus on BNNs’ topology has started to gain traction in recent ANNs research

[6, 7]. For instance, building feedforward networks based on graph generative models, such as

Watts-Strogatz and Barabási–Albert models, has resulted in competitive performances com-

pared to optimized state-of-the-art architectures [8]. In a complementary vein, feedforward

networks may spontaneously form non-random topologies during training, such as modular

structure [9]. In addition to that, combining evolutionary algorithms with artificial neural net-

works has shown that a modular topology can improve performance and avoid forgetting

when learning new tasks [10]. In sum, current evidence supports the notion that non-random

topologies can lead to desired performance ANNs.

However, studies thus far have only focused on network topology models that have almost

no direct correspondences (or only abstract ones) to BNNs mapped by experimental connec-

tomics. Hence, it is to date unknown if and to what extent the actual, empirically discerned
topology of BNNs can lead to beneficial properties of ANNs, such as more efficient training

(fewer epochs and/or samples) or better performance (e.g., higher test accuracy).
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A complementary view comes from connectomics and network neuroscience, fueled by

experimental advances for mapping brain connectivity to an unprecedented level of detail

[11]. In that context, a connectome refers to all mapped connections of one individual brain,

either coming from one individual or aggregated across sampled brains, depending on the

experimental methodology. Graph-theoretical tools are then leveraged to describe brain con-

nectivity and find potential associations. For example, looking for correlations between spe-

cific graph properties and cognitive tasks performance [12]. Along those lines, some graph

properties typical of real brains can also have advantageous dynamical properties, such as sup-

porting the balance between information segregation and integration [13, 14]. Nevertheless,

the relationship (if any at all) between those abstract dynamical properties and the perfor-

mance of the network on concrete tasks remains unclear.

We explicitly address that gap here by building recurrent Echo State Networks (ESN) that

are bio-instantiated, thus BioESNs. We ask if and to what extent the topology of BioESNs

affects its performance on concrete memory tasks. We build BioESNs that embody the wiring

diagram empirically found in brains of three primates species, including humans. We also

present a framework, the bio2art [15], to map and scale up real connectomes, allowing to inte-

grate them into recurrent ANNs.

This is a necessary step exploring the possible links between biological and artificial neural

systems, not by means of abstract network models but exploiting the wealth of empirical data

being generated, which has started to paint a detailed picture of the intricate wiring of biologi-

cal neural networks.

Results

In order to test the potential effect of the topology of real connectomes on the computation

capacities of recurrent networks, we devised a hybrid Echo State Network (ESN) integrating

real brain connectivity, thus BioESN. Classical ESNs have an internal reservoir of neurons

sparsely and randomly connected. The reservoir works as an internal non-linear projection of

the input(s), generating a rich variety of features, such that the readout layer can linearly sepa-

rate the patterns more easily. Thus, the performance of an ESN is related to the richness of the

representation generated by the reservoir neurons, in turn related to the connectivity pattern

between the reservoir neurons.

We investigate here how the non-random topology of biological neural networks affects the

performance of ESN by integrating real connectomes as reservoir and letting the BioESN solve

concrete tasks (see Fig 1). It is important to notice here that the tasks used to evaluate network

performance did not aim at simulating a real brain solving the them, but rather to study the

potential effect of properties of the underlying network with classical memory tasks in the

ESNs field. Importantly, we construct the BioESN reservoirs based on the wiring diagrams

(i.e., who connects to whom) of connectomes, but using the weights initialization typically

used in classical ESNs (see Fig 2 and Methods for details).

We tested connectomes of three different primate species (Human, Macaque and Marmo-

set) in two different memory tasks.

Since we aimed at testing if the connectivity pattern of empirical connectomes could have

an effect on the performance of BioESNs, we generated several variations of the connectivity as

a surrogate network for contrast, where each surrogate preserves (or not) specific connectivity

properties, as summarized in Fig 2.

It is important to bear in mind that the goal was to test the effect of the global wiring dia-

gram and not the specific contribution of one/several concrete graph metrics. The conditions

Bio (rank) and Bio (no-rank) preserved the empirical binary topology mask (i.e., who connects
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to whom) and thus constitute the conditions that we mainly aimed at testing. The difference

between both conditions is that Bio (rank) preserved the ranking of the weights. That means,

in spite of the weights coming from a random distribution, the links in the network were allo-

cated such that links with high strength in the empirical connectome also corresponded to

stronger weights in the BioESN. In contrast to that, such rearrangement of links was not

Fig 1. General approach scheme. For each of the three species we generated a Bio- Echo State Network (BioESN) by integrating the real connectivity pattern as

reservoir of an Echo State Network (ESN). Thus, in contrast to the classical ESN with randomly connected reservoir, BioESNs have connectomes based on connectivity

coming from the empirical connectomes. We also propose a framework for mapping biological to artificial networks, bio2art, which allows to optionally scale up the

empirical connectomes to augment the model capacity. The resulting BioESNs are then tested on cognitive tasks (see Methods for details on the tasks).

https://doi.org/10.1371/journal.pcbi.1010639.g001

Fig 2. bio2art, scaling up connectivity and surrogates. The connectivity of the networks derived from the empirical connectivity and used as reservoirs in the

BioESNs can be represented as an adjacency matrix. This figure shows examples of adjacency matrices representing a scaled up version (4x) of the Macaque monkey

empirical brain connectivity then integrated into the BioESN as reservoir. We also build surrogate connectivities for comparison with the empirical case that preserves

real connectivity patterns. Each surrogate network controls for different aspects of the connectivity, as shown in the summary table in the figure. The figure depicts an

example of the empirical (Macaque) connectivity and the different derived connectivities tested. Notice the nodes indices, explicitly showing the upscaling of the

connectivity. This was repeated for all the other connectomes tested. See Mapping and upscaling connectomes with bio2art for more details on connectivity generation

and surrogates.

https://doi.org/10.1371/journal.pcbi.1010639.g002

PLOS COMPUTATIONAL BIOLOGY Brain connectivity meets reservoir computing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010639 November 16, 2022 4 / 17

https://doi.org/10.1371/journal.pcbi.1010639.g001
https://doi.org/10.1371/journal.pcbi.1010639.g002
https://doi.org/10.1371/journal.pcbi.1010639


performed for the Bio (no-rank) condition, thus only keeping the binary mask of empirical

connectivity but respecting no ranking order of links. The other surrogate conditions (Ran-
dom (density), Random (k), Random (full)) have totally random wiring diagrams and their den-

sity of connections is the only factor varying across conditions. For the condition Random
(density), the density of connections is the same as for the empirical connectome. For the con-

dition Random (k), the network forming the reservoir has a fixed number of links per node

k = 10, as in classical ESNs approaches [16]. For the condition Random (full), there are no

restrictions in terms of links, thus generating a fully connected network, i.e., density equal to 1

(refer to Fig 2 for a summary on all the tested conditions). Larger reservoirs are per se expected

to have better performance than otherwise equivalent networks [16]. Thus, given that the dif-

ferent sizes of the empirical connectomes, the results are not comparable across connectomes,

but only across connectivity conditions for one connectome.

Memory capacity task

In this classical paradigm, the network is presented with a random sequence of numbers

through a unique input neuron. Notice that the input neuron is external to the reservoir,

which means that all of the neurons of the reservoir receive the (weighted) input signal. Each

output neuron is trained independently to learn a lagged version of the input, thus there are as

many output neurons as lags to be tested [17]. The performance, the so called Memory Capac-
ity (MC), is calculated as the cumulative score across all outputs (i.e., all time lags, see Fig 3 and

Methods for details).

Our results show a comparable performance across all reservoir types except for the Bio
(rank) condition (Fig 3). Networks from all the tested conditions were able to learn the task, at

least for the lowest difficulty (time lag τ = 5), but the Bio (rank) condition showed significantly

worse memory capacity. This pattern was consistent for all the empirical connectomes tested

(Macaque, Marmoset and Human).

On the other hand, we did not find differences in the performance for all the other tested

conditions. This indicates that a certain level of randomization is actually necessary to reach a

better performance and that biological wiring diagrams can achieve the same performance as

the purely random networks, provided an adequate level of randomness is allowed, as in the

Bio (no-rank) condition.

Sequence memory task

In this task, the network is presented with two inputs, a sequence of random numbers to mem-

orize and a cue input, thus having two input neurons. Analogously to the Memory Capacity

task, input neurons are external to the reservoir, which means that all of the neurons of the res-

ervoir receive the (weighted) input signals. The cue input indicates whether to fixate (output

equal to zero) or to recall the presented pattern. When the recall cue is presented, the network

is supposed to output the memorized sequence in the previous L steps, where L is the pattern
length, a parameter regulating the task difficulty (see Methods for details). One trial of the task

consists of a fixation period followed by a recall period. In order to avoid inflation of the score,

the performance was evaluated exclusively during the recall steps, which are more difficult to

perform than the fixation phase.

In agreement with the results for the Memory Capacity task, we found that all tested ESNs

were able to learn the task, at least in its easier variations (pattern length L = 5). Along the

same lines, the Bio (rank) condition was the only one with a significantly different perfor-

mance, showing worse performance than the rest of the conditions. The Bio (rank) networks

had a different performance decay profile, only being able to memorize shorter sequences than
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the rest of the network types (Fig 4). These findings were again consistent across all the differ-

ent connetomes tested.

bio2art: Mapping and up-scaling connectomes

The performance of an echo state network is intimately related to the reservoir size, since a

larger reservoir can potentially generate a richer repertoire of features and has more trainable

parameters, provided a proper weights initialization. Our next goal was to investigate the scal-

ing behaviour of our model, i.e., how the performance changes as the reservoir size is

increased. For that, we applied our bio2art approach [15], which allows us to map the connec-

tivity of real connectomes onto artificial recurrent networks and scale up the number of

Fig 3. Memory capacity task. (A) (Upper) Schematic representation of the task. An input signal (X) is feed as a time series into the network through an input

neuron. Each output neuron independently learns a lagged version of the input (Yτ) (Lower) Alternative representation of the task in terms of the input/output

structure of the data. (B) Examples of network evaluation on the task. A forgetting curve (grey line) is shown for each tested species (columns) and connectivity W
condition (color coded). For each time lag (τ) the score is plotted (squared Pearson correlation coefficient, ρ2). The memory capacity (MC, see legends) is defined

as the sum of performances over all values of τ and represents the shaded areas in the plotted examples. (C) Performance of the bio-instantiated echo state

networks (BioESNs) for the three different species tested. For each pattern length, 100 different networks with newly instantiated weights were trained (4000 time

steps) and tested (1000 time steps). The test performance of each networks is represented by a point in the plots.

https://doi.org/10.1371/journal.pcbi.1010639.g003
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neurons by an arbitrary scaling factor while preserving the wiring diagram of the original con-

nectome (see Mapping and upscaling connectomes with bio2art for more details). Although

not totally conclusive because of the different experimental methodologies, that approach

brings us closer to a comparison across species connectomes (see Discussion). At the same

Fig 4. Sequence memory task. (A) (Upper) Schematic representation of one trial of the task. The input signal (X1) and the recall signal (X2) are feed as

a time series into the network through two input neurons. When the recall signal is given (X2 = 1), the output neuron is supposed to deliver the

memorized input of the last L steps. (Lower) Alternative representation of the task in terms of the input/output structure of the data. (B) Examples of

actual and predicted times series for 5 trials at three different difficulty levels (pattern length, from top to bottom: L = 10/14/18). The scatter plots on the

right show the predicted vs. the true output (as explained in main text). The BioESN in the example was built from human connectome with the Bio
(no-rank) variation. (C) Performance of the bio-instantiated echo state networks (BioESNs) for different task difficulties (pattern length) for the three

different species. The bio-instantiated reservoirs, Bio (rank/no-rank), are compared to surrogates with random connectivity patterns. For each pattern

length, 100 different networks with newly instantiated weights were trained (800 trials) and tested (200 trials). The curves depict the mean test

performance and standard deviation across networks.

https://doi.org/10.1371/journal.pcbi.1010639.g004
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time, this allows us to explore the extent to which the pattern observed for the different weights

mappings (Bio (rank), Bio (no-rank), etc.) holds for larger networks and how it plays out with

the model capacity driven by reservoir size.

When upscaling the connectomes with bio2art, one important parameter is whether to gen-

erate a homogeneous or heterogeneous distribution of weights between scaled-up areas, as

shown in Fig 5A. With the homogeneous variation, all connections between two upscaled

areas have exactly the same weight. In other words, after scaling up the number of neurons per

area, the total original weight between every two areas is equally partitioned amongst all the

area-to-area connections. In contrast to that, the heterogeneous variation allows the area-to-

area connections between scaled up regions to be different. More specifically, the total original

weight between every two upscaled areas is partitioned and distributed at random amongst the

area-to-area connections.

We evaluated a wide range of scaling factors (i.e., neurons per area) for the BioESNs genera-

tion with bio2art, considering both homogeneous and heterogeneous interareal connectivity

pattern as explained above. We found a clear pattern of improving performance, reaching an

asympthotic value roughly comparable across all connectomes when looking at reservoirs of

same size. Interestingly, the otherwise consistently lower performance of the Bio (rank) condi-

tion could be reverted with large enough reservoirs. Importantly, this was only the case for

scaled up connectomes with heterogeneous interareal connectivity patterns but not with

homogeneous patterns (see Fig 5). This indicates that the randomness and diversity of connec-

tions in interareal connectivity plays a crucial role determining the memory capacity of the

Fig 5. Scaling of performance with reservoir size. (A) Scaling up empirical connectomes with bio2art. Scaling allows to specify a number of neurons per area

(brain region as defined in the connectome). The interareal weights might be mapped either homogeneously or heterogeneously. Homogeneous mapping

partitions total weights in equal parts amongst interareal connections. Heterogeneous mapping partitions total weights at random amongst interareal

connections. (B) Relationship between the neurons per area and the total reservoir size for all the studied scaling factors. (C) Performance of BioESNs with scaled

up connectomes on the memory capacity task, for heterogeneous and homogeneous interareal connectivity patterns (upper and lower row, respectively). For

each single condition (size, interareal connectivity), 100 different networks with newly instantiated weights were trained (4000 time steps) and tested (1000 time

steps). The curves depict the test performance mean and standard deviation across runs.

https://doi.org/10.1371/journal.pcbi.1010639.g005
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network. For this series of experiments we also found consistent results across all studied

connectomes.

Discussion

We address two fundamental questions aiming at bridging the gap between artificial and bio-

logical neural networks: Can actual brain connectivity guide the design of better ANNs archi-

tectures? Can we better understand what network features support the performance of brains

in specific tasks by experimenting with ANNs? Concretely, we investigate the potential effect

of connectivity built based on real connectomes on the performance of artificial neural net-

works. To the best of our knowledge, this is the first cross-species study of this kind, compar-

ing results from empirical connectomes of three primate species.

The gap that we aim at emerges from two under-explored aspects in artificial and biological

neural networks. First, connectivity patterns (i.e., architectures) of ANNs are very different

from actual brain connectivity. For example, echo state networks use a sparse, randomly con-

nected reservoir, which is incongruent with the highly non-random connectivity empirically

found in the brain [5, 12]. Thus it is not clear, how more realistic architectures would impact

the performance such ANNs. Second, computational neuroscience studies have characterized

the relation between structural and function connectivity patterns [18, 19] and attempted to

relate brain connectivity to behavioural differences [20, 21]. Nevertheless, it remains unclear

how those patterns of neural activity translate into brain computational capabilities, i.e., how

they support performance of brain networks on concrete tasks. We set out to evaluate real

whole brain connectomes on specific tasks, in order to identify a potential role of such wiring

patterns, in a similar vein to previous studies on feedforward networks [22].

We found that constraining reservoir connectivity of ESNs with real connectomes led to

performances as good as for the random conditions, classically used for ESNs, as long as a cer-

tain degree of randomness is allowed.

In general, we observe a degeneracy of structure and function, in which different topologies

lead to the same performance, so no unique connectivity pattern appears necessary to support

optimal performance in this modeling context.

Our results were similar across tasks. This is to a certain extent logical considering that both

tested tasks are memory tasks, but the consistency also speaks for the robustness of the net-

works to different recall mechanisms.

Importantly, all our results were consistent across the three evaluated species. This supports

the generality of our findings, at least for the evaluated tasks. This observation is especially rele-

vant considering that the connectomes were obtained with very different experimental meth-

odologies [11, 23, 24]. Moreover, our experiments with scaled up connectomes showed similar

performance scores across species when the reservoir size was matched. Nevertheless, the dif-

ferent experimental methodologies to infer the connectivity prevent us from drawing specific

comparative conclusions across connectomes, such as whether the wiring diagram of any of

the tested connectomes is intrinsically better suited for the task regardless of the size.

Our surrogate networks also showed that, in general terms, the more heterogeneity and

randomness allowed in the connectivity, the better performance the BioESNs achieved. Inter-

estingly, that effect was also observable by augmenting the computational capacity of the mod-

els by means of larger reservoirs. Using the bio2art framework, we scaled up connectomes

with either homogeneous or heterogeneous interareal distributions of connectivity weights

and found that only the larger reservoirs with heterogeneous wiring could overcome the lower

performance inherent to the underlying connectivity. This points out once again to the impor-

tance of random wiring diagrams for ESNs’ performance. The reason for the importance of
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such randomness is at this point not completely clear to us, but we can conjecture on a role of

the modular structure of brain connectivity. A modular reservoir might certainly imply higher

correlations between otherwise more independent neurons, which in turn could hurt the

representation capacity of the network, since the latent space of input/s projection would have

an effectively lower dimensionality. Our results are also in line with a recent study using

human connectivity as reservoir of ESNs, which showed that random connectivity indeed

achieved globally maximal performances across almost all tested hyperparameters, provided

the wiring cost is not considered [25].

It is worth noting that the interpretation of our results is based on the criterion that the

overall best performing hyperparameters serves as an objective way to pick a hyperparameter

constellation, but future studies could go further down that research line, exploring the poten-

tially different effects of the connectivity according to different dynamical regimes in the reser-

voir promoted by different hyperparameter constellations. The functional importance of

randomness is also consistent with the fact that stochastic processes play a fundamental role in

brain connectivity formation, both at a micro and meso/macro-scale, as supported by empiri-

cal [26], and computational modeling studies [27, 28].

While here we tested the performance of the ANNs in two memory tasks, our approach is

versatile and extendable, since it allows an open ended examination of the consequences of

network topology found in nature for artificial systems. Specifically, the following contribu-

tions hold: First, we offer an approach for creating ANNS with network topology dictated

directly from empirical observations in BNNs. Second, creating and upscaling BioESNs from

real connectomes is in itself a highly non-trivial problem and here we offer, although not

exhaustively, insights into the consequences of each strategy. Third, our method allows build-

ing ANNs with network topologies based on empirical data from diverse biological species

(mammalian brain networks).

We are aware of a number of limitations of our study as well as interesting research avenues

for future work.

We evaluated our BioESNs models on two different memory tasks framed as regression

problems. Even though these are classical tasks for ESNs [17], we should stress that our results

might indeed be different for other kinds of tasks or settings. So future work could, for exam-

ple, include classification tasks as well as more ecologically realistic ones in order to derive

more general conclusions.

Also, the tasks used to evaluate network performance did not correspond one-to-one to

cognitive tasks carried out by animals of the studied species. Although we understand that as

an interesting research avenue when more detailed connectivity data becomes available, we

opted for a somehow simpler but rigorous framework, sticking close to classical approaches in

the ESNs field in order to avoid further assumptions, such as the connectivity between non yet

mapped regions of the brains of the studied species.

Connections in the adult brain change constantly as a consequence of stochastic fluctua-

tions and activity-driven plasticity, e.g., learning and memory [29]. In our study, we assumed

connectivity within the reservoir to be constant during the tasks. Previous studies have shown

some effects of plasticity rules on ESNs [30], so we foresee interesting future work along those

lines as well.

As we aimed at testing the potential impact of the global wiring diagram of connectomes,

we consider the entire connectomes as one unique network to create the reservoirs. This is dif-

ferent from a previous study where the connectivity was divided into subnetworks correspond-

ing to brain systems that were separately trained [25]. We decided to avoid here the strong

assumptions that such an approach implies, but we recognize a potential for future studies in

the direction, for example, exploring the division of networks as different input/output

PLOS COMPUTATIONAL BIOLOGY Brain connectivity meets reservoir computing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010639 November 16, 2022 10 / 17

https://doi.org/10.1371/journal.pcbi.1010639


subsystems. Along a similar vein, we limited our analysis to the global connectivity pattern.

Future studies could attempt to systematically disect the potential effect different topological

features on performance, an interesting but at the same challenging research avenue given the

non-trivial statistical dependencies of graph metrics with each other [31].

Conclusion

The wiring of biological and artificial neural networks plays a crucial role in providing net-

works with fundamental built-in biases that influence the their ability to learn and their perfor-

mance. Brain connectivity results from emergent complex phenomena involving evolution,

ontogenesis and plasticity, while artificial neural networks are deliberately hand-crafted. Our

presented work represents a new interface between network neuroscience and artificial neural

networks, precisely at the level of connectivity. We contribute an original approach to blend

real brain connectivity and artificial networks, paving the way to future hybrid research, a

promising exploration path leading to potential better performance and robustness of artificial

networks and understanding of brain computation.

Materials and methods

Echo State Networks (ESN)

Echo State Networks (ESNs) are one kind of recurrent neural networks (RNNs) belonging to

the broader family of reservoir computing models, typically used to process temporal data

[32]. The ESN model consists of an input, a reservoir and an output layer. The input layer

feeds the input(s) signal(s) into a recurrent neural network with fixed weights, i.e., the reser-

voir. The function of the reservoir is to non-linearly map the input signal onto a higher dimen-

sional space by means of the internal states of the reservoir. Formally, the input vector

xðtÞ 2 RNx is fed into the reservoir through an input matrix Win 2 R
Nr�Nx , where Nr and Nx

indicate the number of reservoir and input neurons, respectively. Optionally, the input can be

scaled by a factor � 2 R (input scaling) before been fed into the network. The discrete dynam-

ics of the leaky neurons in the reservoir are represented by the state vector rðtÞ 2 RNr and gov-

erned by the following equations:

r0ðtÞ ¼ f ðWinxðtÞ þWrðt � 1Þ þ bÞ ð1Þ

rðtÞ ¼ ar0ðtÞ þ ð1 � aÞWrðt � 1Þ ð2Þ

Where W 2 RNr�Nr is the connectivity matrix between reservoir neurons, b 2 RNr is the bias

vector, f the nonlinear activation function.

For all the presented results f = tanh, the hyperbolic tangent function which bounds the val-

ues of r to the interval [−1, 1]. With α = 1, there is no leakage, which we found to perform bet-

ter so we fixed them for all presented results. Thus, Eqs 1 and 2 can be re-written together as:

rðtÞ ¼ tanhðWinxðtÞ þWrðt � 1Þ þ bÞ ð3Þ

The output readout vector yðtÞ 2 RNy is obtained as follows:

yðtÞ ¼ gðWout½xðtÞ; rðtÞ�Þ ð4Þ

Where g is the output activation function and [.;.] indicates the vertical vector concatena-

tion and Wout 2 R
Ny�ðNxþNrÞ is the readout weights matrix. For all results presented g was either

rectified linear unit (ReLU) or the identity function. Training the model means finding the

weights of Wout. Linear regression was used to solve Wout = Z+ Y, where Z+ is the
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pseudoinverse of Z = [x(t); r(t)], i.e., the vertically concatenated inputs and reservoir states for

all time steps.

We initialized the incoming weights in Win with random uniformly distributed values

between [−1, 1]. Further considerations about weights initialization as well as sparsity of the

reservoir are detailed in the section Mapping and upscaling connectomes with bio2art.
The activity of the reservoir neurons is initialized with r(t) = 0. That produces an initial

transient of spurious activity which is unrelated to the inputs and is therefore useless for learn-

ing the relationship to the outputs. We discarded that initial transient of 100 time steps in all

cases, both for training and for testing.

All presented results with ESNs training were obtained using the Python package echoes,

publicly available [33].

ESN hyperparameters tuning

The typically most influential hyperparameters in ESNs are reservoir size Nr, spectral radius of

the reservoir ρ, input scaling factor � and the leakage rate α [16]. In our scheme, the reservoir

connectivity W is determined by the real connectome, thus determining a fixed Nr. So the

hyperparameters explored were: spectral radius of the reservoir connectivity matrix ρ = {0.91,

0.93, . . ., 0.99}, input scaling � = {10−9, 10−8, . . ., 100}, leakage rate α = {0.6, 0.8, 1} and bias b =

{0, 1}. A train/validation/test split of the data was performed. For each hyperparameters con-

stellation, the model was trained on the training set and based on the validation score we chose

and for the sake of comparison between different conditions, we fixed a common, not neces-

sarily optimal but generally well-performing, set of hyper-parameters: Spectral radius ρ = 0.99,

Input scaling � = 10−5, Leakage rate α = 1, Bias b = 1. Sticking to the overall best performing

hyperparameters serves thus as an objective criterion upon which we decide wich hyperpara-

meter constellation to fix in order to draw the conclusions of our results. Since the output val-

ues Memory Sequence Task are bounded to be greater than 0, we used ReLU as activation out

function. Given that such boundary does not exist for the outputs of the Memory Capacity

Task, we simply used the Identity as activation out function.

The data for train/validation was split as follows:

Sequence Recall Task: 800 trials for training and 200 for test for each hyperparameters/task

difficulty/reservoir generation constellation.

Memory Capacity Task: 4000 time steps for training and 1000 for test for each hyperpara-

meters/task difficulty/reservoir generation constellation (see Supporting information). For

each constellation, we tested 10 independent runs with newly instantiated networks.

After fixing the best hyperparameters, newly instantiated networks were generated and

evaluated on the test set not yet seen by any model. The presented results in the main text are

the test performances.

Mapping and upscaling connectomes with bio2art
We refer to a connectome as the map of all the connections obtained from a single brain [34].

We used the following publicly available datasets: Macaque monkey [23], Marmoset monkey

[24] and Human [11].

For the sake of clarity, let us disect the connectivity into two components: topology and

weights. The topology refers to the wiring diagram (i.e., who connects to whom), regardless of

the strength of the connection (assuming non-binary connectivity). So if we think of the con-

nectivity in terms of its representations as a connectivity matrix, the topology refers here to the

binary mask that indicates which positions of the matrix have values different from zero. The

weights describe the precise strength of those connections between neurons. This
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differentiation is not necessarily completely consistent with common uses in the literature, but

serves the purpose of explaining the work presented here. As our goal is to evaluate the role of

the topology of real brains, i.e., the mentioned wiring diagram, we propose a scheme to map

real connectomes onto reservoirs of ESNs, with topology corresponding to real brains, but

weights drawn from a uniform distribution of values between [-1, 1], as in classical ESN

approaches [32]. Classical ESNs reservoir have weights randomly from a symmetric probabil-

ity distribution, typically Uniform or Gaussian, and place them at random between neurons,

thus generating random graph from the perspective of the topology as well. Another common

practice is to use a relatively sparse network, e.g., common choices are pairwise probability of

connection p< 0.1 or a low fixed mean degree, e.g., k = 10). So for the sake of comparison and

testing the effect of topology in the performance of ESNs, we the following surrogate connec-

tivity variations as null models (see Fig 2 for a visual comparison):

• Bio (rank): Preserves the empirical topology, i.e., wiring diagram or “who connects to

whom”. Weights are placed such that the rank order of them is the same as the empirical,

i.e., strong weights in the empirical connectome will correspong to higher positive weights

in the Bio (rank) condition, and viceversa.

• Bio (no-rank): Preserves the empirical topology, i.e., wiring diagram or “who connects to

whom”. Weights are placed randomly, so no rank order is preserved.

• Random (density): Wiring diagram is completely random, but allowing only as many con-

nections as to match the density of connections of the empirical connectome. The density is

defined as the fraction of present connections out of all the possible ones. Weights are placed

randomly.

• Random (k): Wiring diagram is completely random, but allowing only a fixed number of con-

nections k per neuron. All presented experiments use k = 10. Weights are placed randomly.

• Random (full): Wiring diagram is completely random and all neurons connect to all other

neurons, i.e., the density of connections is 1. Weights are placed randomly.

The bio2art functionality builds artifical recurrent neural networks by using the topology

dictated by empirical neural networks and by extrapolating from the empirical data to scale up

the artifical neural networks.

We explored here a range of network size scaling factors between 1 and 30x by step of 1.

bio2art offers the possibility to control the within and between area connectivity as well. There

are currently no empirical comprehensive data for neuron-to-neuron connectivity within each

brain region. However, existing empirical data suggest that within-region connectivity

strength constitutes approximately 80% of the extrinsic between-region connectivity strength

[23]. Therefore, the intrinsic, within-region connectivity in our work followed this rule. It

should be noted that the number of connections that a neuron can form within neurons of the

same region is controlled by a parameter dictating the percentage of connections that a neuron

will form, out of the total number of connections that can be formed. Here we set this parame-

ter to 1, that is, all connections between neurons within a region are formed. The exact details

of the implementation can be found here [15], together with a freely available Python

toolbox to apply the tools used here.

Tasks

Memory Capacity (MC) Task. In this memory paradigm, a random input sequence of

numbers X(t) is presented to the network through an input neuron. The network is supposed
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to independently learn delayed versions of the input, thus there are several outputs [17]. Each

output Yτ predicts a delayed version of the input X(t) by τ time steps, i.e., Yτ(t) = X(t−τ). The

values of the input signal X were randomly drawn from a uniform distribution, i.e., X(t)�
Uniform(−0.5, 0.5). The networks were trained with 4000 time steps and tested on the subse-

quent 1000. Each output is trained independently and the performance, the so called Memory
Capacity (MC), is calculated as the cumulative score (squared Pearson correlation coefficient

ρ) across all outputs (i.e., all time lags) as follows:

MC ¼
X

t

r2ðyt; ŷtÞ ð5Þ

Sequence Recall Task. In this task the network is presented with two inputs, X1(t), X2(t), a

sequence of random numbers to memorize and a cue input, respectively. The cue input signals

whether to fixate (output equal to zero) or recall. After the recall signal, the network is sup-

posed to output the memorized sequence in the L steps previous to recall signal, where the pat-

tern length L is a parameter regulating the task difficulty (see Fig 6). One trial of the task

consists of one fixation period and the subsequent recall period. The values of the input signal

X1(t) were randomly drawn from a uniform distribution, i.e., X1(t)� Uniform(0, 1). The per-

formance was evaluated with the R2 score only during the recall steps because the fixation

phase was much easier for the model to get right and would have inflated the performance.

Each BioESN was trained with 800 trials and tested on 200 trials. For each pattern length L in

{5, 6, 7, . . ., 25}, 100 different networks with newly instantiated weights were tested.

Supporting information

S1 Fig. Memory Capacity task. Echo state network hyperparameters grid search. Homoge-

neous interareal connectivity. Macaque connectome. Results of grid search over input scal-

ing, leakage rate and spectral radius hyperparameters. For each parameter constellation, the

boxplots show the aggregated validation scores of ten independently generated and trained

reservoirs.

(EPS)

Fig 6. Cognitive tasks. Schematic representation of the tasks and the input/output data structure for each of the cognitive tasks used to evaluate the performance of the

BioESNs. Left: Memory capacity (MC) task, where the network receives a stream of random values as single input X and has several independent outputs Y (for

simplicity, the example shows only two. Each output is memorized by an independent output neuron of the network and is supposed to recall the input at a specific time

lag τ. The BioESNs were trained with 4000 time steps and tested on the subsequent 1000. Right: One trial of the sequence recall task. The network receives inputs X1, X2

coming from a random sequence and a recall signal channel, respectively. There is only one output neuron, which after the recall signal channel indicates it (i.e., X2 = 1) is

supposed to reproduce the input received in the previous L steps, i.e., the pattern length parameter determining the difficulty of the task (for simplicity, in the scheme

L = 2). The BioESNs were trained with 800 trials and tested on 200 trials. The score was computed considering only the recall phase in order to avoid inflation of the

metric, given that the fixation periods were much easier to perform correctly.

https://doi.org/10.1371/journal.pcbi.1010639.g006
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S2 Fig. Memory Capacity task. Echo state network hyperparameters grid search. Heteroge-

neous interareal connectivity. Macaque connectome. Results of grid search over input scal-

ing, leakage rate and spectral radius hyperparameters. For each parameter constellation, the

boxplots show the aggregated validation scores of ten independently generated and trained

reservoirs.

(EPS)

S3 Fig. Memory Capacity task. Echo state network hyperparameters grid search. Homoge-

neous interareal connectivity. Marmoset connectome. Results of grid search over input scal-

ing, leakage rate and spectral radius hyperparameters. For each parameter constellation, the

boxplots show the aggregated validation scores of ten independently generated and trained

reservoirs.

(EPS)

S4 Fig. Memory Capacity task. Echo state network hyperparameters grid search. Heteroge-

neous interareal connectivity. Marmoset connectome. Results of grid search over input scal-

ing, leakage rate and spectral radius hyperparameters. For each parameter constellation, the

boxplots show the aggregated validation scores of ten independently generated and trained

reservoirs.

(EPS)

S5 Fig. Memory Capacity task. Echo state network hyperparameters grid search. Homoge-

neous interareal connectivity. Human connectome. Results of grid search over input scaling,

leakage rate and spectral radius hyperparameters. For each parameter constellation, the box-

plots show the aggregated validation scores of ten independently generated and trained reser-

voirs.

(EPS)

S6 Fig. Memory Capacity task. Echo state network hyperparameters grid search. Heteroge-

neous interareal connectivity. Human connectome. Results of grid search over input scaling,

leakage rate and spectral radius hyperparameters. For each parameter constellation, the box-

plots show the aggregated validation scores of ten independently generated and trained reser-

voirs.

(EPS)
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