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W) Check for updates

SF3B1 mutations in AML are strongly associated with MECOM
rearrangements and may be indicative of an MDS pre-phase
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TO THE EDITOR:

In AML SF3B1 mutations are recurrently found, most frequently in
AML-MRC [1] and were shown to be highly specific for secondary
AML (s-AML) arising post MDS or MDS/MPN [2]. Thus, the presence
of SF3B1 mutations is considered as diagnostic criteria for AML-MR
according to the 5th edition of the WHO classification (WHO 2022;
[3]). Here, we address the prognostic impact of SF3B7 mutations in
AML and evaluate the genetic landscape of SF3B7 mutated
patients at AML diagnosis and during follow-up.

Based on the revised 4th edition of the WHO classification
(WHO 2017), AML are classified into AML with recurrent genetic
abnormalities, AML with myelodysplasia-related changes (AML-
MRC) or AML, not otherwise specified (AML-NOS) [4]. Several
changes are announced in the WHO 2022 [3] incorporating
more genetically defined entity criteria. For example, AML with
mutated RUNXT is no longer recognized as distinct entity, AML-
MRC is replaced by AML-MR considering gene mutations
while removing morphologic criteria and AML sub-groups with
rearranged KMT2A or MECOM are extended including all
partner genes.

Within the last years, many prognostically relevant driver genes
in AML have been identified including also spliceosome genes [5].
In myeloid malignancies, SF3B71 is most frequently mutated in MDS
or MDS/MPN and associated with a favorable prognosis and an
indolent disease course [6-8]. More recent data by Bernard et al.
indicate that the favorable outcome is restricted to those patients
lacking co-mutations in BCOR, BCORL1, NRAS, RUNX1, SRSF2, STAG2
and del(5q) [9].

For this analysis we selected 735 AML samples with material
available to perform whole genome sequencing sent to the MLL
Munich Leukemia Laboratory between 09/2005 and 01/2020.
Therapy-related AML were excluded from this study. Within the
cohort 89% (652/735) were de novo AML cases and 11% (83/735)
s-AMLs. For further details on cohort and statistics see Supple-
mentary Methods. All cases were classified into specific sub-
groups according to the currently used WHO 2017 [4]. SF3B1™
cases were further classified according to WHO 2022 [3] and the
International Consensus Classification (ICC; [10]). For abbreviations
of entities, see Supplementary Table S1. All patients gave their
written informed consent for genetic analyses and to the use of
laboratory results and clinical data for research purposes
according to the Declaration of Helsinki. The study was further
approved by the laboratory’s institutional review board.

All samples were subjected to whole genome and targeted panel
sequencing (Supplementary Methods).

We identified SF3B7 mutations in a small fraction (6%; 41/735)
of AML patients (Fig. 1A and Supplementary Table S1) in line with
published results [5, 11]. Based on WHO 2017, SF3B1 mutations
were found in AML with recurrent genetic abnormalities (24/471;
5%), AML-MRC (11/158; 7%) and AML-NOS (6/106; 6%) (Fig. 1A).
Within the entire AML cohort, comprising samples from 16
different entities, SF3B7 mutations were detected in eight different
AML entities (Supplementary Table S1), most frequently within
AML with GATA2:MECOM (10/36; 28%), thereby confirming the
association of SF3B1 mutations with GATA2:MECOM rearrange-
ments as previously published [12]. Notably, within AML-NOS
SF3B1 mutations were exclusively found in samples diagnosed
with AML with maturation (Supplementary Table S1). The
presence of ring sideroblasts in SF3B1™'" AML is described in
the Supplementary Results. SF3B7 mutations did not affect OS in
the total AML cohort (median: 16 vs. 17 months; p =0.830;
Fig. 1B). Within all 41 SF381™"* cases AML-MRC (11/41; 27%) and
AML with GATA2:MECOM (10/41; 24%) were most frequent
(Fig. 1C). When stratified for AML sub-entities, there was also no
impact of SF3B1T mutations on OS within each sub-entity
(Supplementary Fig. STA-E), however OS was different within
SF3B1™“" AML if stratified according to WHO entities (Supplemen-
tary Fig. S1F, G). Thus, the prognosis of the SF3B1™* AML seems to
be dominated by the sub-entity, concordant with a previous
report showing that splicing mutations (including SF3BT7) per se
are not prognostic in AML [13].

In the total cohort, SF3B7 mutations showed a mean variant
allelic frequency (VAF) of 41% and those mutations affecting
amino acids K666 and K700 were found most frequently
(Supplementary Results and Supplementary Fig. S2) similar to
previous studies [13, 14]. On average, SF3B1™"" patients harbored
3.3 mutations (AML-NOS: 2.5; AML with RUNXT: 2.8; AML with
GATA2:MECOM: 3.3; AML-MRC: 3.6; AML with NPM1: 3.7; Fig. 2).
The most frequent additional mutations in SF387™" patients were
RUNXT (9/41; 22%) and NRAS (8/41; 20%). NPM1, TET2, or DNMT3A
mutations or FLT3-ITD were detected in 15% (6/41) each. RUNX1
mutations were present besides within AML with RUNXT mutation,
also in AML-MRC (n=3) and AML with GATA2:MECOM (n=1).
Interestingly, 37% (15/41) of SF381™“* patients harbored at least
one mutation in a DTA gene (DNMT3A, TET2, ASXLT). Additional
mutations were found in 5 to 21 different genes depending on the
respective entity (Supplementary Fig. S3A-E). Within SF3B71™"
patients 10 cases showed MECOM rearrangements (MECOM-r) with
a different partner gene than GATA2. This resulted in 49% (20/41)
of SF3B1™ patients harboring a MECOM-r (Fig. 2). Conversely,
31% (20/64) of all AML with MECOM-r showed an SF3B1 mutation,
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Fig. 1 Distribution and OS of SF3B7 mutations in AML. A SF3B7 mutation status within different AML entities (red: mutated; gray: wild-type).

B OS of patients with mutated (n =41; red) vs. wild-type (n = 694; gray) SF3B1 within the entire AML cohort. C WHO 2017 entities of SF3B1

mutated AML (n = 41).

which was thus the second most frequent mutation within this
AML entity after NRAS mutations (36%; 23/64). SF3B1 mutations
were significantly associated with MECOM-r (31% [20/64] vs. 3%
[21/671]; p<0.001). In summary, the majority (78%, 32/41) of
SF3B1™"* AML were either AML with MECOM-r (n = 20) or AML-MR
(n = 12), underpinning the strong association of SF3B7 mutations
with these two entities (Fig. 2; further details on the classification
of SF3B1™" cases are provided in the Supplementary Results). A
prior history of MDS or MDS/MPN was documented in 20% (8/41)
of SF3B1™" patients harboring on average 4.3 mutations at AML
diagnosis (Fig. 2 and Supplementary Fig. S4A). Thereof, 63% (5/8)
had a MECOM-r and 25% showed RUNX1, DNMT3A, GATA2, NRAS,
BCOR mutations or FLT3-ITD when AML was diagnosed. The
SF3B1™'" was already present in the prior MDS stage in 4/5
patients with available MDS data (Supplementary Results and
Supplementary Fig. S4).

In AML with NPM71 or RUNXT mutations the SF3B71 VAFs
exceeded 30% in all cases and were similar to or higher than
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the VAFs of NPM1 or RUNXT mutations in 11/11 cases (Fig. 2 and
Supplementary Figs. S3F and S5A, B). A comparable pattern was
seen in the remaining cases with SF3B1 VAFs higher than 15%
(n = 29; Fig. 2 and Supplementary Fig. S5C). In the one AML-MRC
patient with a low SF3B7 VAF (6%), other mutations showed higher
VAFs (IDH1: 42%; KMT2A-PTD: 24%; Supplementary Fig. S5C). In
total, in 40/41 (98%) SF3B1™" cases similar or higher SF3B71 VAFs
were observed compared to other co-mutations or aberrations,
indicating that SF3B1 mutations are rather primary than secondary
mutations during leukemogenesis. This is in line with a previous
report, showing that SF3B7 mutations are acquired early in MDS
and that splicing mutations are early evolutionary events in
myeloid malignancies [14]. In 16/41 (39%) SF3B1™" cases
molecular follow-up data was available (Fig. 2). In 1/16 patients,
an AML patient with mutated NPM1, the SF3B1 mutation (VAF:
40%) remained detectable, despite complete hematologic remis-
sion and undetectable NPM1 mutation (Supplementary Fig. S6B).
In 15/16 (94%) cases the SF3B1 VAFs paralleled the VAFs of co-
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Fig. 2 Molecular characterization of AML patients with mutated SF3B1. lllustration of all 41 samples, each column represents one patient.
Genes (gray: wild-type; red: mutated) as well as the WHO and ICC entities are given for each patient. Secondary AMLs (s-AMLs) are marked
with “S” and those with available follow-up (FU) data with “F" VAF variant allelic frequency (mean), CM CBFB:MYH11, PR PML::RARA, biC biallelic
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(0-14%), M medium VAF (15-29%); Remaining cases showed SF3B1 VAFs >30%.

mutations during the entire disease course, even during relapse
(for details see Supplementary Results and Supplementary Fig. S6).

As shown, mutations in RUNXT or DTA genes were found
among the most frequent co-mutations of SF387™" AML samples,
concordant with previously published studies [5, 14]. Notably, DTA
genes are frequently mutated in MDS [6] and the most common
mutations in clonal hematopoiesis of indeterminate potential
(CHIP) [11]. In our study, a prior history of MDS or MDS/MPN has
been documented in some SF3B1™ AML patients (8/41).
However, it might be unidentified in others. Alternatively,
SF3B1™Y" CHIP or CCUS (clonal cytopenia with undetermined
significance) may represent relevant precursor lesions of SF387™
AML, in line with Venable et al., showing that SF3B1™" cases
comprise the full pathologic spectrum of myeloid disorders from
CCUS to AML [14]. In SF3B1™" s-AML patients, we frequently
detected MECOM-r and RUNX1 mutations, both known AML driver
genes [5]. These two genetic abnormalities were also frequently
found within the remaining SF381™"* AML patients, where no MDS
or MDS/MPN history had been reported. In this line, we previously
showed that SF387™* MDS patients harboring RUNXT mutations
frequently progressed to AML and that RUNXT mutations and
MECOM-r were gained during AML transformation [15]. Thus, our
data suggests an MDS/CCUS pre-phase in SF387™"" AML without
antecedent clinical documentation and further supports the
guidelines of the WHO 2022 showing that SF3B1™' AML is
diagnosed as AML-MR without knowing the patient’s clinical
history.

In summary, SF3B1 mutations are found in a small fraction of
AML patients, are enriched in poor risk AML subtypes and are
strongly associated with MECOM rearrangements and
myelodysplasia-related changes. The persistently high VAF of
SF3B1 mutations in AML patients suggests that SF3B7 mutations
are acquired early in a pre-leukemic clone and may be indicative
of an MDS pre-phase.
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