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C O G N I T I V E  N E U R O S C I E N C E

Concentrated poverty, ambient air pollution, and child 
cognitive development
Geoffrey T. Wodtke1*, Kerry Ard2, Clair Bullock2, Kailey White1, Betsy Priem1

Why does growing up in a poor neighborhood impede cognitive development? Although a large volume of evi-
dence indicates that neighborhood poverty negatively affects child outcomes, little is known about the mecha-
nisms that might explain these effects. In this study, we outline and test a theoretical model of neighborhood 
effects on cognitive development that highlights the mediating role of early life exposure to neurotoxic air pollution. 
To evaluate this model, we analyze data from a national sample of American infants matched with information on 
their exposure to more than 50 different pollutants known or suspected to harm the central nervous system. Inte-
grating methods of causal inference with supervised machine learning, we find that living in a high-poverty 
neighborhood increases exposure to many different air toxics during infancy, that it reduces cognitive abilities 
measured later at age 4 by about one-tenth of a standard deviation, and that about one-third of this effect can be 
attributed to disparities in air quality.

INTRODUCTION
The United States stands out among economically advanced democ-
racies for the depth and expanse of its poverty (1). Concentrated 
poverty in particular, which refers to the high incidence of economic 
deprivation in specific neighborhoods or geographic areas, is among 
its most disturbing and persistent problems. Since the “War on Poverty” 
in the 1960s, the proportion of families living in high-poverty neigh-
borhoods has remained stubbornly high, and despite impressive 
progress in other areas, the problem deepened in recent decades as 
income inequality increased and lower income families became more 
spatially isolated from those with higher incomes (2, 3). The deteri-
orating situation portends a troubled future: A large volume of 
evidence indicates that, above and beyond family hardships, growing 
up in a poor neighborhood leads to diminished cognitive abilities (4), 
lower levels of educational achievement (5, 6), and worse economic 
fortunes in adulthood (7, 8).

Although the effects of neighborhood poverty on children have 
been extensively studied, their etiology remains poorly understood 
(9–11). Few analyses investigate the mechanisms thought to medi-
ate, or explain, the impacts of growing up in a poor neighborhood, 
and a frequent criticism of research in this area is that neighborhood 
effects “have remained largely a black box” (12). In other words, “re-
search findings…are too scant to draw any firm conclusions about 
the potential pathways through which neighborhood effects may be 
transmitted” (13). As a result, prior research on the effects of con-
centrated poverty has limited capacity to inform public policy be-
cause it reveals little about intermediate mechanisms that might serve 
as points of effective intervention.

Most studies of concentrated poverty hypothesize that its effects 
operate through social, cultural, or institutional pathways, such as 
differences in collective supervision (12), local norms and values 
(14), or school quality (15). These pathways, however important, 
are primarily relevant for older children and adolescents, although 

socioeconomic disparities in child development become entrenched 
during the first few years of life and change little thereafter (16–18). 
Human abilities are formed in a predictable sequence, where chil-
dren are most sensitive to environmental inputs early during the course 
of development and later attainments are constrained by the founda-
tions laid down earlier (17). It follows that the search for mechanisms 
linking neighborhood poverty to developmental outcomes should 
begin during early childhood.

Integrating research from the social sciences, neurology, and en-
vironmental epidemiology, we hypothesize that differences in early 
life exposure to contextual health hazards, and neurotoxic air pollu-
tion in particular, may help to explain the effects of neighborhood 
poverty on cognitive development (19). Because major roadways and 
other noxious infrastructure are more likely to be located in, near, or 
upwind of poor neighborhoods (20, 21), their residents are dispro-
portionately exposed to air pollutants (22, 23), many of which harm 
the central nervous system. Young children are especially vulnerable 
(24, 25). They breathe more air per unit of body weight, absorb some 
chemicals more easily and efficiently, and have developing biological 
systems that are highly plastic. If growing up in a poor neighborhood 
impedes cognitive development, differences in exposure to neuro-
toxic air pollution may therefore play an explanatory role. In this 
study, we investigate whether exposure to air pollution during early 
childhood mediates the effects of living in a poor neighborhood on 
reading and math abilities measured around the time of school en-
try. Relatedly, we also examine which toxics among a large number 
of different organic compounds, gases, metals, and fine particulates 
are most closely linked with concentrated poverty and which, in turn, 
are the strongest predictors of subsequent skill formation.

Theoretical model
Figure 1 provides a graphical representation of our hypothesized 
causal model. In this figure, nodes represent variables and arrows 
represent causal relationships between them. The variables depicted 
in solid black boxes are those we are able to measure directly in the 
present study, while the variables in dashed gray boxes represent inter-
mediate factors that we do not observe.

The figure shows that the socioeconomic composition of a child’s 
neighborhood affects their exposure to air pollution, consistent with 

1Department of Sociology, University of Chicago, Social Science Research Building, 
1126 E. 59th Street, Chicago, IL 60637, USA. 2School of Environment and Natural 
Resources, The Ohio State University, Kottman Hall, 2021 Coffey Road, Columbus, 
OH 43210, USA.
*Corresponding author. Email: wodtke@uchicago.edu

Copyright © 2022 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
NonCommercial 
License 4.0 (CC BY-NC).

mailto:wodtke@uchicago.edu


Wodtke et al., Sci. Adv. 8, eadd0285 (2022)     30 November 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 19

prior research linking neighborhood poverty to higher concentra-
tions of many different toxics (21–23). This pattern of environmental 
inequality is a function of several interrelated processes, including 
the siting of toxic infrastructure, traffic intensity, and residential 
sorting, which are closely related to race and class. The United States 
industrialized during a period of de jure racial segregation, and this 
created distinct and unequal patterns of infrastructure development 
across its communities. From this historical foundation, wealthier 
areas with fewer racial minorities were disproportionately shielded 
from noxious land use and development, cementing many environ-
mental inequalities firmly in place. For example, governments and 
businesses typically confront the dilemma of where to place pollut-
ing infrastructure, such as factories and highways, by pursuing the 
“path of least political resistance” (20). This path often leads to com-
munities with many poor and minority residents because they are 
not as well equipped as their more affluent counterparts to mount 
effective opposition. Once certain neighborhoods become highly 
polluted, families with the necessary means will pay to avoid them 
(26), tightening the connection between residential composition and 
outdoor air pollution.

Children in poor neighborhoods, however, may spend less time 
outdoors owing to parental fears about crime and safety or deficien-
cies of the built environment (27, 28). These differences in outdoor 
activity may partly shield resident children from the elevated levels 
of ambient air pollution often found in poor communities. Never-
theless, high-poverty neighborhoods also tend to have an older and 
more dilapidated housing stock, which may allow greater concentra-
tions of outdoor pollutants into the household via damaged windows, 

doors, or weather-stripping (29, 30). Thus, wherever children spend 
their time, growing up in a high- versus low-poverty neighborhood 
may disproportionately expose them to a variety of different toxics 
in the air they breathe.

Figure 1 also shows that exposure to air pollution, in turn, affects 
child cognitive abilities. Prior research indicates that postnatal ex-
posure to several different air pollutants—specifically, fine particu-
late matter, nitrogen oxides, ozone (O3), and a number of heavy metals, 
such as lead (Pb), arsenic (As), and mercury (Hg)—is associated 
with subclinical deficits in cognitive test scores (31–33). It has also 
been linked with attention deficit hyperactivity disorder (ADHD) 
symptoms and externalizing behavioral problems in pediatric pop-
ulations (34), among several other indicators of poor health, such as 
asthma and infant mortality (35, 36). Although the biological pro-
cesses connecting air pollution to cognitive impairment are not as 
well established, emerging evidence implicates oxidative stress and 
inflammation, endocrine disruption, epigenetic changes, and alter-
ations in brain structure (24). For example, exposure to fine particulate 
matter is correlated with reduced cortical thickness and thinner 
gray matter, which may influence information processing, learning, 
and memory (37, 38).

In sum, poor neighborhoods are disproportionately contami-
nated by air pollution, and many of these toxics are known or sus-
pected to affect cognitive outcomes, especially when exposure occurs 
early during the course of child development. Thus, neighborhood 
poverty is hypothesized to inhibit formation of cognitive abilities 
during early childhood, in part, by increasing the risk of exposure to 
neurotoxic air pollution.

Fig. 1. A graphical causal model. This figure describes the hypothesized causal process linking concentrated poverty to child cognitive ability via exposure to ambient 
air pollution. The dashed gray boxes denote intermediate factors that are not measured in the present study.
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Research design
To evaluate our theoretical model, we follow n ≈ 10,700 children in 
the Early Childhood Longitudinal Study-Birth Cohort [ECLS-B; (39)] 
from wave 1, when sample members were infants around 9 months 
old, to wave 3, when they were age 4 years (all sample sizes are rounded 
to the nearest 100 in accordance with disclosure risk requirements 
from the U.S. Institute of Education Sciences). We match these children 
at wave 1 with multiple sources of information on their residential 
neighborhoods, defined using zip code tabulation areas (ZCTAs). 
Specifically, we match sample members in the ECLS-B to informa-
tion on the socioeconomic composition of their neighborhoods from 
the GeoLytics Neighborhood Change Database [NCDB; (40)]. We also 
match them to outdoor concentrations for six “criteria air pollutants” 
monitored by the Environmental Protection Agency (EPA)—O3, 
carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), 
and particulate matter smaller than 10 m (PM10) and 2.5 m 
(PM2.5)—as estimated by the Center for Air, Climate, and Energy 
Solutions [CACES; (41)]. In addition to these pollutants, which arise 
mainly from mobile sources, we also match sample members to es-
timated outdoor concentrations of 46 different industrial-source 
neurotoxics from the EPA’s Risk-Screening Environmental Indicators 
Geographic Microdata [RSEI-GM; (42)]. With these matched data 
sources, we then analyze how living in a high- versus low-poverty 
neighborhood during infancy affects cognitive abilities measured later 
at age 4 and whether these effects are mediated by differences in ex-
posure to air pollution.

Analyzing whether the effects of neighborhood poverty are me-
diated by air pollution presents several methodological challenges. 
First, consistently estimating these effects requires that exposure to 
concentrated poverty and to ambient air pollution are both uncon-
founded by unobserved factors. If unobserved confounding is pres-
ent, then analyses of causal mediation may be biased and may lead 
to faulty inferences about the explanatory role of air pollution. 
Second, consistently estimating these effects also requires correctly 
modeling the relationship of child abilities to air pollution, neigh-
borhood poverty, and a large set of observed confounders. This is 
especially challenging in the present study because air pollution is a 
diverse mixture of many different toxics. We measure exposures to 
more than 50 different types of air pollutants, including particulate 
matter, organic compounds, gases, and metals. Some of these toxics 
have atypical distributions (e.g., with large mass points at zero), and 
their relationship to cognitive ability may involve complex forms of 
nonlinearity and interaction (24, 31). Although most prior studies 
attempt to circumvent the challenge of high dimensionality by fo-
cusing on only one or just a handful of toxics, this approach could 
misrepresent whether and how air pollution may explain neighbor-
hood effects if important chemicals are omitted.

We address these challenges by integrating methods of causal 
inference for observational data with supervised machine learning. 
To address the challenge of confounding bias, we adjust for the most 
powerful joint predictors of neighborhood selection and child cog-
nitive outcomes that are measured by the ECLS-B, and we then 
construct a range of estimates under different hypothetical patterns 
of unobserved confounding in a formal sensitivity analysis (43). 
To address the challenge of high dimensionality, we implement a 
regression-imputation estimator for natural direct and indirect effects 
(44, 45) using random forests [RFs; (46, 47)]. An RF is an ensemble 
machine learning method that, by integrating recursive partition-
ing with random subspace selection and bootstrap aggregation, can 

accurately approximate complex forms of nonlinearity and interac-
tion in high-dimensional data, including interactions among different 
air toxics. It is therefore well suited to constructing models of child 
cognitive ability from information on many different covariates and 
exposures to a large number of pollutants, which may combine in 
complex ways to produce their effects. A detailed description of our 
data, measures, and analytic procedure is provided in Materials and 
Methods.

Contribution
We extend research on concentrated poverty by providing, to our 
knowledge, the first empirical assessment of whether its effects on 
child cognitive development are explained by differences in early 
life exposure to neurotoxic air pollution. We also extend a growing 
body of work on environmental inequalities (21) and the neurolog-
ical impacts of air pollution (24) by analyzing how exposures to a 
large set of pollutants differ across neighborhoods and predict cog-
nitive abilities during early childhood in a national probability sam-
ple. On a technical level, we introduce methods for analyzing causal 
mediation with a high-dimensional set of putative mediators and 
with minimal functional form assumptions. Our approach has the 
potential for wide application in the social sciences, where the inter-
mediate mechanisms thought to connect an exposure to an outcome 
are often numerous and complex.

In general, analyses of the mechanisms linking concentrated pov-
erty with child development have broad implications. They are im-
portant for evaluating the consequences of residential segregation 
and the factors responsible for the reproduction of poverty from 
one generation to the next. They can also illuminate new points 
of intervention for policies intended to remediate these harms. Last, 
research on concentrated poverty, environmental inequality, and 
child development is also important for accurately diagnosing the 
etiology of many different social problems that stem, at least in part, 
from material deprivation during childhood.

RESULTS
In this section, we first present a set of descriptive results illustrating 
bivariate associations between concentrated poverty and air pollution. 
Next, we provide estimates that capture how early life exposures 
to air toxics would differ if children were born into a high- versus 
low-poverty neighborhood. We then present estimates for the total, 
direct, and indirect effects of living in a poor neighborhood during 
infancy on reading and math abilities measured at age 4. These esti-
mates capture the degree to which differences in exposure to air pollu-
tion mediate the impact of concentrated poverty during early childhood. 
We conclude with a “mechanism sketch” (48), where measures of 
variable importance are consulted in an effort to identify which toxics, 
in particular, appear to play a central mediating role.

Place, poverty, and pollution
Figure 2 displays a set of chloropleth maps of Cook County, IL, de-
picting the spatial distribution of neighborhood poverty and selected 
air toxics in 2001, when the ECLS-B was beginning its first wave of 
data collection. Grayscale variations in the figure denote differences 
across census tracts in (i) the proportion of resident families that fall 
below the federal poverty threshold, (ii) concentrations of PM10, 
(iii) concentrations of NO2, and (iv) concentrations of manganese 
(Mn). We focus on Cook County, IL, which contains the City of 
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Chicago, as an illustrative example because it is a large urban setting 
that suffers from both concentrated poverty and air pollution from 
multiple sources.

Several patterns are evident in these maps. First, poverty is con-
centrated mainly on Chicago’s South and West Sides, in several 
pockets on the North Side, and in several suburban communities 
located to the south of the city. Many of these neighborhoods are 
also predominantly Black or Hispanic, reflecting the city’s history of 
extreme racial segregation. Second, NO2, which arises mainly from 
vehicle emissions, is concentrated along the major expressways that 
traverse the city. Because the expressways tend to abut neighbor-
hoods with relatively higher poverty levels, these factors—NO2 and 
concentrated poverty—appear weakly correlated. Third, PM10 also 
appears weakly correlated with neighborhood poverty, as this pol-
lutant is disproportionately concentrated on the South and, to a lesser 
degree, the West side of the city. Fourth, Mn, a neurotoxic heavy metal 
that arises mainly from manufacturing facilities, is concentrated in 
several industrial sections of the metro area that tend to be located 
in or near relatively poorer neighborhoods. Last, although concen-
trated poverty and the distribution of these toxics are associated 
in Cook County, neighborhoods with low poverty levels and high 
pollutant concentrations still exist in nontrivial numbers through-
out the area.

Because of its deeply concentrated poverty and history as a ma-
jor industrial center, Chicago is an ideal but not representative site 
for illustrating patterns of environmental inequality. Figure 3 displays 
a scatterplot matrix describing the association of neighborhood poverty 

and exposure to another set of selected air toxics among a national 
sample of children in the ECLS-B, when they were about 9 months 
old. The main diagonal of the matrix presents histograms summa-
rizing the marginal distribution of each pollutant, while the upper 
and lower triangular cells contain Pearson correlation coefficients 
and bivariate scatterplots, respectively. Consistent with the spatial 
patterns outlined previously in Cook County, IL, these results also 
show that neighborhood poverty is modestly correlated with exposure 
to several air pollutants on a national scale. The strongest correla-
tions are observed with CO and PM10. Weaker yet still noteworthy 
correlations are observed with methanol, Hg, and Mn, although the 
corresponding scatterplots indicate that a measure of linear associ-
ation may not capture these relationships very well. Table S1 sum-
marizes differences in exposure to all 52 toxics considered in this 
study across levels of neighborhood poverty among ECLS-B sample 
members. Overall, this table is consistent with the selected results 
presented in Figs. 2 and 3. It indicates that infants living in neigh-
borhoods with high rates of poverty are more likely to be exposed to 
many different air toxics, although differences in exposure are often 
modest or appear nonlinear, and in several cases that we discuss below, 
the relationship is inverted.

Effects of neighborhood poverty on exposure to air toxics 
during infancy
Figure 4 displays a dot-and-whisker plot summarizing the estimated 
marginal effects of neighborhood poverty on exposure to each of the 
52 different air toxics considered in this analysis. These estimates 

Fig. 2. Spatial distribution of poverty and selected air toxics, Cook County, IL, 2001. (A) The poverty rate, (B) concentration of PM10, (C) concentration of NO2, 
(D) concentration of Mn Data sources: (40–42).
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contrast living in a neighborhood with a poverty rate of 25%, rather 
than 5%, during infancy, which roughly correspond to the 90th and 
20th percentiles of the national exposure distribution, respectively. 
They are computed using RFs fit to data from the ECLS-B. For 
each toxic, the model is trained to predict exposure as a function of 
neighborhood poverty and the large set of potential confounders 
listed in table S2. The horizontal axis of the figure displays point 
estimates and [2.5, 97.5] percentile bootstrap intervals in standard 
deviation (SD) units, while the vertical axis displays each toxic sort-
ed in descending order by effect size.

The estimates in this figure indicate that living in a high-poverty 
neighborhood increases exposure to many different air toxics by a 
nontrivial margin. Some of the largest effects of neighborhood 
poverty are observed for toluene, methanol, CO, and fine particulate 
matter. For example, living in a neighborhood with a poverty rate 
of 25%, rather than 5%, is estimated to increase exposure to each of 
these toxics by about 0.2 to 0.3 SDs, net of other factors. Neighborhood 
poverty also has nontrivial effects on exposure to several heavy metals 
emitted into the air by industrial facilities. In particular, living in a 
high- rather than low-poverty neighborhood is estimated to increase 
exposure to Mn and its compounds, Pb compounds, Hg, and cadmium 
(Cd) compounds. Exposure to a number of different petrochemicals, 

such as xylene, n-hexane, and ethylbenzene, is also elevated in high- 
compared to low-poverty neighborhoods.

Although living in a poor neighborhood increases the risk that 
infants are exposed to many different air toxics, Fig. 4 indicates that 
there are also chemicals for which neighborhood poverty has little 
effect or may even reduce exposure. For example, neighborhood poverty 
has no appreciable effect on exposure to industrial-source air pollution 
composed of several well-known and highly neurotoxic chemicals, 
including polychlorinated biphenyls (PCBs) and hydrogen cyanide. 
Furthermore, living in a neighborhood with a poverty rate of 25%, 
rather than 5%, is estimated to reduce exposure to O3 by nearly 0.2 SDs 
(or about 1.25 parts per billion), net of measured controls. As a sec-
ondary pollutant, O3 is not emitted directly into the air. Rather, it is 
formed by the influence of solar radiation on nitrogen oxides and hydro-
carbons, which arise largely from vehicle emissions. It is also a highly 
reactive molecule that is easily degraded back into its precursors. A 
consequence of this is the so-called ozone paradox: O3 levels tend to be 
lower in areas where there is greater traffic pollution, and thus a higher 
availability of nitrogen oxide (NO), which reacts with O3 to form NO2 
and O2 (49). As a result, poor neighborhoods tend to be contaminated 
by higher levels of NO2 and other vehicle emissions, but lower levels 
of O3, by virtue of their proximity to sources of traffic pollution.

Fig. 3. Scatterplot matrix of neighborhood poverty and selected air toxics. The upper diagonal of the matrix presents Pearson correlation coefficients. The lower di-
agonal presents scatterplots with kernel regression smooths in light gray. Results are reported for a single imputation. Data sources: (39–42).
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Living in a high-poverty neighborhood also appears to reduce 
exposure to decabromodiphenyl ether (C12Br10O), although the 
interval estimate is rather imprecise. C12Br10O is a flame retardant 
used in the manufacture of several different consumer products, such 
as televisions and upholstered furniture. It is emitted by a relatively 
small number of facilities in the United States, and the largest of 
these polluters are located in or near higher-income areas, possibly 
because production of C12Br10O is an emergent industry and thus 
more likely to be housed in modern facilities constructed during an 
era of environmental regulation and not during earlier periods of 
central city industrialization.

Together, these results suggest that the causal process by which 
air pollution may mediate the effect of neighborhood poverty on 
cognitive development is quite complex, with several pathways involving 

toxics that operate in different, potentially offsetting directions. Nev-
ertheless, the weight of the evidence from Fig. 4 indicates that living 
in a poor neighborhood generally increases the risk that resident 
children are exposed to many different pollutants that are known or 
suspected neurotoxics.

It is important to note that Figs. 2 to 4 compare concentrations 
of pollutants that are not adjusted for their variable neurotoxicity or 
effects on cognitive development. As some air toxics are more harm-
ful than others, small differences in exposure to highly neurotoxic 
pollutants may be more consequential for cognitive development than 
are large differences in exposure to pollutants with relatively lower 
neurotoxicity. In the sections below, we examine whether exposure 
to any of these pollutants mediates the effect of neighborhood 
poverty on cognitive ability, and we then identify which toxics 

Fig. 4. Estimated marginal effects of neighborhood poverty on exposure to ambient air toxics during infancy. Estimates are computed from RFs and contrast res-
idence in a neighborhood with a poverty rate of 25% versus 5%. They are weighted and combined across five imputations. Confidence intervals are based on the [2.5, 97.5] 
percentiles of a pooled sampling distribution simulated via the repeated half-sample bootstrap with 1000 replications per imputation. Data sources: (39–42).
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are most strongly linked with both child abilities and residence in a 
poor neighborhood.

Effects of neighborhood poverty on cognitive ability during 
early childhood
Table 1 presents point and interval estimates for total, direct, and 
indirect effects of living in a poor neighborhood on child cognitive 
ability. These estimates describe the effects of living in a neighbor-
hood with a poverty rate of 25%, rather than 5%, during infancy on 
scores from standardized assessments of reading and math skills 
administered later at around age 4. They are computed using the 
method of regression-imputation (44, 45), which is a generic algo-
rithm for simulating counterfactual outcomes from observed data, 
implemented with a set of RFs. In this analysis, the RFs are trained 
to predict test scores as a function of neighborhood poverty, expo-
sures to more than 50 different air toxics, and a full set of baseline 
covariates. Confidence intervals are based on the [2.5, 97.5] percen-
tiles of a bootstrap sampling distribution.

Estimates of the average total effect (ATE) suggest that living in 
a high-poverty neighborhood during infancy has a negative impact 
on reading and math abilities measured around the time of school 
entry. Specifically, they indicate that early life residence in a neigh-
borhood with a poverty rate of 25%, rather than 5%, reduces read-
ing abilities by 0.088 SDs and math abilities by 0.116 SDs. To put the 
size of these effects in perspective, they are roughly equivalent to the 
learning losses that would typically occur as a result of missing 
1 month of elementary schooling (18). They are also comparable 
to effect estimates reported previously in both observational and quasi- 
experimental studies of neighborhood effects (4).

The ATE can be additively decomposed into the sum of a so-
called natural direct effect (NDE) and a natural indirect effect (NIE) 

of neighborhood poverty (50). The NDE represents the expected dif-
ference in cognitive ability due to residence in a high- versus low- 
poverty neighborhood if each child were exposed to the configuration 
of air toxics that they would have experienced in a low-poverty 
neighborhood. It captures an effect of neighborhood poverty oper-
ating through all mechanisms other than those involving exposure 
to the measured air pollutants. The NIE, by contrast, represents 
the expected difference in cognitive ability if children lived in a 
high-poverty neighborhood but were then exposed to the con-
figuration of air toxics that they would have experienced living in a 
high- rather than low-poverty area. It captures an effect of neigh-
borhood poverty that jointly operates through exposure to all of the 
different pollutants considered in this analysis.

Estimates of the NDE and NIE suggest that the total effect of 
neighborhood poverty on cognitive development is mediated by ex-
posure to air pollution. Specifically, estimates of the NIE indicate 
that if children lived in a neighborhood during infancy with a 25% 
poverty rate and then were exposed to the configuration of air toxics 
that they would encounter in this high-poverty neighborhood, rather 
than the pollutants they would encounter in a neighborhood with 
only a 5% poverty rate, their reading and math abilities would de-
cline by about 0.03 to 0.04 SDs. These effects are small in sub-
stantive terms, but nevertheless, they suggest that exposure to air 
pollution at least partially mediates the impact of neighborhood 
poverty on cognitive development during early childhood. Dividing 
point estimates for the NIE and by those for ATE indicates that ex-
posure to air pollution may explain about one-third of the overall 
impact of neighborhood poverty on both reading and math abilities 
at this development stage. The weight of the evidence therefore 
suggests that early life exposure to air pollution represents a non-
trivial pathway through which concentrated poverty affects cogni-
tive outcomes.

Estimates of the NDE, however, also clearly signal that exposure 
to air pollution is not the only mechanism through which concen-
trated poverty may affect early childhood development. The direct 
effects in Table 1 indicate that if children lived in neighborhoods 
with a poverty rate of 25%, rather than 5%, and then were exposed 
to the configuration of air pollutants they would have encountered 
in the low-poverty neighborhood, their reading and math test scores 
would still decrease by 0.056 and 0.077 SDs, respectively. This sug-
gests that, while air pollution appears to play a noteworthy mediating 
role, the effects of concentrated poverty on early cognitive develop-
ment also operate through other unobserved mechanisms. These may 
include exposure to environmental health hazards beyond those 
circulating in the outside air, more limited access to high-quality 
childcare, or the biological stress response to local violence, among 
other mechanisms that plausibly operate during early childhood but 
await empirical scrutiny (10).

Our estimates of direct and indirect effects only have a causal 
interpretation under several strong assumptions about the absence 
of unobserved confounding. These include assumptions that the re-
lationships of neighborhood poverty and ambient air pollution with 
cognitive ability are both unconfounded by unobserved factors. If 
either of these assumptions is violated, our estimates would be 
biased. We attempt to mitigate these threats to causal inference by 
controlling for the most powerful joint predictors of residential se-
lection and child cognitive outcomes, such as parental educa-
tion, household income, and family structure, but the possibility 
of unobserved confounding remains. For example, we lack direct 

Table 1. Total, direct, and indirect effects of neighborhood poverty 
on reading and math test scores. Notes: Estimates are reported in SD 
units and are computed using regression-imputation and RFs; they are 
weighted and combined across five imputations; confidence intervals are 
based on the [2.5, 97.5] percentiles of a pooled sampling distribution 
simulated via the repeated half-sample bootstrap with 1000 replications 
per imputation. Data sources: (39–42). 

Estimands Point estimate [2.5, 97.5] Percentile bootstrap 
interval

Reading test 
scores

  Average total  
  effect −0.088 [−0.154, −0.051]

  Natural direct 
   effect −0.056 [−0.095, −0.031]

  Natural indirect  
  effect −0.032 [−0.068, −0.013]

Math test scores

  Average total  
  effect −0.116 [−0.176, −0.051]

  Natural direct  
  effect −0.077 [−0.132, −0.032]

  Natural indirect  
  effect −0.040 [−0.063, −0.013]
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measures of parenting skills, which may affect selection into poor or pol-
luted neighborhoods and is also a determinant of child development.

To assess the sensitivity of our estimates to different hypotheti-
cal patterns of unobserved confounding, Fig. 5 displays a set of con-
tour graphs that plot bias-adjusted estimates of the NDE and NIE 
across values of two parameters,  and , that express the form and 
magnitude of unobserved confounding. The  parameter represents 
the mean difference in cognitive ability associated with a unit increase 
in a hypothetical unobserved confounder, conditional on all other 
predictors. Similarly,  represents a mean difference in the unobserved 
confounder across neighborhoods with a 25%, rather than a 5%, pov-
erty rate, given all other predictors. If the unobserved confound-
er affects exposures to air pollution and cognitive ability, but not 

neighborhood poverty, estimates of the NDE and NIE suffer from 
biases given by  and −, respectively, under a set of simplifying 
assumptions outlined in Materials and Methods. If, alternatively, 
the unobserved confounder only affects exposure to neighborhood 
poverty and cognitive ability, but not exposures to air pollution, 
then estimates of the NDE suffer from a bias equal to , while esti-
mates of the NIE remain unbiased, under a similar set of simplify-
ing assumptions.

The adjusted estimates in Fig. 5 are computed by subtracting 
these bias terms from their corresponding point estimates. They are 
then plotted across a range of values for the sensitivity parameters 
using contour lines. Specifically, the contour lines in this figure de-
note values of the bias-adjusted estimates at different levels of the 

Fig. 5. Sensitivity of effect estimates to unobserved confounding. This figure presents contour plots of (A) bias-adjusted natural direct effects on reading scores, 
(B) bias-adjusted natural direct effects on math scores, (C) bias-adjusted natural indirect effects on reading scores, and (D) bias-adjusted natural indirect effects on math 
scores across values of the sensitivity parameters. Data sources: (39–42).
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two sensitivity parameters given on each axis. Grayscale variations 
in the color of the contour lines are used to visually signal effect size, 
where lighter shades denote bias-adjusted estimates that are close to 
zero or positive. In other words, lighter contour lines demarcate re-
gions of the graph where the bias-adjusted estimates provide little 
or only weak support for our theoretical model, and thus, they high-
light values of the sensitivity parameters that would undermine our 
conclusions.

These plots suggest that our mediation analysis is moderately 
robust to unobserved confounding. Bias-adjusted estimates for the 
NDE remain negative and substantively large across all but fairly 
extreme values of  and . Adjusted estimates for the NIE are re-
duced to zero under less extreme but still nontrivial levels of unob-
served confounding—for example, when  =  = −0.15 SDs. To put 
these values in perspective, consider that the conditional mean dif-
ference in reading ability associated with a 1 SD increase in house-
hold income is about 0.1 SDs, net of other predictors, while roughly 
0.25 SDs is the conditional mean difference in household income 
associated with living in a neighborhood where 25%, rather than 
5%, of the residents are poor.

Which toxics play the most important mediating role?
The direct and indirect effects discussed previously evaluate wheth-
er exposure to any of the multiple different air toxics—considered 
together—explain the effects of neighborhood poverty on cognitive 
development, but they do not identify which pollutants may play 
the most important mediating role. Identifying specific causal path-
ways operating through single intermediate exposures is exceedingly 
difficult with a high-dimensional set of mediators and, in general, 
cannot be accomplished without strong assumptions about para-
metric form or causal ordering (50), none of which are defensible in 
this analysis. Nevertheless, we attempt to shed at least some light on 
this question by providing a descriptive mechanism sketch (48) aimed 
at identifying which air toxics are (i) the strongest predictors of test 
scores and (ii) most strongly predicted by neighborhood poverty.

For each toxic included in this analysis, Fig. 6 summarizes Shapley 
additive explanation (SHAP) values from RFs predicting reading and 
math abilities. Mean absolute SHAP values measure the predictive 
importance of variables while taking account of potential interac-
tions and collinearities among them (51). This is accomplished by 
comparing the predictions obtained with and without a variable in 
the model, where larger differences between these predictions signal 
greater importance. Because the order in which variables are added 
or excluded from a model can affect its predictions, these compari-
sons are made over every possible combination of covariates and 
then the differences are averaged together.

The results in Fig. 6 indicate that, of all the air toxics considered 
in this analysis, exposures to O3, NO2, and particulate matter are among 
the more important predictors of reading and math abilities during 
early childhood. A number of heavy metals (Hg, Pb, Mn, and their 
compounds) and petrochemicals (C5H12O, methanol, xylene, toluene, 
styrene, n-hexane, and ethylbenzene) also appear to have a note-
worthy degree of predictive importance. The importance of all these 
toxics, however, is relatively weak when compared against most so-
ciodemographic variables. Figure S1 summarizes the SHAP values 
for every predictor considered in this analysis, not just the air toxics 
featured above. In this figure, for example, the mean absolute SHAP 
values for parental education and family income are about 0.15 and 
0.08 SDs, respectively, based on the RF predicting reading scores. 

By contrast, this metric never exceeds 0.02 SDs for any single air 
toxic, although collectively the measured pollutants together have a 
nontrivial degree of predictive power. Note that the weak predictive 
importance of an air pollutant in these data should not be interpreted 
as evidence against its neurotoxicity; rather, it may simply reflect 
that sampled children are exposed only to low and thus relatively 
less toxic concentrations of a chemical in the ambient air of their 
neighborhoods—for example, exposure to hydrogen cyanide can 
lead to death within minutes at concentrations >200 g/m3 of air, 
but it is not this harmful at the levels observed empirically in the 
ECLS-B, which range from 0 to 5.6 ng/m3.

Figure 7 plots these measures against a second set of mean abso-
lute SHAP values that capture the predictive importance of neigh-
borhood poverty in a series of RFs modeling standardized exposures 
to each air toxic. Pollutants in or near the upper right quadrant of the 
plots are those that most strongly predict test scores and are them-
selves most strongly predicted by neighborhood poverty, which to-
gether suggest a potentially important mediating role. They include 
O3, methanol, CO, and particulate matter as well as some of the 
heavy metals and petrochemicals mentioned previously.

These different toxics, however, may not all transmit the effects 
of neighborhood poverty in the same manner. Figure 8 displays a set 
of partial dependence plots, which describe the marginal dose- 
response relationship between a predictor and an outcome. The top 
panel of the figure shows the relationship of neighborhood poverty 
with exposure to PM10 and O3, while the bottom panel shows the 
relationship between each of these chemicals and child test scores. 
Exposures to both PM10 and O3 during infancy are inversely related 
to reading and math abilities measured later at age 4, net of other 
predictors, but the relationship of neighborhood poverty with each 
pollutant differs. Consistent with results discussed previously, this 
figure shows that living in a neighborhood with an elevated poverty 
level is linked with exposure to higher concentrations of PM10 but 
lower concentrations of O3. This suggests that differences in expo-
sure to particulate matter work to transmit the negative effects of ear-
ly life residence in a poor neighborhood on cognitive development, 
while differences in exposure to O3 may function to suppress them. 
These results must be interpreted cautiously, though, owing to the 
difficulty of isolating effects of single air toxics.

DISCUSSION
Why does growing up in a poor neighborhood negatively affect cog-
nitive development? In this study, we provide evidence implicating 
early life exposures to neurotoxic air pollution. Specifically, we esti-
mate that living in a high-poverty neighborhood increases exposure 
to many airborne neurotoxics and that the negative effects of neigh-
borhood poverty on reading and math abilities during early child-
hood are mediated, at least in part, by these disparities in air quality. 
We also present preliminary evidence suggesting that, of all the tox-
ics considered in this study, particulate matter, traffic-related pol-
lutants, industrial-source heavy metals, and several petrochemicals 
may play the most important mediating role. However, the con-
nection between concentrated poverty, air pollution, and cognitive 
development is complex. Our results suggest that these mediating 
pathways may not all operate in the same direction, and that no single 
pollutant or set of pollutants stand out from the others as a domi-
nant explanatory mechanism. Rather, the causal process connecting 
neighborhood poverty to air pollution, and air pollution to cognitive 
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ability, appears to involve the accumulation of many small effects, 
several of which may be partly offsetting.

This study has important implications for interdisciplinary research 
on concentrated poverty in sociology, developmental psychology, 
and economics. Although most prior research about the effects of 
concentrated poverty focuses on older children and posits mecha-
nisms involving differences in socialization or institutional resources, 
we provide evidence that the etiology of neighborhood effects lies 
earlier during the course of development and is rooted in environ-
mental inequalities (19). Our findings demonstrate how concentrated 
poverty is a “linked ecology of social maladies” (1), consisting not 
merely of material deprivation but also a morass of environmental 
health hazards, that may lead to neurological injury and impede the 
early stages of human development. Given that child cognitive skills 

predict many later life outcomes, such as higher earnings and better 
health in adulthood (52, 53), our results suggest that environmental 
inequalities may contribute to the reproduction of poverty from one 
generation to the next.

Our findings also have implications for the epidemiology of air 
pollution, which has previously focused mainly on cardiovascular and 
respiratory health (24). In particular, they contribute to an emerg-
ing literature on the effects of air pollution for early life cognitive 
development (31–33). Consistent with prior research in this area, 
we document that exposure to air toxics during infancy is linked 
with reading and math abilities measured around the time of school 
entry in a large, national, prospective study. In addition, we demon-
strate the importance of considering the full set of air toxics to which 
young children are exposed. Because different toxics are linked in 

Fig. 6. Predictive importance of exposure to ambient air toxics during infancy for reading and math test scores at age 4. This figure reports (A) mean absolute 
SHAP values for reading scores and (B) mean absolute SHAP values for math scores, both computed from RFs. Each RF includes neighborhood poverty, the full set of 
controls, and the full set of air toxics as predictors. Results are weighted and combined across five imputations. Data sources: (39–42).
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complex ways (e.g., O3 and NO2) and their overall impact on cogni-
tive development appears to reflect the accumulation of many small 
effects, studies focusing on just one or only a handful of pollutants 
in isolation may provide an incomplete or possibly even misleading 
representation of the development impacts of air pollution.

An important policy implication of the present study is that 
interventions designed to improve environmental health may also 
promote upward social mobility. Regulations that reduce exposure 
to air pollution not only improve the health and well-being of the 
population overall but also may mitigate the harmful effects of con-
centrated poverty on early childhood development, thereby disrupting 
the intergenerational transmission of socioeconomic disadvantages. 
In other words, environmental policy may also function indirectly 
as anti-poverty policy, and these second-order effects should be ac-
counted for in cost-benefit analyses of any program aimed at clean-
ing up the physical environment or otherwise reducing exposures 
to toxic hazards (54). Our results also point toward a potential role 
for small-scale public health interventions during a period of early 
life vulnerability. For example, disseminating technologies, such as 
indoor air filters, to childcare centers and households in poor com-
munities or making targeted investments in housing repair (e.g., re-
placing damaged windows, doors, and weather-stripping) could 
potentially prevent early cognitive impairments that would other-
wise reverberate throughout the later life course.

Although this study has important implications for research and 
policy, it is certainly not without limitations. In particular, it re-
mains possible that our estimates overstate the magnitude of neigh-
borhood effects and/or the mediating role of air pollution because 

of unobserved confounding, despite our best efforts to address this 
problem via covariate adjustment and a formal sensitivity analysis. 
Because the threat of unobserved confounding is ubiquitous in studies 
of causal mediation, our inferences are provisional and must be in-
terpreted cautiously.

Nevertheless, several other limitations raise the possibility that our 
estimates may, in fact, be conservative. First, our measures of air 
pollution are subject to known error. They come from model-based 
estimates, and these models are themselves fit to imperfect data var-
iously collected from air quality monitors or reports from industrial 
facilities. Because measurement error in a mediator can lead to at-
tenuation bias in estimates of indirect effects, it is therefore possible 
that we have understated the explanatory role of air pollution.

Second, we focus only on point-in-time exposures during infancy, 
when it is likely that the effects of both concentrated poverty and air 
pollution accumulate over time if exposures to them are sustained 
(5, 24). Analyses that measure exposures cumulatively from birth 
through school entry could reveal more pronounced effects. Simi-
larly, our narrow focus on the postnatal period is also a potential 
limitation, as exposure to neurotoxic pollutants earlier during ges-
tation may have especially harmful effects on the central nervous sys-
tem (24). By extension, prenatal exposure to air toxics could play an 
even more important mediating role connecting residential poverty 
to later cognitive development.

Third, although national data have many strengths, our estimates 
likely obscure a large amount of local heterogeneity. In some cities or 
metro areas, where the link between concentrated poverty and noxious 
infrastructure is especially tight, the mediating role of air pollution 

Fig. 7. Predictive importance of exposure to ambient air toxics for cognitive ability classified against the predictive importance of neighborhood poverty for 
toxic exposure. This figure shows, separately for (A) reading test scores and (B) math test scores, a scatterplot of air toxics classified according to (i) how strongly exposure 
predicts test scores and (ii) how strongly exposure is predicted by neighborhood poverty. Mean absolute SHAP values for each standardized toxic from RFs predicting test 
scores are plotted on the vertical axis, while mean absolute SHAP values for neighborhood poverty from RFs predicting standardized exposures to each toxic are plotted 
on the horizontal axis. Toxics located in or close to the top-right quadrant of the plots are those for which neighborhood poverty predicts exposure during infancy and 
for which exposure, in turn, predicts test scores. Results are weighted and combined across five imputations. Data sources: (39–42).
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may be stronger, while in other areas that are less polluted, neigh-
borhood effects may be weaker and alternative mechanisms would 
likely predominate. Unfortunately, we lack the data needed to pre-
cisely evaluate geographic variability in these causal processes. More-
over, the ECLS-B only allows for matching sample members to 
pollution concentrations at a relatively low geographic resolution 
(zip codes), when exposures to some air toxics can vary from block 
to block. If, within zip codes that are socioeconomically heteroge-
neous, poorer blocks tend to have higher levels of air pollution, our 
estimates may understate the causal process connecting concentrated 
poverty to child cognition via exposure to air toxics, as this process 
would operate at a more fine-grained spatial scale than we are able 
to observe.

Last, we also lack the data needed to empirically evaluate biological 
processes thought to connect air pollution with subclinical cognitive 

impairments. These processes may include neurological inflamma-
tion, alterations in brain structure, epigenetic changes, and interfer-
ence with neurotransmitter release, cellular signaling, apoptosis, or 
protein synthesis, among several other mechanisms suggested by 
prior research (24, 37). Absent data on these intermediate factors, 
we cannot fully trace the hypothesized causal path from concentrated 
poverty to performance on cognitive tasks, as linked through pollu-
tion exposures and their biological consequences for developing 
children.

Despite its limitations, this study provides considerable evidence 
that differences in early life exposure to air pollution partly transmit 
the effects of neighborhood poverty on child cognitive development. 
Future research should elaborate on this causal process by identifying 
the cities in which it operates most strongly, by investigating whether 
the effects that compose it accumulate or intensify over time, by 

Fig. 8. Partial dependence plots for selected air toxics. (A) Relationship of neighborhood poverty with exposure to PM10. (B) Relationship of neighborhood poverty 
with exposure to O3. (C) Relationship of PM10 to child test scores. (D) Relationship of O3 to child test scores. All results are weighted and combined across five imputations. 
Data sources: (39–42).
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developing scalable interventions that might help to mitigate these 
harms, and by investigating the biological mechanisms thought to 
explain them. Our findings suggest that children in poor neighbor-
hoods are—disproportionately and with alarming frequency—
poisoned by their environments from the moment they take their 
first breaths. Amid growing public concern about economic inequali-
ty and environmental injustice, unraveling the link between poverty 
and pollution, and designing effective means to spare children their 
deleterious impacts, is essential.

MATERIALS AND METHODS
Data
To investigate whether exposure to neurotoxic air pollution medi-
ates the effects of neighborhood poverty, we combine and analyze 
data from the ECLS-B, CACES, RSEI-GM, and NCDB. The ECLS-B 
is a multisource longitudinal cohort study sponsored by the U.S. In-
stitute of Education Sciences. Designed to provide comprehensive 
data on early childhood development, the study followed a large 
national sample of children born in 2001 from infancy through 
kindergarten entry. Data were collected via caregiver surveys and 
direct child assessments for all sample members when they were 
approximately 9 months old (wave 1, fielded during 2001–2002), 
2 years old (wave 2, fielded during 2003–2004), 4 years old (wave 3, 
fielded during 2005–2006), and just after they had begun kindergar-
ten (waves 4 and 5, fielded during the fall of 2006 and fall of 2007, 
respectively, depending on when a child started school). The analytic 
sample for our analysis includes all n ≈ 10,700 children enrolled in 
the study at wave 1.

Restricted-access data from the ECLS-B identify the ZCTA in 
which sample members lived at each wave of the study. We use these 
data to match children with information on both the socioeconomic 
composition and the air quality of their residential area at wave 1. 
Formulated by the U.S. Census Bureau, ZCTAs are spatial repre-
sentations of postal service delivery areas. They differ from census 
tracts—the geographic units most commonly used to define neigh-
borhoods in studies of concentrated poverty—in that their boundaries 
are determined primarily by physical size rather than population. 
As a result, ZCTAs typically subsume several different census tracts 
in more densely populated areas, while in areas with lower popula-
tion density, tracts are often larger. Like census tracts, ZCTAs may 
not reflect local perceptions of neighborhood boundaries, and owing 
to their larger geographic size in urban areas, they may blend to-
gether several distinct and potentially heterogeneous communities. 
Nevertheless, ZCTAs are the highest resolution data on residential 
location provided by the ECLS-B, and they provide a defensible, if 
also imperfect, proxy for neighborhoods.

Data on criteria air pollutants, which are composed of six com-
mon toxics monitored by the EPA in accordance with the Clean 
Air Act amendments of 1970, come from the CACES database. This 
database contains estimates of outdoor concentrations for O3, CO, 
SO2, NO2, PM10, and PM2.5 throughout the United States. Concen-
tration estimates are based on geographic regression models fit to 
measurements from EPA regulatory monitors. Using universal kriging, 
partial least squares, and several different approaches to covariate 
selection, the models use information on more than 300 geographic 
characteristics, such as measures of traffic intensity, land use, topog-
raphy, and satellite data, to interpolate pollutant concentrations for 
areas between monitors. The optimal models typically achieve an 

out-of-sample predictive accuracy of 0.5 < R2 < 0.9. Their estimates 
give annual-average concentrations at the census tract level, which 
we translate to ZCTAs using land area weights from the Census 
Geographic Correspondence Engine [Geocorr; (55)].

We also use data on a large set of other air toxics from the RSEI-
GM, version 2.3.8. This database is constructed using information 
from the EPA’s Toxic Release Inventory (TRI) program, which re-
quires manufacturing, mining, utility, hazardous waste, and chemi-
cal processing facilities to report their annual emissions of nearly 
800 chemicals deemed toxic to human health. Similar to the CACES 
data, the RSEI-GM provides concentration estimates from air dis-
persion models that incorporate information on the source of the 
chemical release (e.g., smokestack versus valve leak), the chemical’s 
molecular weight and rate of decay, features of the local topogra-
phy, and weather patterns around the facility. The models predict 
where the emitted chemicals were likely to have dispersed within a 
49-km radius around each reporting facility, and the resulting data-
base contains estimates for the amount of each chemical in every 
1 km2 of the United States. As before, we translate these estimates to 
ZCTAs using land area weights from Geocorr.

Data on the socioeconomic composition of neighborhoods come 
from the NCDB, version 2.1. The NCDB contains harmonized 
tract-level data on population characteristics collected as part of the 
1970–2010 U.S. Censuses and the 2006–2010 American Communi-
ty Surveys, which we translate to ZCTAs using Geocorr population 
weights. For intercensal years, we use linear interpolation to impute 
the demographic characteristics of neighborhoods.

Measures
The outcome of interest, denoted by Y, is child cognitive ability. 
We measure cognitive ability using reading and math assessments 
administered at wave 3 of the ECLS-B, when most children were 
4 years old and had not yet entered kindergarten. These assessments 
were administered during a home visit by trained field interviewers. 
They were designed to evaluate skills across several domains, with 
an emphasis on abilities that are important for school readiness 
and that are typically covered by curriculum content, such as letter 
knowledge, word recognition, basic numeracy, and spatial relation-
ships. Ability scores for reading and math are estimated from these 
assessments using a three-parameter item-response theory model, 
which accounts for differences in item difficulty and discrimination. 
These scores have desirable psychometric properties, including high 
reliability and validity and low differential item functioning (56). In all 
analyses, they are standardized to have zero mean and unit variance.

The exposure of interest, denoted by X, is the socioeconomic 
composition of a child’s neighborhood, or ZCTA, at wave 1 of the 
ECLS-B, when sample members were around 9 months old. We op-
erationalize the socioeconomic composition of neighborhoods using 
an income poverty rate, which is computed as the ratio of families 
falling below the federal poverty threshold to the total number of 
families in a given area. Although poverty is multidimensional and 
the socioeconomic composition of neighborhoods can be measured 
with a wide variety of indicators, we focus on a conventional poverty 
rate because it is closely intertwined with the underlying social pro-
cesses thought to be responsible for neighborhood effects, it is highly 
correlated with other dimensions of socioeconomic disadvantage, 
and it has a simple interpretation, unlike multidimensional scales. 
In table S3, we report effect estimates based on a composite index of 
neighborhood disadvantage, which combines information on income 
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poverty, unemployment, education, family structure, and the racial 
composition of a sample member’s ZCTA. These effects are similar 
to those based on the poverty rate alone, although they are some-
what smaller and less precisely estimated.

The mediators of interest, collectively denoted by M = {M1, …, Mj}, 
include all known or suspected air neurotoxics to which a nontrivial 
number of children are exposed at wave 1 of the ECLS-B and that 
have been consistently monitored by the EPA during the study pe-
riod. Of the nearly 800 chemicals that are monitored in accordance 
with the TRI program, and thus are included in the RSEI-GM, 45 are 
classified by the EPA as known or suspected neurotoxics and devel-
opmental disruptors. This classification is based on the research 
synthesized in the EPA’s Integrated Risk Information System, the 
Office of Pesticide Programs’ Toxicity Tracking Reports, and the 
Agency for Toxic Substances and Disease Registry’s Toxicological 
Profiles, among several other sources. We include all but eight of 
these neurotoxics in our analysis. We exclude hydrogen sulfide be-
cause the TRI reporting requirements for this chemical were incon-
sistent during the ECLS-B study period, and we exclude cycloate, 
diazinon, dichlorvos, fenthion, propetamphos, thiodicarb, and tri-
allate because less than 1% of children in the ECLS-B were exposed 
to them. Beyond the chemicals officially classified as neurotoxics in 
the RSEI-GM, we additionally include nine other pollutants from this 
database—anthracene, Cd, decabromodiphenyl ether, PCBs, and com-
pounds that contain As, Cd, Pb, Mn, or Hg—based on our own in-
dependent review of research on pollution and child health, which 
indicated that there is at least some empirical evidence linking each 
of these pollutants to cognitive or neurological outcomes. Last, we 
include the six criteria air pollutants from the CACES database. In 
total, our vector of mediators contains concentration estimates 
for 52 air toxics in a child’s ZCTA of residence at wave 1 of the 
ECLS-B. Table S1 provides a complete list of all these pollutants, 
their units of measurement, and basic summary statistics about their 
distribution in our sample.

Because data from the RSEI-GM are based on facility reports sub-
ject to human error, it contains concentration estimates for some 
chemicals that appear to be extreme outliers. To address this prob-
lem systematically, we truncate and then multiply impute values above 
the 99th percentile in our analytic sample for all measures from the 
RSEI-GM. We also experimented with truncating values in the top 
0.5% and the top 0.025% as well as with censoring rather than trun-
cating values above these thresholds, all of which generated similar 
results.

To control for confounding, we measure and adjust for a large 
set of covariates in the ECLS-B, denoted by C = {C1, …, Cl}. These 
include factors thought to have strong effects on neighborhood 
selection, the risk of pollution exposure, and child development 
or that are proxies for unobserved determinants of these variables. 
Specifically, we adjust for a child’s age at baseline and at the time of 
assessment, gender, race, birth weight, and whether they were part 
of a multiple birth. A child’s age is measured in months. Gender is 
coded as a binary variable denoting whether the child is male or fe-
male, as is our measure for whether the child was part of a multiple 
birth. Race is coded as a categorical variable capturing whether the 
child is white, Black, Hispanic, Asian, or another race. Birth weight 
is measured in grams.

We additionally adjust for the following characteristics of a child’s 
family at baseline: parental education, employment status, occupa-
tional status, and age, total family income, whether the family owns 

their home, whether a child’s biological father lives in the house-
hold, whether a child’s mother is currently married, the total num-
ber of household members, the primary language spoken at home, 
a measure of parental involvement in their child’s early education, 
and indicators for whether a family received several different types 
of government support. Parental education is defined as the highest 
level of education attained by either parent in a household, and it 
includes categories for “less than a high school diploma,” “high school 
diploma or equivalent,” “vocational/technical degree or some college 
education,” “bachelor’s degree,” and “graduate degree.” Maternal 
employment status is a categorical variable capturing whether the 
parent is currently “working 35 or more hours per week,” “working 
less than 35 hours per week,” or “not in the labor force.” For fathers, 
employment status is coded as a binary variable denoting whether 
or not this parent is working at all. Parental occupational status is 
measured using a variant of the Duncan Socioeconomic Index (57) 
and assigned on the basis of the parent with the highest score on this 
metric. Both paternal and maternal age are measured in years. The 
ECLS-B measures family income using interval response categories, 
and we imputed dollar values based on interval midpoints. Home-
ownership is a binary variable distinguishing between families that 
own and those that rent their place of residence. The presence of a 
child’s biological father is a binary variable indicating whether he 
currently lives in the same household as the child, while maternal 
marital status is another indicator variable that records whether a 
child’s mother is currently married. Household size is a count of the 
total number of individuals currently living within the child’s resi-
dence. We measure the home language environment with a binary 
variable indicating whether English is the primary language spoken 
in the household. Parental involvement in a sample member’s early 
education is defined as the amount of time the mother typically 
reads to her child, with response categories for “not at all,” “once or 
twice per week,” “three to six times per week,” or “every day.” Partici-
pation in government assistance programs is measured with a series 
of binary variables denoting whether, in the past year, the family 
received benefits from the Program for Women, Infants, and Children 
(WIC), the Supplemental Nutrition Assistance Program (SNAP), 
Medicaid, or Temporary Assistance for Needy Families (TANF).

Last, we also adjust for several ecological characteristics, including 
geographic region, urbanicity, and population density. Region is 
operationalized using census divisions, while urbanicity is a categorical 
variable that captures whether a child lives in an urban, suburban, 
or rural area. Population density refers to the number of people per 
square kilometer living in a child’s ZCTA of residence.

Estimands
To evaluate whether neighborhood effects are mediated by differ-
ences in exposure to neurotoxic air pollution, we focus on estimat-
ing total, natural direct, and natural indirect effects (50, 58). Using 
potential outcomes notation, the average total effect can be formally 
defined as follows

	​ ATE  =  E(Y(x *) − Y(x))​	 (1)

where E( ∙ ) denotes the expectation operator, {x*, x} denote differ-
ent levels of neighborhood poverty, and {Y(x*), Y(x)} denote poten-
tial outcomes of the cognitive assessments under these different 
neighborhood exposures. In words, the ATE is the expected difference 
in cognitive ability at age 4 had children previously been exposed 
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to the level of neighborhood poverty given by x*, rather than x, 
during infancy.

The ATE can be additively decomposed into a natural direct and 
a natural indirect effect, which describe the causal process by which 
differences in neighborhood poverty bring about differences in cog-
nitive ability. Let M(x) denote the vector of air toxics to which a child 
would be exposed under residence in a neighborhood with poverty 
level x. Similarly, let Y(x) = Y(x, M(x)) denote a child’s cognitive 
ability under exposure to a level of neighborhood poverty x and, 
by extension, under exposure to the set of air toxics, M(x), that the 
child would encounter as a result of their residence in a neighborhood 
with this level of poverty. Using this expanded notation for the 
potential outcomes, the ATE can be expressed as E(Y(x*) − Y(x)) = 
E(Y(x*, M(x*)) − Y(x, M(x))) and then decomposed as follows

	​​  
E(Y(x * ,  M(x * ) ) − Y(x, M(x ) ) ) =

​   E(Y(x * ,  M(x ) ) − Y(x,  M(x ) ) ) + E(Y(x * , M(x * ) )​   
− Y(x * ,  M(x ) ) ) = NDE + NIE

  ​​	 (2)

where the first term in this decomposition, NDE = E(Y(x*, M(x)) − 
Y(x, M(x))), is the natural direct effect, and the second term, NIE = 
E(Y(x*, M(x*)) − Y(x*, M(x))), is the natural indirect effect.

The NDE is the expected difference in cognitive ability at age 4 
under residence in a neighborhood with a poverty level given by x*, 
rather than x, during infancy, if children were exposed to the set 
of air toxics that they would have encountered in the neighborhood 
with poverty level x. For example, with x* > x, the NDE captures the 
effect of living in a higher rather than a lower poverty neighborhood, 
if children were exposed to the air pollution they would have en-
countered by virtue of residing in the lower poverty neighborhood. 
It measures an effect of neighborhood poverty operating through all 
mechanisms other than exposure to the observed air toxics. This is 
accomplished by fixing all of the mediators to the levels they would 
have “naturally” been for each child under the reference level of 
concentrated poverty, which deactivates the component of the total 
effect mediated via air pollution.

The NIE is the expected difference in cognitive ability under 
residence in a neighborhood with poverty level x*, if children were 
then exposed to the set of air toxics they would have encountered by 
virtue of living in this neighborhood rather than another neighbor-
hood with a poverty level given by x. For example, with x* > x, the 
NIE captures the effect of exposure to the toxics that children would 
encounter in the air if they lived in a higher rather than a lower 
poverty neighborhood during infancy. It measures an effect of 
neighborhood poverty on cognitive ability operating only through 
differences in exposure to neurotoxic air pollution—that is, an ef-
fect mediated by all of the measured toxics jointly. This is accom-
plished by holding neighborhood composition fixed for each child, 
which deactivates the component of the total effect that operates directly, 
and then comparing outcomes across differences in the vector of 
pollutants that would have occurred under exposure to different levels 
of concentrated poverty.

We focus on effects contrasting residence in neighborhoods with 
a 25% rather than a 5% poverty rate, which are approximately equal 
to the 90th and 20th percentiles of the national exposure distribu-
tion, respectively. Thus, we prioritize a comparison between neigh-
borhoods with high versus low levels of concentrated poverty. In table 
S4, we additionally report effect estimates based on several other 
contrasts, including comparisons of low-poverty neighborhoods 

with areas that have moderate levels of poverty (10 to 20%) and with 
neighborhoods that have extreme levels of poverty (30%).

We also report effect estimates separately by race, family income, 
geographic region, and homeownership. These results are presented 
in tables S5 to S8. They provide suggestive evidence of effect hetero-
geneity, although estimates of conditional effects for these selected 
subpopulations are too imprecise to draw firm conclusions about 
differences between them. In general, we observe larger point estimates 
among Hispanic children and among those living in the Southern 
and Western regions of the country.

Identification
The total, direct, and indirect effects of interest can be identified 
from the observed data under a set of four assumptions about un-
observed confounding (58). These assumptions can be formally 
expressed as follows, using a series of conditional independence 
restrictions
	
​​
       Y(x, m ) ⊥ X∣C; M(x ) ⊥ X∣C; Y(x, m ) ⊥ M∣{C, X};

​   
and Y(x, m ) ⊥ M(x *) ∣C  ​​	 (3)

In substantive terms, the first of these assumptions, Y(x, m) ⊥ X∣C, 
requires that there must not be any unobserved confounding 
for the exposure-outcome relationship. The second assumption, 
M(x) ⊥ X∣C, requires that there must also not be any unobserved con-
founding for the exposure-mediator relationships. The third and fourth 
assumptions, given by Y(x, m) ⊥ M∣{C, X} and Y(x, m) ⊥ M(x*)∣C, 
respectively, require that there must not be any unobserved or 
exposure-induced confounding for the relationship between the 
mediators and outcome.

These are strong assumptions. They would be violated, for ex-
ample, if unobserved factors like parenting skills affect both neigh-
borhood attainment and child cognitive ability, above and beyond 
our set of measured controls, leading to bias. We attempt to satisfy 
them approximately by adjusting for a large set of predictors linked 
with residential selection and child development. Then, because 
this identification strategy is imperfect, we also perform a sensitivity 
analysis that evaluates how our results would change under hypo-
thetical patterns of unobserved confounding.

Even if some of these assumptions are violated, however, our re-
sults may still have an alternative causal interpretation provided that 
certain of them continue to hold. In particular, if the exposure-outcome 
relationship is confounded but the mediator-outcome relationship 
is not, our estimates can be interpreted as reflecting the degree to 
which descriptive disparities in test scores across neighborhoods 
with different poverty levels are explained by differences in pollu-
tion exposure between them. If none of these assumptions are met, 
our results merely summarize how test scores vary with exposures 
to air pollution and concentrated poverty, conditional on a set of 
baseline controls.

Estimation
If, however, the identification assumptions outlined previously are 
all satisfied, then the means of the potential outcomes can be ex-
pressed in terms of the observed data as follows

 ​​
E(Y(x *)) = E(E(Y∣C, X  =  x *)),

​   E(Y(x )) = E(E(Y∣C, X  =  x )), and​   
    E(Y(x * , M(x))) = E(E(E(Y∣C, X  =  x * , M) ∣C, X  =  x))

​​	 (4)
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which are sufficient for computing the ATE, NDE, and NIE. We use 
the method of regression-imputation to estimate these quantities 
(44, 45). In words, this approach involves fitting models for the 
conditional means shown above and then using them to impute, 
or simulate, counterfactuals by (re)setting the value of the exposure 
variable at different levels for all sample members and obtaining 
model predictions.

Specifically, in analyses of causal mediation, the regression- 
imputation algorithm can be implemented according to the follow-
ing steps:

first, fit a model for the mean of the observed outcome conditional 
on the exposure and baseline confounders, which can be expressed 
as E(Y∣C, X) = f(C, X);

second, use this model to estimate the mean of the potential out-
comes under x* by setting X = x* for all sample members, computing 
predicted values ​​ ̂  f ​(C, x * )​, and then taking the sample average of 
these values, ​​ 1 _ n​∑ ​ ̂  f ​(C, x * )​, which yields an estimate for E(Y(x*)) = 
E(E(Y∣C, X = x*));

third, use the same model to estimate the mean of the potential 
outcomes under x by now setting X = x for all sample members, 
computing predicted values ​​ ̂  f ​(C, x)​, and then taking the sample 
average of these values, ​​ 1 _ n​∑ ​ ̂  f ​(C, x)​, which yields an estimate for E(Y(x)) = 
E(E(Y∣C, X = x));

fourth, fit a second model for the mean of the observed outcome 
conditional on the exposure, baseline confounders, and the full set 
of mediators, which can be expressed as E(Y∣C, X, M) = g(C, X, M), 
and then set X = x* for all sample members to obtain a set of 
predicted values ​​   g ​(C, x * , M)​;

fifth, use these predicted values to estimate the mean of the poten-
tial outcomes under {x*, M(x)} by fitting a third model for ​​   g ​(C, x * , M)​ 
conditional on the observed exposure and baseline confounders, 
which can be expressed as ​E(​   g ​(C, x * , M ) ∣C, X ) = h(C, X)​, and then 
by setting X = x for all sample members, computing predicted val-
ues ​​ ̂  h ​(C, x)​, and taking the sample average of these predictions, ​​ 1 _ n​∑ ​ ̂  h ​
(C, x)​, which yields an estimate for E(Y(x*, M(x))) = E(E(E(Y∣C, X = 
x*, M)∣C, X = x));

last, compute estimates for the effects of interest using these quantities— 
that is, calculate ​​  ATE​  = ​  1 _ n​∑ (​ ̂  f ​(C, x * ) − ​ ̂  f ​(C, x ) )​, ​​  NDE​  = ​  1 _ n​∑ (​ ̂  h ​(C, x ) − 
 ​ ̂  f ​(C, x ) )​, and ​​  NIE​  = ​  1 _ n​∑ (​ ̂  f ​(C, x * ) − ​ ̂  h ​(C, x ) )​.

The method of regression-imputation yields consistent estimates 
under the identification assumptions outlined previously and pro-
vided that f(C, X), g(C, X, M), and h(C, X) are themselves consist
ently estimated.

This approach to estimation is ideal for the present analysis, 
which involves a continuous measure of neighborhood poverty and 
a large number of air pollutants, because it does not require model-
ing the distributions of the exposure or mediators, as is necessary 
with most other approaches to analyzing causal mediation. That is, 
unlike other methods, our approach can recover estimates of the 
NDE and NIE without models for (i) the probability of exposure to 
neighborhood poverty given the baseline covariates or (ii) the joint 
probability of exposure to different air toxics conditional on neigh-
borhood poverty and prior covariates, which would be exceedingly 
difficult to correctly specify and fit given the complexity of these 
distributions and the challenge of data sparsity. Our approach does, 
however, require correctly modeling several conditional mean func-
tions for the outcome given different sets of predictors. Because the 

true form of these functions is unknown and potentially complex, 
especially when the predictors include a high-dimensional set of 
mediators, conventional approaches to modeling them (e.g., linear 
regression) are likely to suffer from severe bias due to misspecification, 
even if our key assumptions about unobserved confounding are all 
satisfied. For example, the relationships between cognitive ability and 
the many different air toxics included in this analysis may be non-
linear or nonadditive or they may otherwise differ across levels of 
the exposure or confounders (24, 31). In this situation, it is difficult 
to accurately approximate the true conditional mean functions with 
conventional parametric models, leading to bias. We mitigate this 
problem by constructing models for f(C, X), g(C, X, M), and h(C, X) 
using data-adaptive machine learning algorithms.

Specifically, we model these functions using RFs (46), an ensemble 
method that combines recursive partitioning with random subspace 
selection and bootstrap aggregation. Recursive partitioning involves 
repeatedly dividing the sample into subgroups, or nodes, based on 
binary partitions of the predictors that minimize a loss function at 
each step of the algorithm—in our case, mean squared error. The 
algorithm initiates by considering all possible partitions, and then it 
selects the one that minimizes squared error around the mean of the 
outcome in the two resulting nodes. This partitioning process is 
then repeated, where the nodes created at each previous step of the 
procedure are further partitioned themselves, over and over, until 
the algorithm reaches a stopping criterion. The result is a so-called 
“regression tree,” which yields a set of predicted values equal to the 
mean of the outcome within each terminal node. Recursive parti-
tioning can approximate complex forms of nonlinearity and inter-
action with high accuracy, but the method also tends to produce 
estimates with excessive variance because it overfits random variation 
in the sample data. RFs overcome this limitation by creating and then 
combining an ensemble, or “forest,” of many different regression trees. 
Each tree in the ensemble differs because it is created using (i) a 
random sample of observations selected from the data with replace-
ment and (ii) a random subset of predictors selected as candidates 
for partitioning at each step of the algorithm. Predictions from the 
RF are obtained by taking the average of the predictions from all 
the different trees that compose it. By averaging over the predictions 
from many complex but weakly correlated trees, RFs yield a regres-
sion surface that is capable of approximating the true conditional 
mean function with a high degree of accuracy while minimizing ex-
cessive variance due to overfitting.

RFs require specifying a set of hyperparameters that control the 
algorithm and determine its stopping criterion. In particular, they 
require specifying the minimum number of observations allowed in 
a terminal node (an), the number of predictors to select for partition-
ing at each step (ap), and the total number of trees to construct for 
the ensemble (b). We construct ensembles of b = 200 trees and then 
tune the other hyperparameters using a grid search and k = 5 fold 
cross-validation. For each RF, we search over ap ∈ {floor(0.3p), 
floor(0.4p), …, floor(0.7p)}, where p denotes the total number of pre-
dictors, and an ∈ {5,10,15,20}, selecting the combination of values 
that maximize predictive accuracy.

As a robustness check, we also compute a set of effect esti-
mates using RFs with commonly used default values for these 
hyperparameters—specifically, an = 5 and ap = floor(p/3)—and by 
using a variant of the algorithm that involves constructing each tree 
in the ensemble with a random sample of size sn = floor(s × n) 
selected without replacement from the observed data (47). For this 
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implementation of RFs, the sampling fraction, s, is an additional 
hyperparameter that we tune using a cross-validated grid search 
over s ∈ {0.6,0.7, …,0.9}. In addition, we compute effect estimates 
using a stacking algorithm, known as a “super learner” [SL; (59)], 
that constructs a weighted average of predictions from each of 
the different RF implementations considered in our analysis. This 
weighted average is designed so that it may perform better asymp-
totically, while being guaranteed to perform no worse, than the pre-
dictions from any single RF taken in isolation. Estimates for the 
total, direct, and indirect effects of interest based on these different 
modeling approaches are presented in table S9. They are very simi-
lar to those that we prioritize in Table 1. We focus on RFs over oth-
er methods in this analysis because they can accurately approximate 
complex forms of interaction and nonlinearity, because they can easily 
accommodate a high-dimensional set of predictors while minimizing 
problems due to overfitting, and because predictions from this class 
of algorithms are consistent under fairly general conditions (47, 60).

To account for the stratified multistage sample design used by 
the ECLS-B, we use sampling weights that adjust for unequal prob-
abilities of selection and compute interval estimates using a repeated 
half-sample bootstrap that adjusts for the geographic clustering 
of study participants (61). This involves repeating the regression- 
imputation procedure, with weights, on independent samples drawn 
from the observed data, where each sample is constructed by ran-
domly selecting one of the two primary sampling units from within 
each design stratum and duplicating these observations. To adjust 
for the bias that may arise in the presence of missing data, we repli-
cate this entire analysis across five complete datasets, with missing 
values for all variables simulated via chained RFs (62, 63). The pro-
portion of missing information in this analysis is 0.04, which is due to 
a combination of item-specific nonresponse, truncation of extreme 
values in the RSEI-GM, and panel attrition in the ECLS-B. After 
pooling results across imputations, the upper and lower limits of 
our interval estimates are given by the 97.5th and 2.5th percentiles 
of the combined bootstrap distribution, respectively (64). We also 
performed a parallel analysis under the assumption that the ECLS-B 
sample design is ignorable and therefore computed effect estimates 
without sampling weights, which may be relatively more efficient in 
certain situations (65). Results from this analysis are reported in ta-
ble S10. They are similar to those constructed with sampling weights 
but are somewhat more precise.

Sensitivity analysis
We assess the sensitivity of our results to unobserved confounding 
by computing bias terms and then using them to construct a set of 
adjusted point estimates for the NDE and NIE (43, 45). In the sce-
nario where unobserved confounding exists for the relationship be-
tween the mediators and outcome (i.e., there are unmeasured factors 
that affect both pollution exposure and child cognitive ability), esti-
mates for both the NDE and NIE are biased. In this setting, the bias 
terms can be expressed as follows

	​ bias(​̂  NDE​ ) =  and bias(​̂  NIE​ ) = − ​	 (5)

where  = E(U∣C, X = x*, M) − E(U∣C, X = x, M),  = E(Y∣C, X, M, 
U = 1) − E(Y∣C, X, M, U = 0), and U represents an unobserved 
variable that is assumed to affect the outcome and to differ across 
levels of the exposure in a manner that does not depend on the ob-
served covariates or mediators. In the scenario where unobserved 

confounding exists for the relationship between the exposure and 
outcome (i.e., there are unmeasured factors that affect selection into 
poor neighborhoods and child cognitive ability), estimates for the 
NDE, but not the NIE, are biased. In this setting, the unobserved 
variable, U, can be recast as an exposure-outcome confounder rath-
er than a mediator-outcome confounder, and estimates for the NDE 
suffer the same bias as outlined above. We construct bias-adjusted 
estimates by subtracting  from ​​  NDE​​, and − from ​​  NDE​​, and 
then we plot them across a range of plausible values for  and  to 
identify the magnitude of unobserved confounding that would suf-
fice to reduce our effect estimates to zero.

Model explanation
Although RFs are well equipped to accurately model complex con-
ditional mean functions, especially with a high-dimensional set of 
predictors, they are more difficult to interpret than conventional 
parametric models. We address this tension between accuracy and 
interpretability using SHAP values (51, 66), which quantify the con-
tribution that each covariate brings to the predictions made by an 
RF. This allows us to identify the predictive importance of different 
variables considered in our analysis and, by extension, to illuminate 
which toxics are likely to play a more versus less important role in 
mediating the effects of neighborhood poverty on child cognitive 
ability. SHAP values enjoy several advantages over alternative mea-
sures of variable importance, including a game theoretic motivation, 
the ability to handle correlated predictors, and the ability to fairly 
attribute influence to both high- and low-cardinality predictors.

Formally, SHAP values are based on an additive attribution 
model with the following form

	​​  ̂  v ​(z) = ​​ 0​​ + ​∑ i=1​ p  ​​ ​​ i​​ 1(​z​ i​​)​	 (6)

In this model, ​​   v ​(z)​ denotes a predicted value from some focal model 
(e.g., an RF) given the vector of predictors z = {z1, …zp}, ​​​ 0​​  = ​  ̂  v ​(∅)​ 
denotes the prediction given by a null model with no covariates, 
1(zi) is an indicator function denoting that a predictor is included in 
the model, and i is the SHAP value for predictor zi, which provides 
a single number summary of its contribution to the prediction 
of interest.

The SHAP value for zi is obtained by comparing the difference 
between predictions from models with and without the variable in-
cluded as a predictor. Because the effect of withholding a covariate 
on a model’s prediction may depend on all the other variables in-
cluded, these differences are computed for every possible combina-
tion of the other predictors, and then the SHAP value is given by 
their weighted average. Specifically, if p denotes the total number of 
predictors and d−i denotes subsets of these variables that do not in-
clude the predictor zi, then the SHAP value for this predictor is 
equal to

	​​ ​​ i​​  = ​ ∑ ​d​ −i​​ ​ ​​​(​​ ​ 
∣​d​ −i​​∣!(p −∣​d​ −i​​∣− 1 ) !

  ───────────────── p ! ​​ )​​(​   v ​(​d​ −i​​, ​z​ i​​ ) − ​   v ​(​d​ −i​​ ) )​​	 (7)

where ​​ ̂  v ​(​d​ −i​​, ​z​ i​​)​ denotes the prediction from a model trained with 
the covariate set {d−i, zi} and ​​   v ​(​d​ −i​​)​ is the prediction from a model 
trained without zi. Computing SHAP values exactly as in Eq. 7. 
would require fitting 2p different models, which becomes com-
putationally intractable even with a relatively small number of pre-
dictors. SHAP values are therefore estimated using a Monte Carlo 
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approximation that greatly reduces the time complexity of the com-
putations (66).

To summarize the influence of a predictor over the entire regres-
sion surface, as opposed to its influence on a single predicted value, 
we compute the mean of the absolute SHAP values, ​​ 1 _ n​∑ ∣​​ i​​∣​, where 
the sum is taken over sample members. The mean absolute SHAP 
value is a global measure of variable importance. It can be inter-
preted as the average influence of a predictor, in absolute terms, on 
a model’s output. Figures S1 and S2 display mean absolute SHAP 
values for every predictor included in our RFs for E(Y∣C, X) and 
E(Y∣C, X, M), while figs. S3 and S4 plot the individual SHAP val-
ues themselves, which additionally provide information about the 
general direction of the relationship between the predictors and 
outcome. Figures 6 and 7 are based on the subset of these values 
that are directly relevant to neighborhood effect mediation via air 
pollution.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/ 
sciadv.add0285
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