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A B S T R A C T   

Quality air to breathe is the basic necessity for an individual and in recent times, emission from various sources 
caused by human activities has resulted in substantial degradation in the air quality. This work focuses to study 
the inadvertent effect of COVID-19 lockdown on air pollution. Pollutants’ concentration before- and during- 
COVID-19 lockdown is captured to understand the variation in air quality. Firstly, multi-pollutant profiling using 
hierarchical cluster analysis of pollutants’ concentration is performed that highlights the differences in the 
cluster compositions between before- and during-lockdown time periods. Results show that the particulate 
matter (PM10 and PM2.5) in air that formed the primary cluster before lock-down, came down to close similarity 
with other clusters during lockdown. Secondly, predicting air quality index (AQI) based on the forecasts of 
pollutants’ concentration is performed using neural networks, support vector machine, decision tree, random 
forest, and boosting algorithms. The best-fitted models representing AQI is identified separately for before- and 
during-lockdown time periods based on its predictive power. While deterministic method reactively evaluates 
present AQI when current pollutants’ concentration at a particular time and place are known, this study uses the 
best fitted data-driven model to determine future AQIs based on the forecasts of pollutant’s concentration 
accurately (overall RMSE<0.1 for before lockdown scenario and <0.3 for during lockdown scenario). The study 
contributes to visualize the variation in pollutants’ concentrations between the two scenarios. The results show 
that the reduced economic activities during lockdown period had led to the drop in concentration of PM10 and 
PM2.5 by 27% and 50% on an average. The findings of this study have practical and societal implications and 
serve as a reference mechanism for policymakers and governing bodies to revise their actions plans for regulating 
individual air pollutants in the atmospheric air.   

1. Introduction 

Rapid industrialization and urbanization in low- and middle-income 
countries have led to increased air pollution causing environmental 
degradation and health hazards (Balietti et al., 2022). Combustion of 
fossil fuels, industrial emissions, and natural calamities are potential 
causes of air pollution (Fromer et al., 2019; Jiang and Yu, 2020). Human 
activities contribute much to air pollution. PM2.5, PM10 (grade of par-
ticulate matter having diameter less than or equal to 10, 5, 2.5, 1 μm is 
shown in subscript) in cities are emitted predominantly from vehicles (X. 
Ma et al., 2020; Mukherjee et al., 2020; Yang et al., 2020). Pollutants 
like carbon monoxide (CO), hydrocarbon (HC), Nitrogen oxides (NOX), 
PM2.5, PM1.0 and volatile organic compounds (VOCs) are extensively 
present in business zones of urban area and NOX, PM2.5 and PM1.0 are 

highly present in air in the industrial zones (Song et al., 2019). Further, 
diffusion and persistence of these pollutants in air is greatly affected by 
meteorological factors such as wind speed, direction, turbulence, sta-
bility, humidity, temperature, radiation and rainfall (Hewson, 1956). 
Pollutants in air when inhaled causes serious health hazards and give 
rise to ecological disturbances against which eco-friendly industrial 
practices, agricultural practices, plant designs and control technologies 
are suggested by many researchers (Jiang and Yu, 2020; Liu et al., 2020; 
Wang and Lu, 2020; Xiong et al., 2020; C. Zhang et al., 2020; Zhuang 
et al., 2020). 

As part of preventive and control measures to combat air pollution, 
regulations for vehicles, industries, and power plants are enforced; 
alternative fuels and zero-emission vehicles are introduced (Bakır et al., 
2022; Guo et al., 2020; Sahu et al., 2021; Saz-Salazar et al., 2020; Yadav 
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et al., 2019). (Perman and Stern, 2003) argues that the environmental 
improvement in developed countries is due, at least in part, to the fairly 
strict environmental regulations. However, such regulations are not in 
line with the priorities of the low- and middle-income countries that 
specialize in natural resources and low-skilled labor (Grossman and 
Krueger, 1995; Tsurumi and Managi, 2010). have highlighted the eco-
nomic determinants of environmental quality since large-scale economic 
activities, which exacerbates industrial combustion, result in high 
emission volume of VOC and PM in the atmospheric air. India rigorously 
focus on their mission toward “clean air” to tackle the nexus between 
economic development and environmental degradation (Sahu et al., 
2021). The effect of globalization on air pollution are alarmingly felt in 
Indian cities and India has six out of ten most polluted cities in the world 
(as per 2021 IQAir records). For instance, World Health Organization 
(WHO) has already indicated that Delhi has exceeded the maximum 
PM10 limit by ten times in 2011 itself and the residents face lot of health 
difficulties due to polluted air. Hence, there is a need to control air 
pollution caused by individual pollutants at its source and regulate air 
quality to build a healthy nation. 

While preventive measures through regulations and policies have 
been focused on, reactive strategies too are adopted conditionally based 
on the current value of the air quality index (AQI) which is estimated 
from the pollutants’ concentration in the air sensed at an instant of time 
(Tan et al., 2021). When AQI drops alarmingly down, factories adopt 
mitigation plan to clean the air through the use of filters and purifiers 
(Jiang and Yu, 2020; Minet et al., 2018; Vijayan et al., 2015). However, 
appropriate proactive strategies help prevent or control pollution that 
would be possible if AQI is predicted accurately, and further, the situ-
ation can be safely handled with necessary precautions and prepared-
ness which is the focus of this study (Qiu et al., 2020; Ying Wang et al., 
2020). 

According to NASA (2020), during the COVID-19 lockdown, AQI 
level was found to be lesser than normal and pollutants’ concentration 
such as nitrogen dioxide in the atmospheric air was detected to be less 
(Dang and Trinh, 2021). elucidates the overall reduction in concentra-
tion of nitrogen dioxide and PM2.5 globally during lockdown and sug-
gests to adopt reduced mobility as much as possible further to sustain 
these improved air conditions in future. It is noteworthy that forecasts 
made by the existing climatic models that assumed business as usual 
scenario on pollution during COVID-19 lockdown was very much 
deviating from the actuals. Hence there is a need to reinvestigate the 
variation in the air quality levels along with its associated determinants 
(Streiff, 2020). Air quality levels across India were in the downtrend till 
2019, however, in 2020, many cities in India recorded improved air 
quality (According to Statista report 2021) (Bakır et al., 2022). To 
control the spread of novel coronavirus disease in early 2020 
(COVID-19), social distancing and lockdown were enforced that curbed 
all non-essential and non-emergency human outdoor activities. During 
this period, it is found that emission of air pollutants has drastically 
reduced in atmospheric air and eventually air quality substantially 
increased in many Indian states due to the suspended industrial activ-
ities and reduced vehicular movements (Elsaid et al., 2021; Pal et al., 
2021). 

Motivated by this, the authors focused on the following research 
question. 

What significant differences COVID-19 lockdown has influenced on 
the air pollutants’ concentration and in turn on atmospheric air quality? 

The authors selected prime locations in India where air pollution is 
generally reported to be alarmingly high. Pollution control board of both 
central and state governments (CPCB, SPCB) in India is keen about na-
tional air quality index. Existing method determines present AQI at a 
place by capturing the concentration of individual pollutants in unit 
volume of atmospheric air using appropriate sensors and uses them to 
evaluate AQI only if at least three pollutants’ concentration is available 
that must include either PM2.5 or PM10 or both. Pollutants’ concentra-
tion is sensed every hour and AQI values are so computed. This study 

attempts to determine future AQI values using time-series analysis of 
pollutants’ concentration. In order to model air quality depicting both 
before and during COVID-19 lockdown scenarios, timeseries data of 
pollutants’ concentrations in selected regions is collected for both the 
time periods and analyzed through machine learning approaches. Using 
unsupervised learning approach, multi-pollutant clusters are first 
formed for these regions for both the scenarios which can reveal varia-
tion in pollutants’ concentration. Further, using supervised learning 
approach, data-driven models are developed to foresee air quality at a 
particular place. We explore the use of Linear regression modeling (LM), 
support vector regression (SVR), artificial neural network (ANN), deci-
sion tree (DT), random forest (RF) and extreme gradient boosting tree 
(XGB) to determine future AQI values with the forecasts of pollutants’ 
concentrations and the best-fitted model with the highest predictive 
performance is selected for each region. Understanding the variation in 
pollutants’ concentrations individually before- and during-lockdown 
scenarios in a particular region not only help policymakers to frame 
an appropriate pollutant-specific control strategy, but also, in deter-
mining future AQI values allowing to adopt appropriate mitigation plan. 

2. Related work 

Literature evidences show that predicting individual pollutants using 
learning methods help mitigating them by addressing various emission 
and non-emission factors associated with them. Forecasts of PM2.5 and 
NOx concentrations individually under known meteorological and 
traffic information are obtained accurately using random forest algo-
rithm with high predictive power (Z. Li et al., 2020). Timeseries analysis 
of O3, SO2, CO, NO2 concentrations using adaptive neuro-fuzzy infer-
ence system is performed and the prediction accuracy is found to be 
higher than the traditional regression methods (Zeinalnezhad et al., 
2020). The concentration of O3 is estimated using extreme gradient 
boosting algorithm and the performance of this algorithm is found to be 
high when compared with back propagation neural network, general-
ized regression neural network, Elman neural network, extreme learning 
model, linear regression, and random forest algorithm with respect to 
root mean square error and mean prediction error (R. Li et al., 2020). 
CH4, CO and VOCs are the prime antecedents of O3 and predicting O3 
concentration in atmospheric air is very vital to track and control 
climate change and global warming effects. This is performed using a 
long short term memory (LSTM) based hybrid deep learning model and 
the prediction accuracy is found to be high when compared with the 
baseline models (H. W. Wang et al., 2020). Shallow multi-output and 
deep multi-output LSTM network is used to forecast pollutants such as 
PM2.5, PM10 and NOX with high accuracy that yielded low loss function 
values (Zhou et al., 2019). The concentration of PM2.5 under the influ-
ence of industry and weather related factors is predicted using gradient 
boosted decision trees with high precision accuracy compared to con-
ventional methods (Lee et al., 2020). The concentration of PM2.5 is 
forecasted based on meteorological and other factors using deep belief 
network and spatial lag models that helped urban planning (Yuan et al., 
2019). The daily concentrations of PM2.5 are determined using partial 
differential equation model in which the parameters of the equation are 
determined using Nelder-Mead simplex local optimization method 
however the computational complexity of large scale problem instances 
is high (Yufang Wang et al., 2020). 

Air pollution at a particular place and time is quantitatively assessed 
using a commonly used comprehensive measure, air quality index (AQI) 
that is determined based on the proportion of various contaminants 
present in the air (Tan et al., 2021). Literature evidence shows that AQI 
can be forecasted accurately through data-driven models (Kumar and 
Goyal, 2011; Lee et al., 2020; Liu and Chen, 2020; Song and Fu, 2020; 
Zhou et al., 2019). The influence of PM2.5, PM10, SO2, NO2, CO and O3 
concentrations on AQI and their inter-relationships are studied during 
various meteorological seasons using regression analysis (Q. Zhang 
et al., 2020) and the concentrations are forecasted for a short-term using 
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machine learning and optimization models (S. Chen et al., 2019). AQI is 
forecasted using hybrid model of radial basis function neural network, 
ensemble empirical mode decomposition and autoregressive integrated 
moving average methods by capturing the influence of PM2.5, PM10, 
SO2, NO2, CO and O3 and other meteorological factors (Song and Fu, 
2020). AQI is predicted using a hybrid method that comprised of binary 
grey wolf optimization-based feature reduction, discrete wavelet packet 
transform-based decomposition, extreme learning machine and adap-
tive boosting-based prediction model which is compared with other 
prediction models such as artificial neural network (ANN) and support 
vector regression (SVR). The proposed model surpasses ANN and SVR 
models in terms of robustness, interpretability and adaptability along 
with accuracy (Liu and Chen, 2020). The relationship of AQI with 
meteorological, economic, energy, demographic, mobility, and envi-
ronmental aspects in a region is studied and multi-variate modeling 
using extreme gradient boosting decision tree is performed. The exper-
imental study shows high accurate results when compared with other 
machine learning algorithms (J. Ma et al., 2020). The timeseries analysis 
of concentrations of PM2.5, PM10, SO2, NO2, CO and O3 is performed 
using variational mode decomposition and extreme learning machine to 
predict AQI in which the parameters of the model are determined using 
multi-objective grasshopper optimization algorithm and further fuzzy 
based air quality levels are identified (Ying Wang et al., 2020). However, 
pattern of AQI and pollutants’ concentration are affected by several 
events that cause changes in the environment and in recent times 
COVID-19 has brought variations in air quality in many cities. The 
credibility of the forecasts made by the prediction models is to be 
examined as pollution data evolves. Moreover, forecasts of AQI values 
made available in public domain during COVID-19 lockdown showed 
high deviation (forecast error) from actual due to reduced economic 
activities (Vasudevan et al., 2021), Therefore, there is a need to develop 
event-based prediction models for accurate AQI forecasts. Clustering 
and prediction models using machine learning together could yield 
multi-pollutant profiling and forecasts of AQI which could help in 
planning environmental missions, controlling emissions and restoring 
environmental health. However, such studies are scarcely reported in 
the literature. 

2.1. COVID-19 pandemic and air pollution 

A novel coronavirus brought the world to a grinding halt turning up 
to be a massive global pandemic of this era. Air pollution and its effect 
on the spread and progression of infection was also one among the major 
concerns especially in cities (Harvard, 2020) (Becchetti et al., 2022). 
argued that quality of air has relationship with the spread of novel 
coronavirus and stringent lockdown measures enabled highly polluted 
area to mitigate spread and mortality effectively. As a preventive and 
control measure against this pandemic, lockdown was imposed and in 
all commercial establishments, only essential and very limited services 
were permitted to operate. Most countries enforced restrictions on travel 
and imposed mandatory lockdown which led to negative industrial 
growth in 2020 all around the world, however, it seems that the negative 
economic impact of the COVID-19 pandemic implies a positive envi-
ronmental impact (Sahraei et al., 2021). During pandemic, while Gov-
ernments’ policies, aimed at curbing the virus spread amongst the 
population, the economic recession deepened and consequently hugely 
affected the global consumption of fossil fuels and positively influenced 
the environmental ecosystem and subsequently the air quality (Dang 
and Trinh, 2021; Tibrewal and Venkataraman, 2022). This highlights 
the importance of using zero-emission vehicles, alternate fuels and 
eco-friendly transportation and transshipment practices to sustain this 
improved air quality further (Rizova et al., 2020). Indeed, NASA re-
ported many evidences indicating the rejuvenation of environment 
initiated by lockdown measures (Streiff, 2020). (Le Quéré et al., 2020) 
identified that the global CO2 emission fell by 17% by early April 2020 
relative to the 2019 average level. The effect of COVID-19 pandemic on 

air quality has been studied by Chinese researchers that has opened up 
new avenues to combat air pollution in China (Magazzino et al., 2021). 
Environment-friendly industry practices, logistic practices and green 
mobility initiatives have to be focused rigorously to sustain air quality 
(Caspersen and Navrud, 2021; Gonzalez et al., 2022). However, more 
studies are needed to sustain the improved environmental conditions 
that prevailed during COVID-19 lockdown without affecting the eco-
nomic and social aspects. 

3. Materials and methods 

The present study focuses on evaluating atmospheric air quality 
based on the air pollutants such as the PM2.5, PM10, NO, NO2, NOX, NH3, 
CO, SO2, O3, Benzene, Toluene, Xylene. The study was conducted for 
selected regions in three Indian states namely Delhi, Telangana and West 
Bengal. Delhi being highly commercial and highly polluted and Telan-
gana being a newly-found state with huge influx of population having 
more economical activities and West Bengal being a pivot point for all 
the economic activities in the eastern region and highly committed to-
wards sustainability are chosen as representative regions to carry out 
this study. The analysis of air quality before- and during COVID-19 
lockdown was carried out for these selected regions to capture the 
variation in the trends of pollutants’ concentration. A framework 
depicting the research work is shown in Fig. 1. Timeseries data of pol-
lutants’ concentration before- and during-lockdown time periods is 
taken from public repositories. The analysis is carried out in two phases 
(1) Multi-pollutant profiling for different stations is carried out from 
which clusters of pollutants based on the similarity in concentration in 
atmospheric air at a particular region are made using Ward’s algorithm. 
(2) Predicting the air quality index capturing the trend of various pol-
lutants existing at different stations. Timeseries forecasts of pollutants’ 
concentrations are used to compute future AQI values. 

3.1. Data 

The concentration of PM2.5, PM10, NO, NO2, NOX, NH3, CO, SO2, O3, 
Benzene, Toluene and Xylene along with air quality index (AQI) is ob-
tained from online websites published by Central Pollution Control 
Board (CPCB), Ministry of Environment, Forests and Climate change, 
Government of India.1 Here we use nitrogen oxides individually as well 
as in combination as there is a high chance of reaction of NO with O3 and 
conversion of NO to NO2 (Mazzeo et al., 2005). The timeseries data is 
available for major stations present in every city in every state. For the 
purpose of experimental modeling, this study considered nine stations 
present in Delhi, Hyderabad and West Bengal. Timeseries data of pol-
lutants’ concentration and AQI values before and after April 1, 2020 
(Hourly records of March and April) is considered to better understand 
the variation in air quality before and during COVID-19 lockdown 
respectively. 

3.2. Multi-pollutant profiling using cluster analysis 

Multi-pollutant profiles are used to study the health effects of distinct 
pollutant clusters formed based on the concentration of different pol-
lutants present in a particular region (Zanobetti et al., 2014). However, 
many research studies focused on developing city clusters based on the 
concentrations of a particular pollutant to frame policies and regula-
tions. Based on the concentration of PM2.5, cities in China are clustered 
taking high dimensional monitoring data evaluating spatial-temporal 
clustering of PM2.5 concentration (Z. Chen et al., 2019; Yufang Wang 
et al., 2020). k-means clustering of dataset collected in Beijing is per-
formed to impart high similarity within clusters that is found to further 
enhance forecasting accuracy (S. Chen et al., 2019). In this study, 

1 https://app.cpcbccr.com/AQI_India/. 
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hierarchical cluster analysis using Ward’s method (Amorim, 2015) is 
used to cluster the pollutants by determining the Euclidean distance 
between a pair of data points. Initially, the number of clusters is set 
equal to the number of pollutants and the required number of clusters is 
also set. Then the pair of clusters (Ci,Cj) that has minimum cost function 
is iteratively merged based on the following equation till desired number 
of clusters is reached. 

ward
(
Ci,Cj

)
=

n(Ci) × n
(
Cj
)

n(Ci) + n
(
Cj
) d

(
cCi , cCj

)
(1)  

where cCi denotes the centroid of cluster Ci and n(Ci) denotes the car-
dinality of cluster Ci. By applying ward’s method, multi-pollutant pro-
files of different regions can be obtained and their effects on human 
health in those regions can be studied. 

3.3. Predictive modeling of air quality 

The effect of pollutants’ concentration on air quality is first studied 
using linear regression method (LM). Linear timeseries models assume 
linear relationships between the dependent and independent variables 
(Zeinalnezhad et al., 2020). Learning-based non-linear timeseries anal-
ysis is also carried out in this study to explore the possible non-linear 
relationships among the determinants of air quality (Du et al., 2019; 
R. Li et al., 2020; J. Ma et al., 2020; Zeinalnezhad et al., 2020). Existing 
studies show that regression trees constructed using Decision Tree (DT) 
and its ensembles such as Random Decision Trees or Random Forest (RF) 
and Extreme gradient boosting trees (XGB) are able to fit a robust 
regression model (Ayoubloo et al., 2011). Tree based models capture the 
pattern of data over time and effectively predict the future values. The 
rules on the decision nodes are made with the selection of independent 
variables in the order of their significance during the training phase in 
such a way that the seen instances can be accurately fitted with the 
established rule. After sufficient training, the decision rules are fine-
tuned and the regression tree will eventually become ready to handle 
unseen instances. Random forest employs simultaneous learning 
through multiple decision trees and generalizes more quickly especially 
in hard-to-predict problems. XGB is a boosted tree involving ensemble 
learning to incorporate dominant relationships among predictors itera-
tively. Literature also shows evidence that artificial neural network 

(ANN) and its ensembles are widely used for predictive modeling of air 
quality (Ayoubloo et al., 2011; Yilmaz and Kaynar, 2011). ANN consists 
of input, hidden and output neurons that are grouped in layers such that 
the entire network architecture can be trained to activate appropriate 
neurons to determine a desired output given an input signal (Song and 
Fu, 2020). The number of hidden neurons and the number of hidden 
layers must be experimentally identified as hyper-parameters. There are 
connections between the layers and the strength of a connection is given 
as a weight value. The network develops an input-output fitted function 
iteratively during the training phase with seen instances. The activation 
function is also chosen experimentally. For each training instance, the 
error obtained from the deviation between the predicted and actual 
values is determined and fed back to the input layer through back-
propagation and gradient descent method is used to minimize error. The 
gradient descent method adjusts the weights by an amount that is pro-
portional to the partial derivative of the error function that is back 
propagated based on a learning rate parameter. This helps to avoid 
convergence to the saddle (min-max) point and the gradient vector of 
the approximated error function is obtained through the layers of the 
network. Literature presents support vector regression (SVR) as another 
powerful tool that maps the non-linearly related predictors to generalize 
unseen instances with outstanding performance (Kavousi-fard et al., 
2014). Radial basis function incorporated in a Gaussian kernel to model 
air quality with seen instances of pollutants’ concentration during 
training phase iteratively minimizes the loss function (Smola and 
Olkapf, 2004). The kernel attempts to determine a statistical fit in the 
training phase in the predictor space with minimum loss at which the 
deviation between the actual and obtained values are less than a small 
tolerance error. A non-linear mapping transforms the input vector onto 
predictor space performed by kernels and forms mapped support vec-
tors. The variation in pollutants due to COVID-19 and its related events 
has to be intensely investigated. In this study, every station is investi-
gated using these learning methods to fit regression models for pre-
dicting AQI before and during COVID-19 lockdown and the best fitted 
model is selected which can address COVID-19-induced change in the 
relationship of pollutants. The predicted pollutants’ concentration using 
the best fitted models further is used to determine national air quality 
index based on the guidelines of CPCB. 

Fig. 1. Research framework.  
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3.3.1. Data-driven modeling of air quality 
Best fitted models to determine AQI as a function of its pollutants is 

to be identified for each region based on the data collected in this study. 
Linear and non-linear timeseries analysis using support vector regres-
sion (SVR), artificial neural network (ANN), decision tree (DT), random 
forest (RF), and extreme gradient boosting (XGB) tree methods are 
performed and their prediction error and computational time 
complexity are obtained for each station before and during COVID-19 
lockdown. The forecasts of pollutants’ concentration yielded by each 
model is compared with the actuals in the testing phase and the best 
fitted models are selected which can be further deployed to forecast AQI 
accurately in each region (9 stations considered in this study). The 
timeseries data of pollutants’ concentration collected before and after 
the onset of COVID-19 in these regions are classified into training and 
test dataset. The training dataset is used to construct the timeseries 
models to forecast the pollutants’ concentration in each region. During 
the training process, the models exhibit deviation between actual and 
predicted from which root mean squared error is derived that is most 
often fed back to the model for finetuning the model parameters itera-
tively. After sufficient training, the model is tested on its prediction 
ability with the test data and again root mean squared error is deter-
mined. The training error and testing error are evaluated based on the 
deviation of estimated AQI from actual AQI values to analyze the 
generalization capability of the machine learning regressors in fitting 
the models (Refer to Tables 1 and 2). 

Most of the models exhibit a high root mean squared error in the 
testing phase than that in the training phase, especially in the during- 
lockdown scenario. This is because the models could not capture the 
complex patterns in the data and are unable to represent the problem 
with an exact function similar to an actual or target function and hence 
exhibiting poor generalization capability. The learners have different 
ability to derive the approximated function and often suffer from 
underfitting or overfitting issues. The models get fitted to the best 
approximate function possible with the seen instances and have a de-
viation between the actual and predicted when confronted with unseen 
instances. However, the difference in errors during training and testing 
phases is more in during-lockdown models as it is obvious that the 
pandemic outbreak created turbulence in air pollutants’ concentration 
that gradually stabilized with time. It can also be observed that the 
prediction error is high in linear models in most of the cases as there are 
non-linear relationships in the pollutants which are addressed by the 
machine learning methods to a great extent. Also, prediction accuracy is 
found to substantially increase when machine learning models are 
applied especially in the during-lockdown scenario. To choose an 
appropriate machine learner, in addition to error, the convergence speed 
of the regressors is also captured and the execution time in training the 
models is obtained and presented in Table 3. 

It can be observed that the computational time during the training 
phase in ensemble methods such as random forest and boosting learners 
is high when compared to other methods. The resultant best fitted 
models were chosen for each station after modeling are presented in 
Table 4. 

The best fitted prediction model for AQI in each region for before- 
and during- COVID-19 lockdown is selected based on the prediction 
accuracy and computational time taken for constructing the models. 
These models are then further used to analytically determine the sig-
nificance of the pollutants and the impact of COVID-19 lockdown 
measures on the environmental pollution in selected nine regions in 
India. 

4. Results and discussions 

In this study, the influence of COVID-19 lockdown on various air 
pollutants and air quality in various regions of India is analyzed using 
clustering and prediction methods. The best fitted models identified for 
each region in the previous section are further used to determine AQI 

based on the pollutants’ concentration before and during COVID-19 
lockdown. 

The multi-pollutant profiles existing during COVID and before the 
COVID outbreak in each station are obtained using hierarchical cluster 
analysis using Ward’s method and presented in Figs. 2 and 3. The major 
air pollutants considered in this study viz, PM2.5, PM10, NO, NO2, NOX, 
NH3, CO, SO2, O3, Benzene, Toluene, and Xylene are clustered to obtain 
maximum of five multi-pollutant profiles for every station based on their 
similarity in variation. 

It can be observed that the pollutants are differently clustered before 
and during COVID-19 lockdown in all the stations. Delhi is the most 
polluted city in India and one of the top five polluted cities in the world. 
In the station, DL001, it could be observed that the concentration of 
PM10 in atmospheric air is found to be a persistent pollutant affecting the 
air quality both pre-and during COVID-19 lockdown. It is a unique 
pollutant and its concentration is found to decrease as the height of the 
reference point from ground level increases and has high retention in the 
air for a longer duration (Q. Zhang et al., 2020). The pollutants CO, 
benzene, xylene, toluene, and NO form the next important cluster before 
COVID-19 which during COVID-19 has been significantly shown to 
reduce effect on air quality. The prime source of Benzene, Toluene, and 
Xylene (BTX) pollutants is emission from the combustion of fuels in 
automobiles and industries. Since during COVID-19 outbreak, the 
lockdown of all non-essential activities has drastically reduced emis-
sions and hence these pollutants became less significant. In the station, 
DL019, before the outbreak of this pandemic, PM2.5 and PM10 formed 
the main cluster which persisted to influence air pollution followed by 
the cluster composed of NO, NO2 and cluster composed of SO2, CO, 
Benzene, and Xylene, and cluster composed of NH3, O3, Toluene. 
However, after the outbreak of the pandemic, the multi-pollutant pro-
files have altered their compositions nevertheless PM10 remains to be 
the main threat due to its prolonged endurance. The effect of NO, CO, 
and BTX turned relatively significant during a pandemic. In both sta-
tions in Delhi, the prime contributor of air pollution remained signifi-
cant though has reduced effect after reducing the unnecessary 
movements in the city and hence measures should be taken to reduce 
particulate matter in the air. 

PM10 is the most significant cluster in stations, TG001 and TG004 
located in Telangana and its intensity is lessened during the pandemic 
outbreak, and [NO, T, CO, Benzene, Xylene] and [Benzene, CO, Xylene] 
multi-pollutant profiles dominate the air pollution during the pandemic 
period. In TG002, [NO, CO] is the prominent cluster however during the 
lockdown period, the [CO, Xylene] cluster became relatively significant 
in which CO is persistently prominent. In TG003, [Benzene, CO, Xylene] 
cluster loses its significance to [NH3, NO2, NOX] during the lockdown 
and in TG006, [SO2, Xylene, CO, Benzene] cluster reduced its influence, 
and the [Toluene, Benzene, CO and Xylene] cluster became relatively 
prominent during the lockdown in which CO and BTX pollutants are 
persistently significant. Generally in Hyderabad, CO, nitrous, and BTX 
pollutants are prominent which are primarily due to extensive transport 
and industrial activities (S.K. et al., 2013). The state pollution board 
projects above 5700 deaths in Hyderabad due to air pollution.2 The 
multi-pollutant profiles obtained by this study would be instrumental in 
developing strategies to combat air pollution. 

In West Bengal, the scenario is different. [Benzene and Toluene] is 
the prominent cluster that lost its intensity and the [CO, Xylene] cluster 
became prominent during the pandemic period in the station, WB007. In 
WB008, PM10 is the persistent pollutant even after reducing unnec-
essary movements in the lockdown period and the concentration of O3 
has turned up relatively significant. In WB009, the [PM2.5, PM10, O3] 
cluster turned up significant during the pandemic outbreak whereas the 
[NO, NO2, O3] multi-pollutant profile was formed with a similar effect in 
both the scenarios. Commonly observed multi-pollutant profiles are 

2 https://www.iqair.com/india/telangana/hyderabad. 
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[PM2.5, O3], [NH3, SO2], [CO, Benzene, Xylene] which are found to 
affect air quality. In this study, a representative list of stations is 
considered to derive the pollutant clusters which could be extended to 
all other stations also. This study also proves the significance of the 
combined effect of these profiles on air quality in all the stations. 

The variation of the pollutants in air is drawn out from the pre-
dictions and presented in Figs. 4 and 5. 

It is well known that the outbreak of novel coronavirus disease and 
its spread has very rapid affected and lockdown regulations are 

announced and restricted movement is enforced across India. This has 
drastically reduced emissions from industries and vehicles thereby air 
pollution has been reduced considerably and a revival of atmospheric air 
took place. To understand AQI variation in these stations, the mean 
forecasts of concentrations of these pollutants before and during COVID- 
19 obtained from the best-fitted prediction models during the testing 
phase are plotted in Figs. 4 and 5. Generally, pollution due to particulate 
matter is high in all the regions. However, during COVID lockdown, the 
concentration of these pollutants including PM in atmospheric air has 
drastically reduced. The effects of PM2.5, PM10, and BTX in atmospheric 
air continues to be high-priority pollutants even during the lockdown in 
Delhi however the concentrations of these pollutants were fairly 
reduced. NH3, Benzene, and Toluene levels are high during COVID-19 
lockdown but comparatively lesser than before lockdown scenario. In 
Hyderabad, though air pollutants’ weakening effect is felt during the 
lockdown, NO2 and SO2 continue to show importance during COVID-19 
lockdown which also formed a prime multi-pollutant cluster in the 
stations present in Hyderabad. Similarly, after the lockdown there is a 
drastic reduction in air pollutants in atmospheric air in many places of 
West Bengal. However, NH3, CO, SO2, and O3 are relatively significant 
pollutants to be persistently addressed even after reduced activities. 
However, the dominant air pollutants in West Bengal have turned out to 
be NH3, SO2, and O3 in zone WB007 and NH3, SO2, CO, NO, and PM2.5 in 

Table 1 
Training and test root mean square errors for different stations before COVID-19 lockdown.  

Regressors LM SVR ANN DT RF XGB LM SVR ANN DT RF XGB 

Station ID Training RMSE Test RMSE 

WB007 0.089 0.062 0.068 0.290 0.192 0.001 0.097 0.110 0.138 0.115 0.106 0.104 
WB009 0.062 0.045 0.051 0.296 0.111 0.001 0.090 0.152 0.087 0.104 0.112 0.093 
TG001 0.074 0.054 0.063 0.120 0.005 0.001 0.075 0.111 0.078 0.090 0.081 0.079 
TG002 0.042 0.037 0.037 0.107 0.043 0.001 0.032 0.034 0.044 0.039 0.031 0.032 
TG003 0.070 0.048 0.060 0.201 0.067 0.001 0.066 0.087 0.115 0.103 0.089 0.074 
TG004 0.062 0.041 0.047 0.141 0.045 0.001 0.048 0.069 0.046 0.059 0.049 0.049 
TG006 0.069 0.047 0.055 0.149 0.052 0.001 0.075 0.076 0.074 0.073 0.068 0.073 
DL001 0.066 0.035 0.044 0.218 0.083 0.001 0.096 0.085 0.071 0.071 0.068 0.073 
DL019 0.063 0.034 0.043 0.192 0.061 0.001 0.063 0.101 0.077 0.084 0.074 0.072  

Table 2 
Training and test root mean square errors for different stations during COVID-19 lockdown.  

Regressors LM SVR ANN DT RF XGB LM SVR ANN DT RF XGB 

Station ID Training RMSE Test RMSE 

WB007 0.0402 0.0416 0.0184 0.26838 0.60922 0.0005 0.2154 0.1356 0.2744 0.1365 0.1791 0.148 
WB009 0.0476 0.0272 0.0122 0.23662 0.72568 0.0005 0.1524 0.1165 0.1155 0.1274 0.1355 0.1309 
TG001 0.073 0.0594 0.0127 0.72681 0.89294 0.0006 0.7857 0.2508 0.3379 0.1628 0.1584 0.1186 
TG002 0.0599 0.0656 0.0137 0.50273 0.97631 0.0006 0.1885 0.155 0.1637 0.1961 0.1903 0.225 
TG003 0.1043 0.0725 0.0395 0.22301 0.4974 0.0005 0.1759 0.1869 0.2741 0.3148 0.2156 0.2678 
TG004 0.0502 0.0497 0.0131 0.19409 0.90768 0.0006 0.2827 0.2308 0.1748 0.116 0.1605 0.1354 
TG006 0.1288 0.0876 0.0159 0.24902 1.07484 0.0006 0.5023 0.304 0.4581 0.2869 0.2346 0.2222 
DL001 0.0625 0.0439 0.0163 0.25895 0.7138 0.0005 0.5676 0.1221 0.2654 0.249 0.1562 0.1696 
DL019 0.0818 0.122 0.0153 0.24066 0.97345 0.0005 0.1671 0.1046 0.4122 0.0957 0.0909 0.1152  

Table 3 
Execution time.  

Regressors LM SVR ANN DT RF XGB LM SVR ANN DT RF XGB 

Station ID Before COVID Outbreak During COVID Outbreak 

WB007 0.006 0.017 0.024 0.002 0.128 0.181 0.000 0.008 0.008 0.008 0.008 0.095 
WB009 0.000 0.016 0.032 0.008 0.199 0.186 0.000 0.011 0.012 0.006 0.008 0.121 
TG001 0.005 0.048 0.069 0.014 7.086 0.730 0.017 0.026 0.018 0.016 0.023 0.127 
TG002 0.000 0.053 0.079 0.016 1.037 0.461 0.001 0.713 0.010 0.016 0.019 0.129 
TG003 0.006 0.063 0.267 0.016 0.767 0.452 0.000 0.000 0.016 0.000 0.033 0.136 
TG004 0.010 0.115 0.105 0.290 1.315 0.592 0.000 0.008 0.016 0.008 0.015 0.135 
TG006 0.024 0.104 0.095 0.016 1.774 0.820 0.000 0.008 0.016 0.005 0.018 0.142 
DL001 0.000 0.016 0.048 0.008 0.311 0.200 0.000 0.016 0.012 0.008 0.016 0.128 
DL019 0.100 0.038 0.072 0.007 0.555 0.333 0.005 0.009 0.008 0.000 0.016 0.122  

Table 4 
Best fitted models for AQI prediction.  

Station ID During-COVID AQI Prediction 
model 

Pre-COVID AQI Prediction 
model 

WB007 SVR LM 
WB009 ANN LM 
TG001 XGB LM 
TG002 SVR RF 
TG003 LM LM 
TG004 DT ANN 
TG006 XGB RF 
DL001 SVR RF 
DL019 RF LM  
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WB009. The effect of O3 is more in West Bengal due to climatic condi-
tions. Similar foresights about future pollutants’ concentration enable 
handling these zones with appropriate pollutant specific proactive and 
preventive measures to mitigate pollution in a timely manner. 

Linear timeseries analysis yielded high prediction error compared to 
ensemble learning-based non-linear timeseries analysis of pollutants 
with better accuracy of forecasts made on AQI. The findings from the 
analysis (Refer to Tables 1–3) show that the performance of prediction 
through non-linear timeseries modeling is high. Hyper-parameter tuning 
and selection of kernel and activation functions are carefully performed 
experimentally. The prediction error for different stations using the 
selected models is minimized by 9% for the before COVID-19 scenario 
and 50% in during-COVID-19 lockdown compared with that exhibited 
by linear regression. Especially in COVID-19 scenario, the uncertain 
changes in the release of air pollutants in the environment have been 
well addressed by the selected models. For all the regions under 

consideration, the concentration of particulate matter has reduced due 
to the COVID-19 outbreak and subsequent lockdown. Emissions from 
vehicles have greatly reduced and shut-down enforcement of industries 
during this period had influenced this drastic change. 

5. Deployment and limitations 

This study demonstrated predictive modeling of air quality index 
using the past pollutants’ concentration data. The timeseries data of 
pollutants’ concentration is obtained from the official website of CPCB, 
India. This data is used in this study to train the prediction models for 
making forecasts of pollutants’ concentration and the best fit model 
obtained during the test phase is further used to evaluate National air 
quality index as per the guidelines of CPCB. National air quality index is 
updated on hourly basis in official application developed by CPCB with a 
latency. However, this study helps evaluate future values based on the 

Fig. 2. Pre-COVID Clusters of pollutants.  
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forecasts of pollutants’ concentration obtained from the prediction 
models. The prediction modeling and selection process has to be often 
performed at regular intervals or whenever there is an event or which-
ever is the earliest. In this study, we have presented two scenarios, viz., 
models before and during- COVID lockdown since the lockdown period 
in India has witnessed substantial air quality improvement due to 
reduced economic activities. The impact of events induced by meteo-
rological factors, nature-induced factors, perceptual and situational 
factors along with pollutants also affect air quality and hence has to be 
incorporated in the model time-to-time. The deployment model is pre-
sented in Fig. 6. 

The findings of this study are limited to the stations chosen in Delhi, 
Hyderabad, and Kolkata. The data for this study is obtained through 
public repositories and hence we had to tackle incompleteness and 
distortion to a larger extent. The deployment model is scalable to other 

stations with sufficient dataset. AQI prediction made in this study is 
based on pollutants’ concentration assuming consistent meteorological 
conditions (during March–April 2020). 

6. Implications 

The present study used a learning approach to forecast air quality 
using timeseries analysis of pollutants’ concentration in a particular 
region. It has significant implications. 

6.1. Theoretical contributions 

This study offers a significant contribution to theory. The study uses 
event-driven timeseries data of pollutants’ concentration for machine 
learning analysis to predict future values that is used further to 

Fig. 3. During-COVID clusters of pollutants.  
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determine future AQI values. In reality, pollution data is unbounded and 
evolving with numerous events in the environment. The trend in 
timeseries of pollutants’ concentration captured analytically often gets 
distorted due to these events and increase the prediction error. There-
fore, this study performs prediction modeling of pollutants’ concentra-
tion for the scenarios, viz., before and during COVID lockdown 
separately which forecasts AQI accurately during these periods. The best 
fitted models selected for these scenarios for each geographical region 
also elucidate the variation in the air quality in both the time periods. 

6.2. Practical implications 

Collaborative governance helps effective control of air pollution 

(Wang and Zhao, 2021). Several attempts are made by the government 
to provide real-time awareness of pollution status in a particular area 
that paves way for control and mitigation. The present study attempts to 
provide prior information about air quality that enables prevention and 
control. This study developed an evaluation mechanism for AQI accu-
rately through learning-based modeling that can be adopted in indus-
trial and traffic zones to understand the trend in air quality. The 
variation of pollutants’ concentration observed in the COVID-19 lock-
down phase allows researchers to analyze the pollutants’ concentration 
before and after the COVID-19 outbreak which can potentially lead to 
practical solutions and sustainable business practices to retain the 
improved air conditions further. However, there is a need to detect any 
event that would bring significant variation in pollutants’ concentration 
in real-time and the prediction model should be evolving in nature to 
maintain its predictive performance during these changes which is more 
challenging and requires more data. It is even more challenging to 
address these variations in the predictive models if such variations are 
temporary. This study clearly shows the changes in the concentration of 
air pollutants during the COVID-19 lockdown and their impact on 
improved air quality levels. It also highlights those pollutants that can be 
mitigated by addressing fuel combustion and industrial emission prop-
erly. Further, the amount of data generated by monitoring air pollution 
is vast and highly unstructured. Therefore, the present study serves as 
the walkthrough to the pollution management team of every city in 
developing countries to adopt the proposed model (Fig. 1) for evaluating 
the air quality and introduce reforms in the regulations. 

6.3. Societal implications 

The results of this study have important societal implications. The 
prevalence of the pollutants in the air in selected regions in India is 
ranked before and during the COVID-19 lockdown to capture variation 
in the air quality. The presence of PM2.5 and NOX in the air at Alipur in 
Delhi has got reduced by 89% and 91% respectively during the COVID- 
19 lockdown which helped people inhale the air of better quality. PM2.5, 
CO, NH3, NO, and O3 reduced by 33.5%, 38%, 28%, 13.5%, and 51% 
respectively in the Mandir Marg region of Delhi during the COVID-19 
lockdown. The reduction in the concentration of PM2.5 and nitrogen 
oxides during the COVID-19 lockdown in Delhi helped the environment 
rejuvenate which in turn offered better air for the society. Further, a lot 
of pharmaceutical companies are located in these industrial zones that 
emit harmful pollutants like PM, ozone, BTX, Sulfur oxides, and carbon 
monoxide, and proper source management and air filtration methods 
should be adopted to avoid potential health hazards. Sulfur dioxide and 
carbon monoxide in the air lead to acid rain which is a major threat to 
farmers and residents living in this area. In the state of Telangana, in the 
Bollaram industrial area, PM2.5, O3, NOX, NH3, benzene, toluene, and 

Fig. 4. Impact of air pollutants on AQI before the COVID outbreak.  

Fig. 5. Impact of air pollutants on AQI during COVID.  

Fig. 6. Deployment model.  
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xylene are observed to be reduced by 64.5%, 99.9%, 27%, 68%, 99.7%, 
99.6%, 39% respectively, in the Patancheru industrial zone, PM10, NO, 
O3, Toluene got reduced by 96%, 78%, 74%, 52% respectively and in 
Pashamylaram industrial zone, it was observed that the pollutants, 
PM10, CO, Ozone, BTX reduced completely and PM2.5 reduced by 75%. 
In the university zone, CO and BTX reduced by 82%, 86%, 81%, and 
76% respectively due to reduced vehicle emissions. In West Bengal, the 
Ballygunge locality of South Kolkata recorded much-improved air 
quality and shows a reduction of PM2.5, PM10, NO, NO2, NOX, Toluene, 
and Xylene by 96%, 87%, 75%, 90%, 92%, 94%, 78% respectively. 
Pollutants such as PM2.5, PM10, NO2, CO reduce by 48%, 69%, 77% 
respectively in Fort William area in Kolkata city. The major contributor 
to air pollution in Kolkata city is vehicular emission and during the 
COVID-19 lockdown, the pollutants’ concentration dropped due to 
travel restrictions. The results of this study enable policymakers to 
regulate air pollution effectively by detecting the variation in air quality 
occurring from time to time that brings a positive impact on social life. 
Improved air quality level is possible during COVID-19 lockdown due to 
public commitment and people across the three states followed re-
strictions to the possible extent which in turn improved the air quality 
level and decreased the pollutants’ concentration in the different 
stations. 

6.4. Economic implications 

In the field of environmental economics, the Environmental Kuznets 
Curve (EKC) suggests that, in the short-run, as the economy shifts to-
wards development, the environment worsens, but, in the long run, as 
the society becomes aware of the social cost of this negative externality, 
it introduces, through government regulations, changes in environ-
mental standards and policies and reinvests part of its income to 
improve the environment and restore the ecosystem. In line with this, 
many studies support the Environmental Kuznets Curve hypothesis for 
India, for example (Kanjilal and Ghosh, 2013; Usman and Jahanger, 
2021), and our results suggest that pollution mitigation in India is not 
attributed to a slowdown in economic growth, but regulatory efforts to 
limit pollution as well as the country will to ensure the energy transition 
necessary for sustainable development. Indeed, aware of the social cost 
of this negative externality, the Indian society has introduced, through 
regulations, changes in environmental standards and policies and has 
recently started to reinvest part of its revenues to improve the envi-
ronment and restore the ecosystem. Specifically, the main environ-
mental laws in India include (a) the Wild Life Act (1972), (b) the Water 
Act (1974), (c) the Forest Act (1980), (d) the Air Act (1981), (e) the EP 
Act (1986) and (f) the National Green Tribunal (NGT) Act. Moreover, 
from its inception, the NGT ordered the CPCB and the SPCB, which are 
the Indian environmental regulatory authorities, to strictly enforce the 
Comprehensive Environmental Pollution Index (CEPI) criteria which 
were initiated in 2009 (and updated in 2016) to categorize polluting 
industries as well as polluted industrial areas. In 2019, the NGT moni-
tored the enforcement of the CEPI criteria by the CPCB and the SPCB. To 
foster the environment rejuvenation instigated by COVID -19 lockdown 
and to internalize the negative externality, the Indian environmental 
regulatory authorities must now start thinking not only about seeking 
compensation from polluting industries (e.g. via a Pigovian Tax, a 
lump-sum tax, and/or restricting the amount of pollution …), but above 
all about doing so in an optimal way to improve social welfare. 

6.5. Implications for policies 

Understanding current trend in air quality and its associated pol-
lutants’ is instrumental for developing various mitigation plans and 
control strategies. Ministry of Housing & Urban Affairs of the Indian 
government launched the National clean air program in 2019 with a 
mission to achieve a reduction in PM concentration by 20–30% by 2024 
from the concentration observed in 2017 in cities which include Delhi, 

Kolkata, and Hyderabad. Under this, city-specific action plans need to be 
devised to reduce emissions, strengthen the monitoring networks, bring 
mobility and industry policies to regulate air pollution, and create public 
awareness. Since the major source of air pollution in Delhi and Kolkata is 
vehicular emissions, strict compliance to exhaust emission standards is 
enforced and all vehicles must possess valid Pollution under control 
(PUC) certificates. The mass rapid transport system is introduced for 
convenient conveyance to reduce traffic. Under a clean fuel program, 
governments also strictly monitor the quality of petrol and diesel sup-
plied to these places to control harmful emissions during combustion. 
Particulate filters in diesel vehicles are mandated and the supply of 
adulterated fuels is curbed. Initiatives toward electric-only vehicles are 
also being developed by the government to establish zero-emission 
zones in the cities. Small-, medium- and large-scale pharma industries 
are under strict monitoring by the pollution control board and safe 
discharge of emissions is enforced. During the lockdown, the decrease in 
harmful pollutants in the air has unraveled the potential activities 
causing large-scale pollution in these cities. It was understood that more 
than 50% of air pollution is from vehicles and in the case of Hyderabad, 
emissions from pharma industries also play a major role. The pollution 
control action plans of these cities need to be revised based on the les-
sons learned from the pandemic. Further, the COVID-19 pandemic has 
brought potential initiatives for public well-being such as, no-car road 
and proving cycling path along streets that are sustainable to the envi-
ronment and reduce the carbon footprint. Public awareness about 
everyday air quality and lifestyle modifications will take these initiatives 
forward for better wellbeing. 

7. Conclusions 

The work focuses on evaluating air pollution and pollutants’ impact 
before and during COVID-19 lockdown. The present study contributes to 
research, by evaluating Air Quality Index (AQI) for the pre-and during 
the COVID-19 lockdown time periods. The concentrations of pollutants 
such as PM2.5, PM10, NO, NO2, NOX, NH3, CO, SO2, O3, Benzene, 
Toluene, and Xylene along with air quality index (AQI) are obtained as 
time-series data that is made publicly available for major stations pre-
sent in every city and states in India. This study considered nine repre-
sentative stations covering Delhi, Hyderabad, and Kolkata. The 
pollutant clusters derived from cluster analysis based on their similarity 
in concentration levels highlight their combined impact on air quality 
across different stations. This study intends to make a comparison of 
multi-pollutant clusters formed before and during COVID-19 lockdown 
to show the effect of reduced human outdoor activities during COVID-19 
due to lockdown. Although literature evidences regarding the prediction 
models for forecasting AQI are existing, the deviation of forecasts made 
by these models from actuals during the COVID-19 lockdown was 
alarmingly high, and hence revised models have to be developed. In this 
study, we performed statistical modeling of time series data collected 
before and during COVID-19 lockdown at selected regions to capture the 
change in trends of pollutants’ concentration and subsequently AQI. The 
selected models representing AQI in these regions that resulted from 
machine learning analysis showed minimal prediction errors and high 
accuracy. The data used is comprised of hourly data points collected by 
the pollution monitoring systems installed in these stations. Smart 
pollution monitoring systems incorporating the Internet of Things, ma-
chine learning, and cloud computing technologies integrated into 
pollution monitoring platforms can be developed in the future to sense 
these variations in pollutants’ concentration. Real-time Affordable 
Multi-Pollutant (RAMP) sensor packages can be used to capture the data 
effectively and seamlessly. The results of clustering and prediction 
modeling play a vital role in the visualization of insights in such plat-
forms. Further, the google mobility data can also be integrated with 
these systems to assign events such as the closure of restaurants, shop-
ping centers, theme parks, cafés, pandemic, rainfall and cinemas with 
variations in air quality. Furthermore, it would be interesting to have 
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future studies using time-frequency econometric tools to examine the 
environmental impact of the very recent Indian government policies 
during the COVID-19 aiming at flattering the epidemiological curve, as 
well as the relationship between economic activity and pollution in 
India. 
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