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ACUTE LYMPHOBLASTIC LEUKEMIA

Hyperdiploidy: the longest known, most prevalent, and most
enigmatic form of acute lymphoblastic leukemia in children
Oskar A. Haas 1,2✉ and Arndt Borkhardt 3,4✉

© The Author(s) 2022

Hyperdiploidy is the largest genetic entity B-cell precursor acute lymphoblastic leukemia in children. The diagnostic hallmark of its
two variants that will be discussed in detail herein is a chromosome count between 52 and 67, respectively. The classical HD form
consists of heterozygous di-, tri-, and tetrasomies, whereas the nonclassical one (usually viewed as “duplicated hyperhaploid”)
contains only disomies and tetrasomies. Despite their apparently different clinical behavior, we show that these two sub-forms can
in principle be produced by the same chromosomal maldistribution mechanism. Moreover, their respective array, gene expression,
and mutation patterns also indicate that they are biologically more similar than hitherto appreciated. Even though in-depth
analyses of the genomic intricacies of classical HD leukemias are indispensable for the elucidation of the disease process, the
ensuing results play at present surprisingly little role in treatment stratification, a fact that can be attributed to the overall good
prognoses and low relapse rates of the concerned patients and, consequently, their excellent treatment outcome. Irrespective of
this underutilization, however, the detailed genetic characterization of HD leukemias may, especially in planned treatment
reduction trials, eventually become important for further treatment stratification, patient management, and the clinical elucidation
of outcome data. It should therefore become an integral part of all upcoming treatment studies.
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INTRODUCTION
Hyperdiploidy (HD) was first described by Fritz Lampert in 1967
when he measured the DNA content of leukemic cells by
meticulously comparing their diameters with those of normal
lymphocytes [1]. Despite the rather crude cytogenetic methods
that were available at that time, he also succeeded in quite
accurately defining the nature of the acquired chromosomes and
realized that the affected patients lived longer than others.
Eventually, it became clear that a specific variant of HD is, with a
prevalence of up to 35%, also the largest genetic entity of
childhood B-cell precursor acute lymphoblastic leukemia (BCP
ALL). Lampert’s remarkable insights have not only continued to
prove accurate, but they have also become the subject of many
research and clinical studies since then. Today, continuously
evolving sophisticated diagnostic and research tools produce a
plethora of information that unravels genomic peculiarities in
previously unimaginable detail, and thereby helps to refine
prognostic stratification and treatment.
Despite all these extraordinary achievements, many funda-

mental questions about the various aneuploid sub-forms of BCP
ALL remain unresolved. These primarily concern their origins, the
causes and biological meaning of the various nonrandom and
disease-inherent chromosome configurations, and, not least, their

varied disease development and clinical behavior. Although only a
small proportion of the main HD variant experience relapses, it still
makes up 25% of all relapses that occur in childhood BCP ALL. At
present, the processes that drive these mainly late-disease
recurrences are only vaguely understood [2].
Since the last comprehensive review of HD ALL by Paulsson and

Johansson was published in 2009 [3], we consider it worthwhile to
recapitulate the remarkable progress that has been made since
then, especially in decoding the genomic and biological features
of this extraordinary disease as well as in its prognostic
stratification and treatment.

GENOMIC FEATURES OF HD ALL
Chromosome copy number abnormalities
Childhood ALL cases with gross ploidy changes are formally based
on their DNA content and the overall number of chromosomes in
their karyotypes. They comprise seven biologically related yet
distinct categories whose common feature is a ploidy-related
overrepresentation of chromosome 21, respectively (Fig. 1A).
Although their categorization is primarily based on karyotype
patterns, it takes increasingly also selected genomic features into
account. Some of these new parameters are largely corroborating,
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whereas others uncover glitches and discrepancies in the current
classification system, insights that justify a careful modification of
the taxonomy as well as the terminology of these diseases that
should take these novel findings into account [3–10]. Because the
ploidy-related overrepresentation of chromosomes 21 serves as
their essential and overarching hallmark, one can use the
definitions of the “International System of Cytogenetic Nomen-
clature”, namely hyperhaploid (25–34 chromosomes), hypodiploid
(35–45 chromosomes), hyperdiploid (47–58 chromosomes), hypo-
triploid (59–68 chromosomes) and hypertriploid (70–80 chromo-
somes) for their further subclassification without obscuring any
otherwise pertinent information [11]. Just for convenience’s sake
and practical reasons, the hypo- and hypertriploid may still be
merged into a “near-triploid” group (59–80 chromosomes). In our
review we will avoid the term “duplicated or doubled up haploids”
because it insinuates a presumed but never proven mode that is
supposed to generate this specific karyotype pattern. Since the
more appropriate yet still not entirely correct descriptive term
“hyperdiploidy due to a genome-wide loss of heterozygosity”
would be rather impracticable to use, we opted to introduce the

neutral terms “classical” and “nonclassical” for the two dissimilar
but nevertheless closely related forms of genuine hyperdiploid
forms that are the specific focus of our review. Both these types
are defined by an agreed-upon chromosome number that lies on
the lower side between 50 and 52 and on the upper side between
58 and 67, cutoffs that vary slightly in different studies (Fig. 1B, C).
However, given that more than 80% of HD cases fall into the range
of 52–58 with a modal peak of 55–56, we propose that an upper
limit of 58 would be more appropriate, especially because such a
cutoff eases the delineation of genuine HD forms from near-
triploid ones (Fig. 1A) [4–8, 12–16].
The typical karyotype of the most prevalent classical HD variant

is always composed of di-, tri-, and tetrasomies. Trisomies always
result from the duplication of either one of the parental
chromosomes in an apparently random fashion (“2+1” pattern)
and most commonly affect chromosomes X, 4, 6, 10, 14, 17, and 18
(Fig. 1B) [3, 6]. Tetrasomies, on the other hand, always result from
the duplication of both parental homologs (“2+2” pattern). The
most common, in addition to the obligatory tetrasomy 21 are
those of chromosomes X, 14, and 18. Although the individual

Fig. 1 Defining criteria of classical and nonclassical HD forms of childhood ALL. A Based on their number of chromosomes, aneuploid
forms of childhood ALL can be subdivided into seven distinct categories. The defining thresholds for HD cases range from 52 to 58 or 67
chromosomes. Classical HD and near-triploid karyotypes contain di-, tri, and tetrasomies, hyperhaploid and hypodiploid ones only mono- and
disomies. Nonclassical HD karyotypes contain only di- and tetrasomies. 28% of the hyperhaploid and 32% of the nonclassical HD cases are
monoclonal, whereas 40% of them share both clones. Likewise, 34% of the hypodiploid and 24% of the near-triploid cases are monoclonal,
whereas 42% of them are bi-clonal [9]. The projection of representative karyotypes (highlighted chromosomes) of a classical (B) and a
nonclassical (C) case onto the 92 chromosomes of a diploid mitotic cell illustrates that both patterns can be produced by the same yet-
undefined nondisjunction mechanism and, in principle, even in a single step. The daughter cells that obtain the highlighted set of
chromosomes, which always contain a tetrasomy 21, can survive, whereas the ones which only receive the dimmed set that lacks
chromosomes 21 will perish as a result. The karyotype of the classical case (B) is 57,XX,+X,+X,+4,+6,CN-
LOH(9),+10,+14,+14,+17,+18,+21,+21 and that of the nonclassical case (C) is 52,XX,+X,+X,CN-LOH(1–8,10–13,15–20,22),+14,+14,+21,+21.
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chromosomal composition of the remarkably stable karyotypes
varies from case to case, particular chromosomes appear in a
predetermined, statistically hierarchical order [4, 6]. The prob-
ability that one or the other is seen depends on the chromosomes
that are already present and, therefore, also on the overall modal
chromosome number. Tetrasomy 21 is always the first change,
which can then be followed, in a decreasing likelihood, by gains of
chromosomes X, 14, 6, 18, 4, 17, and 10 [3, 6]. The composition of
the various HD genomes is thus governed by the functional
interdependence and indispensable compatibility of the respec-
tive combinations of chromosomes.
The karyotypes of the second, much rarer nonclassical HD

variant, contain only disomies and tetrasomies. This unique
pattern was already recognized and described in the early days
of cytogenetics (Fig. 1C) [17]. Array analyses revealed that the
disomic chromosomes are always homozygous (“2+0” pattern),
whereas the tetrasomic ones remain heterozygous (“2+2 pattern”)
(Fig. 2). The same pattern is also seen in exceptionally rare cases
with 48, 50, or 52 chromosomes. Notwithstanding their low
chromosome numbers, however, we propose that they likewise
belong to the nonclassical HD group. Although uniparental

isodisomies may also appear in classical HD forms, they only
involve a single or few chromosomes in those cases [18].
Nonclassical HD karyotypes are exact duplicates of hyperhaploid
ones, and both can appear either alone or in combination. This
circumstance led to the understandable but hitherto unproven
view that nonclassical HD cases are merely duplicated hyperha-
ploid ones and that they can therefore be equated with
hyperhaploidy, irrespective of whether a hyperhaploid clone is
indeed identified or not [3, 7, 9, 19–25]. Thus, this uncritical
synonymous use of these terms in this context is confusing, may
often lead to misunderstandings, and, as we argue herein, it may
probably also not be the correct label for how this hyperdiploid
variant is formed.
The chromosome number of near-triploid cases lies between 60

and 78, which means that at least those with a chromosome
number below 67, overlap with those classical HD ones with a
chromosome number above 60 (Fig. 1) [7, 8, 13–15]. Because of
the dissimilar clinical impact of classical HD and near-triploid
cases, the proper assignment of such ambiguous cases to one or
the other group is important for appropriate treatment stratifica-
tion, a requirement that is, however, virtually impossible to fulfill

Fig. 2 What the comparative analysis of germline and acquired chromosome copy number and/or sequence variants reveals about the
origin, development, and biology of HD leukemias. Left side, top: the minimal common denominator of HD leukemia is always a bi-parental
derived tetrasomy 21, irrespective of whether it arises in a constitutional normal or trisomic individual. Left side, middle: the duplication of
either the wild-type or variant allele of pharmacologically relevant heterozygous genes, such as the thiopurine S-methyltransferase (TPMT) on
chromosome 6 and/or the γ-glutamyl hydrolase (GGH) on chromosome 8, will produce two distinct leukemia genotypes with opposite drug
sensitivities [34]. Left side, bottom: the ARID5B rs7090445-C risk allele is preferentially duplicated in HD blast cells [40]. Right side, top: the
recombination of the immunoglobulin heavy chain (IGH) gene on chromosome 14 follows discrete consecutive steps during B-cell
maturation. A clone with a disomy 14 can thus harbor a maximum of two unique rearrangements, whereas a clone with trisomy 14 can have
three unique or one unique and two related rearrangements. Systematic analyses of such rearrangement patterns have shown that trisomy 14
is usually already present before the initiation of IGH recombination and thus prove that the maldistribution of the chromosomes is indeed
the essential transforming event [162, 163]. Right side, middle: the analysis of acquired trisomy-associated heterozygous mutations informs
about the sequence of events and the latency period between the nondisjunction event and their emergence. Mutations acquired before
trisomy formation may affect either 2/3 or 1/3 of the duplicated homologs, whereas those that are acquired after trisomy formation can
merely be present in 1/3 of the non-duplicated homologs [16, 55]. Right side, bottom: X inactivation (Xi) is a dosage-compensation
mechanism in females that silences either the maternal or paternal chromosome with an equal likelihood during early fetal development. As
in other HD-related trisomies, either one of the two parental X chromosomes can therefore be duplicated [164]. Notwithstanding this fact,
however, it is always the active X (Xa) that is nonrandomly gained [165]. This outcome concords with the high expression of X-encoded genes
and suggests that specific X-linked factors help to jumpstart and maintain the disease process [61–63].
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based on chromosome counts alone [13]. Helpful karyotypic
parameters that may delineate most of the near-triploid cases are
the presence of a tri- or tetrasomy 1 together with a relative
underrepresentation of chromosomes 7 and 14 [13]. Nevertheless,
by far the best discriminators are either germline or somatic TP53
mutations, which are seen in virtually all near-triploid and
hypodiploid cases, but hardly ever in classical or nonclassical HD
ones (Fig. 1) [7, 8, 13–15].
Although constitutional trisomy 21 is by far the most common

leukemia-predisposing factor, it is odd that classical HD forms are
significantly underrepresented in this condition. To the best of our
knowledge, none of the other aneuploid leukemia types have ever
been reported in Down syndrome patients either [10, 26–28]. Yet,
once formed, the karyotype patterns of such classical HD cases
resemble exactly the ones, which are seen in constitutionally
normal patients. In contrast to what one might intuitively expect,
they never contain six chromosomes 21, but only the usual four or,
as may occasionally be the case in constitutionally normal HD
patients, five copies of chromosome 21. This suggests that a
preexistent trisomy 21 impedes a priori the formation of the
essential tetrasomy and/or that daughter cells with six chromo-
somes 21 cannot survive (Fig. 2) [10].
Of further interest in this context is DYRK1A, a serine/threonine

kinase that is encoded on chromosome 21 and whose copy
number determined overexpression is implicated in several
pathologies in Down syndrome. Notably, this overexpression
increases the expression and phosphorylation of two transcription
factors, FOXO1 and STAT3, that are indispensable for B-cell
development and therefore also contribute to the development
and maintenance of BCP leukemias [29]. These effects are
obviously especially pronounced in HD cases (https://
pecan.stjude.cloud/proteinpaint/DYRK1A) and render both
DYRK1A and FOXO1 worthwhile therapeutic targets in this specific
subset of ALL [29].
Nonrandom secondary events in the form of structural

abnormalities include chromosome 1q duplications (10–15%), 6q
deletions (5%) and isochromosomes 17q (2–5%) and 7q (1–2%)
[3]. They occur in a mutually exclusive manner and, may also be
present in monoclonal nonclassical HD cases. However, to the best
of our knowledge, they have never been observed in bi- or
monoclonal hyperhaploid cases [5, 9, 10].
Another notable phenomenon is the co-occurrence of classical

HD and an additional class-specific abnormality within the same
cell clone, such as a t(9;22)(q34;q11)/BCR::ABL1, a t(1;19)/
TCF3::PBX1 or a t(4;11)/KMT2A::AFF1 [22, 30, 31]. Either one of
these can act as a primary or secondary change. In children, such
“double hit” events comprise 2–3% of all HD cases, but they are
10–15 times more common in adults and therefore make up half
of the total 13% of classical HD cases [31]. Although there are even
a few mono- or bi-clonal nonclassical and/or hyperhaploid cases
that concur with a t(9;22), we are not aware of any hypodiploid
and/or near-triploid ones with such a constellation [28, 32, 33].

Germline predisposing sequence alterations
Germline predisposition factors comprise genome-wide associa-
tion study–ascertained allelic variants, which function as genetic
modifiers, and distinct pathogenic gene defects (Table 1). An HD-
inherent unique phenomenon is those heterozygous variants in
pharmacologically relevant genes that are a priori disease-
unrelated but nevertheless functionally important because their
alternate allelic duplication will distort the concordance of
germline and leukemia genotypes (Fig. 2) [34].
The four most relevant susceptibility loci reside within or in

close proximity to the ARID5B, CEPBE, BMI1, and PIP4K2A genes
[35–41]. ARID5B plays an essential role in the epigenetic activation
of gene expression, cell-cycle regulation, and 6-mercatopurine and
methotrexate (MTX) metabolism [37, 40, 42, 43]. The intronic
rs7090445-C risk allele of this gene is less expressed than that of

the wild-type one. Functional studies and analyses of many
carriers have shown that its presence will impede normal
lymphocyte development, facilitate the clonal expansion of the
affected BCPs, confer drug resistance, and increase the relapse risk
[37, 40, 42–46]. CEBPE encodes one of six basic leucine
transcription factors. The risk-defining SNP rs2239635 in its
promotor disrupts the binding of the Ikaros transcriptional
repressor [39]. CEBPE is on chromosome 14, which is incidentally
also one of the most common tri- and tetrasomic chromosomes in
HD. Its copy-number-linked overexpression may thus be one of
the critical contributing leukemia-promoting factors [39]. BMI1 is a
negative regulator of the cell-cycle checkpoint proteins p16 and
p14ARF, encoded by CDKN2A, which is the most frequently
deleted gene in ALL. The risk-defining SNP rs11591377 is in a
predicted hematopoietic stem cell enhancer and reinforces the
preferential binding of the MYBL2 and p300 transcription factors
[41]. PIP4K2A encodes an enzyme that is part of the phosphoinosi-
tide signal transduction pathways that co-regulate cell prolifera-
tion, differentiation, and motility. The risk-defining SNP rs4748812
lies within a PIP4K2A regulatory element and is predicted to alter
the binding of the RUNX1 transcription factor [41].
A not yet exactly determined proportion of HD ALL cases have

predisposing pathogenic germline defects in genes that encode
members of B-cell development, receptor tyrosine kinase/RAS
(RTK/RAS), epigenetic regulatory, and DNA repair pathways
(Table 1). The two most common conditions concern the ETV6
and the PTPN11 genes [16, 47–49]. Approximately 70% of all BCP
ALL cases with germline defects in either one of these two genes
are hyperdiploid [48, 49]. ETV6 germline-mutated cases frequently
also acquire somatic mutations in NRAS, KRAS, and PTPN11 [49].
Although we have no specific information about secondary
changes in cases with RASopathy, it is worth noting that in two
of them the PTPN11 mutation became duplicated in the form of a
uniparental disomy 12 [48].
Predisposing germline factors are unlikely to be directly

responsible for the formation of HD precursor cells per se but
rather alleviate the immediate survival of independently created
cells by equipping them with essential elements that founder cells
in non-predisposed individuals are forced to acquire as secondary
changes [10]. The extent to which the occasional concurrence of
two or even more such predisposition factors, for instance, ARID5B
and ETV6, will augment the respective risk remains to be
determined [50].

Somatically acquired sequence alterations
Virtually all classical and nonclassical HD cases also acquire
somatic mutations, primarily in the RTK/RAS and phosphoinositide
3-kinase-signaling pathway genes KRAS, NRAS, FLT3, SOS, and
PTPN11, as well as in the chromatin-modifying genes CREBBP,
NSD2, SUV420H1, SETD2, and EZH2 (Table 1) [16, 51–57]. Other
abnormalities that are typically enriched in nonclassical HD forms
are NF1, CDKN2A/B, IKZF3, PAG1, and the 6p22 histone gene cluster
[7, 22]. Most of these genes are located on chromosomes that
usually remain disomic. Although the frequency of mutations is
much higher in disease recurrences, the originally extraordinary
inter- and intragenic heterogeneity of mutually exclusive RTK/RAS
pathway mutations is then essentially lost. KRAS mutations are the
only ones that are preferentially retained and then commonly
coexist with the prevalent CREBBP mutations in the predominant
relapse clones [52, 53, 58].
Of note in this context are the comparative analyses of the

numbers of monoallelic and biallelic mutations on disomic and on
trisomic chromosomes, which revealed that monoallelic mutations
on trisomic and homozygous ones on disomic chromosomes are
significantly more common than biallelic ones. These observations
provide compelling evidence that such sequence alterations
emerge only quite some time after the formation of the
hyperdiploid genome (Fig. 2) [16, 55].
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Mutation signatures
Mutation signatures can reveal environmental and endogenous
sources of mutagenesis in affected tissues. At present, there are 49
accepted single base substitution signatures, whose causative
factor has been established with a certain security [59, 60]. Of
these, Signature7 is the one that is induced by exposure to
ultraviolet light [59, 60]. Brady et al. found this signature especially
enriched in 17% of hyperdiploid, 35% of hyperhaploid as well as
46% of iAMP21-positive leukemias exclusively in patients of non-
African descent [16]. The fact that these mutations emerged only
after the aneuploidization event had taken place was therefore
taken as an indication that it can only be postnatally induced
when the respective cells become trans-dermally exposed to skin-
penetrating light. As interesting as these intriguing observations
together with the interpretation of their emergence are, they
certainly need to be further scrutinized and functionally evaluated
[59].

Methylome, transcriptome, and proteome
The methylation, gene expression, and protein structure of HD
leukemias are tightly interlocked and mainly shaped by dosage
effects that are exerted by the surplus chromosomes [30, 61–68].
Compared to other types of ALL, HD leukemias are remarkably
hypomethylated, a feature that remains constant regardless of the
number and types of chromosomes that are present in the
individual karyotypes. This observation has therefore been taken
as an indication that this peculiar signature must either predate or
at least concur with the acquisition of the extra set of
chromosomes [68]. The six different pathways that are enriched
in the expression signature of HD ALL include translation and
ribosomes, innate immunity, cell adhesion, cytokines and acti-
vated signaling, protein folding and proteolysis, and the endo-
some pathway [63, 69]. Although the expressed genes and the
associated range of proteins largely correlate with the number of
chromosomes, the overall effect is nevertheless determined by
those almost 70% of genes on chromosomes 21, X, and 14
[30, 61–63, 65]. Conversely, approximately 16% of the transcript
and 25% of the protein levels are significantly lower than their
corresponding gene copy number would indicate [63]. The top-
downregulated genes and proteins are IGF2BP1, CLIC5, RAG1, and
RAG2 [63]. Such a diminished IGF2BP1 and CLIC5 gene expression
is one of the outstanding features of HD leukemias with CTCF
alterations and histone gene cluster 1 deletions [57]. The
transcriptional repressor CTCF and the cohesion complex are not
only master regulators of the chromatin architecture but also of
transcription [63, 70]. By binding to chromatin insulators, CTFC
prevents the interaction between promoters and nearby enhan-
cers and silencers. Its encoding gene, CTFC, is on chromosome 16,
which usually remains disomic, whereas the core members of the
cohesion complex are on trisomic chromosomes (RAD21 on 8q24,
SMC3 on 10q25, SMC1A on Xp11, and STAG2 on Xq25). It was
therefore proposed that this copy number discrepancy may
likewise unbalance the essential expression equilibrium between
these genes [63]. Although CTCF depletion and cohesin loss will
first of all impair the proper cohesion, alignment, and segregation
of chromosomes, it will also weaken the insulation at the borders
of topologically associating domains [63, 69–71]. Since these
chromatin structures control the timing of DNA replication, the
destruction of their framework has also a severe effect on the
genome-wide coordination of gene expression [63, 72]. Together
with the faulty activity of Aurora B kinase and Survivin, which
normally fine-tune the spindle assembly checkpoint, this genomic
turmoil slows down the mitotic process, decreases the prolifera-
tive rate of HD cells, and is also responsible for the poor
morphological appearance of metaphase chromosomes, which
often makes them extremely difficult to analyze. Since neither
cohesin nor condensin complex encoding genes are consistently
mutated in HD leukemias, these effects can only be caused by theTa
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subordinate inadequate expression and resultant dysfunction of
cohesin and/or condensin complex components [69, 71].
Notably, the gene expression profiles of classical and non-

classical HD forms are virtually identical. In unsupervised
hierarchical clustering and principal component analyses, mono-
clonal nonclassical HD, bi-clonal, and monoclonal hyperhaploid
entities form a single discrete cluster that clearly separates them
from the hypodiploid/near-triploid entities, which, in turn, form
their own cluster [7]. Moreover, classical and nonclassical HD
forms even cluster together in an indistinguishable manner in a
t-distributed stochastic neighbor embedding blot analysis [16, 73].
Finally, we need to mention the copy-number-related over-

expression of the SLC19A1 gene on chromosome 21q22.3, which
encodes the predominant folate and MTX uptake transporter
[74, 75]. The larger amount of this transporter also increases the
quantity of polyglutamates, the active metabolites of MTX and
mercaptopurine, as well as thioguanine nucleotides, in blast cells.
The presence of a tetrasomy 21 is therefore thought to explain, in
part, the good outcome of patients with HD leukemias [76–80].

THE ROOTS OF HD LEUKEMIAS
HD leukemias evolve from a single immature BCP cell, which is
transformed very early during fetal development [81–89].
Although there is general agreement that the initiating event is
a flawed cell division during which the leukemic precursor cell is
supposed to receive all extra chromosomes instantaneously, the
actual cause of the triggering nondisjunction error is currently still
unknown [3, 16, 90]. Since decades of extensive research have not
uncovered any potentially responsible genetic defect, we pro-
posed that the critical nondisjunction and segregation errors may
be due to a physical disruption of the intricate spindle scaffold of a
mitotic cell, which could be due to the untimely cytoplasmic influx
from a second, partially fused interphase cell [10].
The current and intensely scrutinized view suggests that a

nonclassical HD karyoytpe can only derive from the duplication of
a previously generated hyperhaploid one [3, 7, 8, 14]. However, as
we show in Fig. 1, it may indeed be more likely that the
nonclassical HD clone is generated first in a similar fashion as the
classical HD one. Reversing the order of appearance of non-
classical HD and hyperhaploid clones, simplifies the entire concept
of how classical, nonclassical, and hyperhaploid HD cases are
interrelated. If the nonclassical HD clone comes first, the
hyperhaploid clone can only be its descendant, and then, may
either coexist as a secondary change or even outperform the
original nonclassical HD clone [10]. Another albeit more remote
alternative possibility could be that the hyperhaploid clone
originates from the cell that is supposed to cause the
nondisjunction error [10].

CLINICAL AND BIOLOGICAL FEATURES
In the western world, up to 35% of childhood leukemias are
hyperdiploid, but with 15–25%, they are far less prevalent in
patients of Asian, African, and Native American descent [91–93].
Children with HD ALL are young (median age of about 4 years). At
diagnosis, they have a white blood cell count that is typically
below 109/l and no extramedullary disease. HD blast cells show a
high expression of CD9, CD20, CD22 CD58 CD 66c, CD86, and
CD123, and a low expression of CD45 [94]. Their most relevant
immunophenotypic feature is the aberrant expression of CD123,
the interleukin-3 receptor alpha chain, which is encoded in the
pseudo-autosomal regions on Xp22.3 and Yp11.3 [95–97]. This
marker is therefore also commonly used as an indicative surrogate
flow-cytometric predictor of classical HD leukemias.
One thought-provoking discovery is the fact that heterozygous

HLA-DPB1*0201 alleles are significantly enriched in patients with
HD leukemias [98]. HLA-DPB1*0201 belongs to the HLA class II

genes that are important in adaptive immune responses to
infection. This preponderance has therefore been taken as
evidence that yet-undefined intrauterine immunological pro-
cesses execute selective forces and mediate a proliferative stress
on preleukemic HD cells, effects that may then again be
somewhat mitigated by protective life-style factors, such as
breastfeeding and day-care attendance [45, 99, 100]. Supporting
these HLA data are now recent epidemiological data and
laboratory findings. They revealed that prenatal cytomegalovirus
infections of the patients’ mothers are probably one of the most
relevant etiologically factors for initiating and/or promoting
especially the development of HD leukemias [101–103]. Moreover,
this hazard is particularly pronounced in carriers of an ARID5B risk
allele [101–103].
HD ALL blast cells are inherently difficult to maintain and

propagate in culture, which makes it extremely difficult to perform
not only cytogenetic analyses, but also any other type of research
that depends on viable cells [104]. Underlining this problem is the
fact that there are no established cell lines from patients with HD
leukemias, and only one that derives from a nonclassical HD
(MHH-CALL-2) and a second from a hyperhaploid case (NALM-16)
[3, 25, 105–107]. The only way to maintain and propagate HD
blasts is therefore to either cultivate them on autologous feeder
layers or to xenograft them [104, 108].

DIAGNOSTIC ASSESSMENT, DISEASE STRATIFICATION, AND
TREATMENT OUTCOME
Table 2 summarizes the pros and cons of the various technologies
that are instrumental not only for the identification and
delineation of HD ALL cases, but also for the in-depth analyses
of their genomic structure. Several of these technologies are quite
sophisticated, so it is quite surprising that those being used almost
exclusively for treatment stratification today are still the rather
basic options that have been already in use for many decades. The
reason for this is that these diagnostic tools are simple to perform,
cheap, and fast [109–112]. However, the fact that they are still
considered sufficient also implies that, for clinical purposes, a
more in-depth evaluation of the intricate features of such cases is
deemed completely unnecessary, since these patients have in any
case an overall very good outlook (Table 3). Yet, as alluded to
above, this tactic does certainly neither suffice for the demarcation
and clear assignment of classical and nonclassical HD cases nor for
that of classical HD and near-triploid ones, respectively. Such
delineation ambiguities can to a certain extent obscure the
outcome results that are obtained by different treatment studies.
Moreover, applying the usual DNA content of equal to or more
than 1.16 (equivalent to approximately 54 chromosomes) as the
lower defining HD threshold will fail to secure cases with
karyotypes that contain only a smaller and/or lower number of
chromosomes. As pointed out by Carroll et al., such allocation
problems cause the misclassification of a considerable proportion
(at least 25%) of nonclassical HD cases [9]. They showed that
studies that evaluated the treatment outcome of mono- and bi-
clonal hyperhaploid cases never included monoclonal nonclassical
HD cases, even though they are always equated with hyperha-
ploid ones and automatically assigned to the high-risk group, in
case they are indeed identified [5, 9, 113–115]. Carroll’s observa-
tion can only mean that monoclonal nonclassical HD cases were
either recognized but purposely not included or not recognized
and consequently stratified and handled the same way as classical
HD cases.
The two central challenges that clinicians are nowadays

confronted with in HD leukemias are how to identify patients
with a high propensity to relapse already at diagnosis and how to
reduce treatment in low-risk patients without jeopardizing their
good outcome. Virtually all contemporary, ongoing, and planned
treatment studies rely on the assessment of the measurable
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residual disease (MRD), either based on the PCR-based quantifica-
tion of immunoglobulin and T-cell receptor gene rearrangements
or based on the flow-cytometric assessment of the immunophe-
notypic criteria of blast cells. Only some of these studies also
require the identification of HD cases, which is then achieved by
determining the DNA content, the overall chromosome number
and/or the copy numbers of selected chromosomes with
fluorescence in situ hybridization (FISH) that are considered
appropriate for the delineation of good risk cases. Such a
chromosomal risk classification has, for instance, already been
used successfully in the Children’s Oncology Group study for over
25 years (Table 3) [116–118]. O’Connor et al. and Enshaei et al.
have recently succeeded in significantly refining and improving
the prognostic value of this genetic stratification system. First,
they reported that at least in the UKALL treatment studies, the
optimal MRD threshold for HD cases, which derives from a
retrospective statistical analysis of data, is 0.03% rather than the
0.01% cutoff that is normally used [119, 120]. This elaborated MRD
threshold of 0.03% for HD cases will now be prospectively
evaluated in the newly established ALLTogether consortium,
which comprises the Nordic countries, Estonia, Lithuania, the
United Kingdom, the Netherlands, Belgium, Ireland, and France
(https://clinicaltrials.gov/ct2/show/NCT03911128). Whether such a
challenging detailed threshold definition is indeed also technically
feasible to routinely achieve and therefore worthwhile to
implement in future clinical studies, remains to be seen. Second,
Enshaei et al. convincingly proved that the copy number
assessment of four chromosomes, whose prognostic relevance
was already appreciated previously is sufficient to demarcate two
distinct risk groups. The low-risk group, which in their study makes
up 80%, is defined by trisomies 17 and/or 18, whereas their poor
risk group makes up 20% and is defined by trisomies 5 and 20

[120]. This poor risk group includes nearly half of the relapse cases.
Since trisomies 5 and 20 are rarely seen in cases with less than 58
chromosomes [121], it will be important to evaluate to which
extent their prognostic value depends on or is influenced by the
overall chromosome number. Nevertheless, the respective UKALL
profile still outperforms other trisomy-based ones and is
independent of the results of MRD measurements, although it
might be expected that combining both will increase the value of
this risk score even further. Especially in the context of the
planned treatment reduction for low-risk HD cases, we consider it
appropriate to further substantiate these findings in prospective
studies of large cohorts of genetically thoroughly defined
HD cases.
Of further note in this context is the recent observation that

nonclassical HD cases with SETD2 mutations had an inferior event-
free (8/280 cases; 47% versus 95%) and overall survival than
nonaffected ones [16].
Owing to the lack of more refined genetic discriminators, all

mono- and bi-clonal hyperhaploid and nonclassical HD forms are
hitherto stratified as high risk. However, Mullighan et al. showed
that even in those cases MRD is the most important prognostic
indicator since all cases with a negative MRD status (<0.01%) are
highly curable with intensive chemotherapy alone [54].
The high cure rates of low-risk classical HD ALL cases imply that

many of them are probably overtreated. The daunting challenge is
now to reduce treatment intensity to diminish side effects and
avoid ensuing long-term sequelae without endangering the
hitherto achieved excellent overall treatment outcome. Some of
the trials that have addressed this issue so far have been quite
successful (even without utilizing any genetic risk score), whereas
those trials which reduced the duration of maintenance therapy to
6 months were not, at least as regards HD ALL [55, 117, 122–125].

Table 2. Advantages and disadvantages of various diagnostic technologies for the diagnostic assessment of HD ALL.

Method Advantages Disadvantages

DNA index measurement • Fast, cheap, and easy
• Can to a certain extent identify multiple abnormal
clones to a certain extent

• Provides only a rough estimate of the DNA content
but no information about chromosomal composition
of the respective clones
• Cannot differentiate between classical and
nonclassical HD forms

Cytogenetics • Provides information about types and numbers of
chromosomes

• Relies on the availability of blast cell metaphases
• Information derives only from single dividing cells

Fluorescence in situ
hybridization (FISH)

• Allows interphase screening
• Provides information about composition and size of
cell clones

•Utilized to screen for selected relevant
chromosomes only
• Cannot elucidate the chromosomal composition of
the entire genome

CGH/SNP array analysis • Provides a representative genome-wide profile of all
large- and small-scale copy number alterations as well
as their allelic pattern

• Cannot distinguish between monoclonal and/or bi-
clonal forms of hyperhaploid and nonclassical
HD forms

Whole-exome
sequencing (WES)

• Provides exome-wide information about copy
number as well as sequence alterations

• Primarily a research tool
•Mutations hardly diagnostically or therapeutically
relevant in HD

Whole-genome
sequencing (WGS)

• Provides genome-wide information about all
relevant copy number, structural, and sequence
alterations simultaneously
• Could replace all other methods, in principle

• Cannot distinguish between monoclonal and/or bi-
clonal forms of hyperhaploid and nonclassical
HD forms
•Not yet implemented for routine diagnostics

Gene expression (GEP)
analysis

• Reflects chromosome copy number changes
•May be utilized for mutation calling
• Can identify fusion genes
• Uncovers the close relationship between mono-
and/or bi-clonal nonclassical HD and
hyperhaploid forms

•Diagnostically not relevant
• Primarily a research tool

Optical genome mapping • Provides genome-wide information about copy
number and structural abnormalities
• Reveals allele-specific patterns
•May eventually replace karyotype, FISH, and array
analyses

• Research tool only
•Not yet implemented in the diagnostic work-up
• Cannot detect sequence variants
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Although Kato et al. found that one year of maintenance therapy
is probably sufficient for TCF3::PBX1- and ETV6::RUNX1-positive
cases, it is definitely not adequate for all HD leukemias. As a result
of relapses, their disease-free survival was only 56.6 ± 10.3% [123].
Nevertheless, viewed in reverse a remarkable proportion of
patients also benefited; most relapses were salvageable, and the
overall survival of the entire cohort still reached 91.7 ± 5.6% after
12 years [123].
The emergence of specific mutations in disease recurrences

suggests that many of them are treatment induced. These
mutations comprise, for instance, those in NR3C1/2, CREBBP, and
WHSC1 for glucocorticoids; NT5C2, MSH2/6, PMS2, and PRPS1/2 for
thiopurines; and FPGS for MTX [126]. Examining such mutation
patterns in 103 ALL germline/diagnosis/relapse trios, Li et al.
identified two novel relapse-specific signatures in 25% of children
with an early or late relapse [126]. They were able to prove that
one of these signatures was caused by thiopurine treatment,
whereas for the other, which was significantly enriched in HD
leukemias, they could not ascertain the respective cause.
Together these observations confirm that an adequate length of

maintenance therapy is essential for preventing early relapses in
classical HD leukemias but also, that this treatment component
cannot be held accountable for inducing late ones, as seems to be
the case in other genetic subtypes.

SUMMARY
HD leukemias have puzzled and confused researchers and
clinicians for more than 50 years now. Novel findings that derive
from array, mutation, and gene expression analyses offer now new
opportunities to re-examine deeply engrained, yet largely
unproven and unquestioned views about their origin, their mode
of creation, and the interrelatedness of the diverse aneuploid sub-
forms. Such fresh insights will eventually help to reconsider and
refine the current classification system and thereby also influence
the prognostic stratification and treatment of these subgroups.
One example concerns the elucidation of the biological related-
ness of classical, nonclassical (“duplicated hyperhaploids”), and
pure hyperhaploid cases, which will help to better understand
what drives their apparent different clinical behaviors. Another
one concerns hyperdiploid forms with a high chromosome
number. Near-triploid cases as well as mono- and bi-clonal
hypodiploid cases can nowadays be easily ascertained, because
over 90% of them are TP53 mutated. However, it is less clear
whether the remaining TP53 wild-type ones with a similar high
chromosome count should be also stratified as near-triploid or
rather as classical hyperdiploid ones. Although this concerns only
a few cases, their diagnostic clarification, and most appropriate
allocation requires further scrutiny. Array analyses deliver not only
a detailed information about copy number changes, but also
about allele distribution alterations, such as the presence of
otherwise unidentifiable uniparental disomies. Bearing the
ongoing trend to reduce treatment for very low-risk patients in
mind, which especially also concerns HD leukemias, we advocate
to implement this state-of-the-art technology together with
mutation screening in treatment studies to comprehensively
characterize the detailed genomic make-up of HD leukemias [127].
Only such an approach, rather than, as is current practice, merely
typifying them with DNA content measurements, cytogenetics,
and/or selected FISH probes, can better our understanding of the
biology and the clinical behavior of the karyotypically hetero-
geneous subsets of classical and nonclassical HD leukemias as well
as oversee in a more individual fashion the effects of various
treatment interventions. The invaluable results that have already
been obtained with such thorough analyses in selected yet still
less well-characterized cohorts clearly prove, that the study-wide
implementation of such a policy will significantly foster basic as
well as clinical research in this particular group of patients andTa
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thereby provide benefits for their management that will go far
beyond the simple identification and prognostic grading of HD
cases, as is still done today.
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