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Single-cell genomic variation induced by 
mutational processes in cancer


Tyler Funnell1,2,25, Ciara H. O’Flanagan3,25, Marc J. Williams2,25 ✉, Andrew McPherson2, 
Steven McKinney3, Farhia Kabeer3,4, Hakwoo Lee3,4, Sohrab Salehi2, Ignacio Vázquez-García2, 
Hongyu Shi2, Emily Leventhal2, Tehmina Masud3, Peter Eirew3, Damian Yap3, Allen W. Zhang3, 
Jamie L. P. Lim2, Beixi Wang3, Jazmine Brimhall3, Justina Biele3, Jerome Ting3, Vinci Au3, 
Michael Van Vliet3, Yi Fei Liu3, Sean Beatty3, Daniel Lai3,4, Jenifer Pham3, Diljot Grewal2, 
Douglas Abrams2, Eliyahu Havasov2, Samantha Leung2, Viktoria Bojilova2, Richard A. Moore5, 
Nicole Rusk2, Florian Uhlitz2, Nicholas Ceglia2, Adam C. Weiner1,2, Elena Zaikova3, 
J. Maxwell Douglas3, Dmitriy Zamarin6, Britta Weigelt7, Sarah H. Kim8, Arnaud Da Cruz Paula8, 
Jorge S. Reis-Filho7, Spencer D. Martin4, Yangguang Li3, Hong Xu3, Teresa Ruiz de Algara3, 
So Ra Lee3, Viviana Cerda Llanos3, David G. Huntsman3,4, Jessica N. McAlpine9, IMAXT 
Consortium*, Sohrab P. Shah2 ✉ & Samuel Aparicio3,4 ✉

How cell-to-cell copy number alterations that underpin genomic instability1 in human 
cancers drive genomic and phenotypic variation, and consequently the evolution of 
cancer2, remains understudied. Here, by applying scaled single-cell whole-genome 
sequencing3 to wild-type, TP53-deficient and TP53-deficient;BRCA1-deficient or 
TP53-deficient;BRCA2-deficient mammary epithelial cells (13,818 genomes), and to 
primary triple-negative breast cancer (TNBC) and high-grade serous ovarian cancer 
(HGSC) cells (22,057 genomes), we identify three distinct ‘foreground’ mutational 
patterns that are defined by cell-to-cell structural variation. Cell- and clone-specific 
high-level amplifications, parallel haplotype-specific copy number alterations and 
copy number segment length variation (serrate structural variations) had measurable 
phenotypic and evolutionary consequences. In TNBC and HGSC, clone-specific 
high-level amplifications in known oncogenes were highly prevalent in tumours 
bearing fold-back inversions, relative to tumours with homologous recombination 
deficiency, and were associated with increased clone-to-clone phenotypic variation. 
Parallel haplotype-specific alterations were also commonly observed, leading 
to phylogenetic evolutionary diversity and clone-specific mono-allelic expression. 
Serrate variants were increased in tumours with fold-back inversions and were highly 
correlated with increased genomic diversity of cellular populations. Together, our 
findings show that cell-to-cell structural variation contributes to the origins of 
phenotypic and evolutionary diversity in TNBC and HGSC, and provide insight into 
the genomic and mutational states of individual cancer cells.

The identification and characterization of endogenous mutational  
processes4–6 have transformed our understanding of cancer genomes6–11,  
and have led to improved prognostic and therapeutic stratification of 
cancers with genomic instability12–14. However, mutational processes are 
typically inferred from bulk whole-genome sequencing (WGS), which 
yields aggregate signals from pools of DNA composed of millions of 
cells. Thus, contemporaneous post-mitotic cell-to-cell variation due to 
genomic instability is not detectable in bulk sequencing, and has been 
understudied. Single-cell WGS can readily decompose clone-specific 
and cellular genomic events2,3,15, enabling the calculation of copy number  

alteration (CNA) and structural variation (SV) accrual rates and muta-
tional patterns over thousands of individual cells. This allows for the 
separation of evolutionary vestigial events, which are present in initial 
clonal expansions, from contemporaneous ‘foreground’ events, which 
reflect ongoing mechanisms of cell-to-cell genomic diversification. For 
example, breakage–fusion–bridge cycles (BFBCs) and homologous 
recombination deficiency (HRD) are endogenous mutational processes 
that accrue SVs with specific patterns including tandem duplications, 
interstitial deletions and fold-back inversions (FBIs) that generate 
high-level copy number amplifications5,10,12,14. Because HRD and BFBCs 
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are predicted to induce cell-specific structural changes on individual 
maternal or paternal alleles, a haplotype-specific analysis is essential 
for a comprehensive account of genome-scale structural variation. Here 
we combine single-cell approaches with haplotype-specific analysis to 
reveal how different mutational processes diversify the genomes of 
individual cancer cells and thereby determine phenotypic variation and 
evolutionary selection in human tumours. We apply scaled single-cell 
WGS and haplotype-specific analysis to an in vitro cell line system with 
experimentally induced HRD-associated genomic instability and 
human breast and ovarian tumours defined by SV-associated muta-
tional processes6,10,12,16,17. Our study reveals three sources of cell-to-cell 
variation in cancer genomes, with implications for interpreting pheno-
typic diversity and evolutionary selection in cancers with genomic  
instability.

Induced single-cell genomic instability
We first developed a combined experimental and computational 
approach for studying genome-scale cell-to-cell variation in human 
cells, by establishing an in vitro isogenic system of breast epithelium 
with induced HRD and defined temporal passaging. We generated TP53 
(ref. 18), TP53 and BRCA1, and TP53 and BRCA2 loss-of-function genotype 
lineages from diploid non-transformed 184-hTERT mammary epithelial 
cells19 using CRISPR–Cas9 editing (Fig. 1a, Extended Data Figs. 1 and 2a,b 
and Supplementary Table 1). We then subjected these cells to tagmen-
tation whole-genome single-cell sequencing (DLP+), which enables 
scaled analysis of each population and inference of cell-specific rates 
of structural alterations3. In addition, we developed a computational 
method called SIGNALS, a hidden Markov model (HMM) which phases 
copy number events to individual homologues20 in single-cell genomes 
to quantify haplotype-specific CNA as a source of cell-to-cell variation. 
SIGNALS was benchmarked on the ovarian cancer cell line OV2295, 
and when evaluated across different technologies and tumour types 
showed increased genomic and cellular resolution (0.5 Mb) compared 
with previously published methods21,22, identified cell-to-cell diversity 
that would be unclear when relying on total copy number, and exhibited 
the expected distributions of phased somatic point mutation variant 
allele fractions (VAFs) resulting from haplotype-specific gains and 
losses (Extended Data Fig. 3 and Supplementary Note).

Single-cell WGS libraries (DLP+) (median 0.04× coverage, interquar-
tile range (IQR) 0.03) from each genotype combination were generated 
as follows: 184-hTERT wild type (n = 878 genomes), 184-hTERTTP53−/− 
(TP53−/−, two lines, n = 1,634), 184-hTERTTP53−/−,BRCA1+/− (BRCA1+/−, n = 377), 
184-hTERTTP53−/−,BRCA1−/− (BRCA1−/−, n = 382), 184-hTERTTP53−/−;BRCA2−/− 
(BRCA2−/−, two lines, n = 887) and 184-hTERTTP53−/−;BRCA2+/− (BRCA2+/−, 
n = 472) (Fig. 1a, Extended Data Fig. 4 and Supplementary Tables 2 
and 3). Per-cell copy number distributions showed a progressive 
increase in the rates of CNA as a function of TP53 and BRCA1 or BRCA2 
loss (Fig. 1b–e). In addition, we observed increasing whole-genome 
polyploidy (Fig. 1f), chromosomal missegregation (Fig. 1g and Methods) 
and per-cell alteration counts in TP53−/−; BRCA2−/− and BRCA1−/− cells, 
respectively, relative to wild-type cells. BRCA1−/− genomes (median 
53 events per cell) also contained higher rates of per-cell segmental 
alteration counts (Fig. 1h) relative to BRCA2−/− (30 and 10), BRCA2+/− (6), 
BRCA1+/− (6), TP53−/− (5) or wild-type (1) cell lines (all P < 10−10). In BRCA1−/− 
cell lines, most cells had also undergone whole-genome duplication, 
consistent with BRCA1- and BRCA2-deficient cancers23,24 (Fig. 1e,f). We 
then compared distributions of the ratio of gains to losses over cells, 
assuming that unbalanced ratios would indicate tolerance away from 
neutrality. The ratio was balanced in the wild-type cells and in BRCA2+/− 
cells; however, BRCA1−/−, BRCA1+/−, and BRCA2−/− cells exhibited skewed 
ratios towards losses relative to wild-type cells (P < 0.05) (Fig. 1i). SIG-
NALS analysis revealed extensive loss of heterozygosity (LOH) and 
haplotype-specific events across cells (Fig. 1b–e), with higher rates of 
segmental homozygosity in BRCA1−/− (6.3×, P < 10−10) and BRCA2−/− (13.5× 

and 2.5×, P < 10−10) relative to TP53−/− (Fig. 1j). Analysis of cell-to-cell 
pairwise haplotype-specific copy number (HSCN) distances20,25 found 
that TP53−/− induced a 3.9-fold (SA906a) and 1.9-fold (SA906b) increase 
in cell-to-cell divergence, BRCA2−/− induced a 4.5-fold (SA1055) and 
2.6-fold (SA1056) increase and BRCA1−/− induced a 13.7-fold increase 
(Fig. 1k; P < 10−10) relative to pairwise distances in wild-type cells.

We next tested whether haplotype-specific analysis at single-cell 
resolution could identify properties of mutational processes (Fig. 2). 
BFBC processes induce segmental amplifications adjacent to termi-
nal losses on the same homologue, staircase-like copy number pat-
terns and clustered FBI breakpoints26–28 (Fig. 2b–d and Extended Data 
Fig. 5a). Using haplotype-specific alterations, we identified subclonal 
and variable amplitude high-level amplifications (HLAMPs, defined 
by 10 or more copies). HLAMPs were rare in the wild-type setting but 
increased with TP53 loss of function, and further increased with BRCA1 
or BRCA2 loss of function (Fig. 2a). Notably, some HLAMPs were consist-
ent with BFBCs, and affected known oncogenes including MYC (SA1188, 
Fig. 2b; SA906a, Fig. 2c) and PIK3CA (SA1054, Fig. 2c). An early passage 
of SA1188 BRCA2+/− (1,395 cells; Extended Data Fig. 5a,b) exhibited hall-
mark patterns of BFBCs on chr. 3q through the presence of extant cells 
mapping to expected stepwise stages of progression with successive 
cell divisions. This included clusters of cells with reciprocal gains and 
losses, clusters in which the loss was extended and clusters in which 
a segmental amplification was adjacent to a terminal loss, including 
examples of cells with PIK3CA amplification (Extended Data Fig. 5c–f). 
Thus, an in vitro system characterized by population-scale single-cell 
sequencing revealed specific cell divisions that generated cell-to-cell 
variation in the amplitude and genomic structure of HLAMPs.

We then quantified the extent of parallel HSCN alterations, whereby 
cells with an identical total copy number at a given locus were com-
posed of subsets of cells segregated by altered maternal or paternal 
alleles29 (Fig. 2e,f). The rates of parallel losses and gains were increased 
in TP53−/− cells relative to wild-type cells, and were further increased in 
BRCA1−/− and BRCA2−/− populations (Fig. 2g). Notably, the parallel events 
affected transcriptional phenotypes that resulted from the loss of either 
allele A or allele B; chr. 2q in SA906b provides an example (Extended 
Data Fig. 5g,h). Chr 2q losses in matched single-cell RNA sequencing 
(scRNA-seq) data were readily identified by SIGNALS (Supplementary 
Note) and cells with the loss of allele A or B clustered together in gene 
expression space (Extended Data Fig. 5i). The nearest neighbours of 
monosomic 2q cells in scRNA-seq were equally enriched for losses  
of both A and B alleles (Extended Data Fig. 5j), suggesting that mater-
nal and paternal allelic losses converge on a common transcriptional 
phenotype.

In addition to multi-allelic variation, we observed extensive cell- 
to-cell variation in the genomic locations of breakpoints of CNA events. 
The precise boundaries of CNAs from cell to cell yielded a pattern that 
we term 'serrate structural variation' (SSV) (Fig. 2h), which consists of 
a modal breakpoint across cells, with ‘tails’ that reflect either a pro-
gressive accumulation or ‘erosion’ away from the modal breakpoint.  
The aggregate, consensus copy number profiles over cells across the 
entire SSV regions (analogous to what would be seen in bulk sequencing 
libraries), revealed sloping copy number changes between integer val-
ues, indicative of an averaged signal with underlying variance (Fig. 2h). 
In some cases, these events were restricted to a single allele (for exam-
ple, SA906a chr. 19), whereas in others, both alleles were implicated 
(for example, SA906b chr. 2). Further DLP+ sequencing from serial 
passaging18 of these cells (an additional 7,793 cells), indicated that SSV 
events distributed across serial passaging, consistent with an ongoing 
mutational process (Fig. 2h).

In summary, the induction of genomic instability in breast epithelium 
yielded progressively higher rates of genomic divergence between 
individual cells, measurable as rate distributions with scaled single-cell 
WGS and cell-specific CNAs. The resulting 'foreground' cell-to-cell 
variation could be further characterized as clone- and cell-specific 



108  |  Nature  |  Vol 612  |  1 December 2022

Article

HLAMP, parallel allele alteration and serriform patterns of copy number 
breakpoints in the cellular population.

Cell-level CNA variation in HGSC and TNBC
On the basis of observing foreground mutational patterns defined by 
cell-to-cell variation, we next asked how the foreground event types 

distributed as a function of HRD and non-HRD mutational processes 
in TNBC and HGSC cancers. To identify appropriate patient tumour 
samples for this comparison, we first constructed a ‘meta-cohort’ of 
309 patients comprising 170 patients with HGSC and 139 patients with 
TNBC with bulk tumour–normal paired WGS to infer the distribution 
of established mutational processes (106 TNBC and 22 HGSC genomes 
were newly sequenced for this study and combined with published 
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Fig. 1 | Single-cell genome properties of CRISPR–Cas9-derived isogenic 
genotypes of 184-hTERT mammary epithelial cell lines. a, Genotype lineage 
diagram showing wild-type→TP53→BRCA1/BRCA2 alleles. The horizontal axis shows 
the relative passage number; the number of cell genomes per lineage is shown  
in parentheses. b,c, Wild-type (WT), TP53−/− (b) and BRCA1−/− (c) 184-hTERT 
single-cell genomes sequenced with DLP+. Top track, total copy number; bottom 
track, HSCN states (A haplotype in green; B haplotype in purple). d,e, Heat map 
representations of copy number profiles from cell populations of TP53−/− (n = 650 
cells) (d) and BRCA1−/− (n = 382 cells) (e) lineages. Top, total copy number; bottom, 
haplotype-specific states. Rows represent cells, and columns the indicated 
chromosomes. Clone assignment is based on CNA profiles. hom, homozygous. 

f–k, Comparisons of the rates of polyploidization (f), proportions of cells with 
chromosome missegregation (g), distributions over number of segments with 
gains (red), loss (blue) and either gains or loss (box plots) (h), distributions over 
ratio of gains/losses (i), numbers of segments that have lost heterozygosity  
( j) and distributions of pairwise HSCN distances between 250 subsampled cells 
(n = 31,125 cell pairs for all datasets; see Methods) (k). f–j, One data point per cell; 
number of cells as shown in a. f–k, Horizontal axes: cell line genotypes; BRCA1 
red, BRCA2 green, TP53 blue. Half-filled red and green boxes indicate BRCA1+/− 
and BRCA2+/−, respectively. All box plots indicate the median, first and third 
quartiles (hinges), and the most extreme data points no farther than 1.5× the IQR 
from the hinge (whiskers).
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HGSC12,30–32 and TNBC3,18,33–35 datasets (Extended Data Fig. 1)). We 
applied a previously described correlated topic model machine learning 
approach (MMCTM)10 and recapitulated previously described groups of 
tumours. Distinct structural copy number mutational features in both 
TNBC and HGSC were observed as follows: HRD-Dup (enriched in small 
tandem duplications and BRCA1 mutations), HRD-Del (enriched in dele-
tions, BRCA2 mutations), FBI (enriched in FBIs and CCNE1 amplification)  
and TD (enriched in large tandem duplications, CDK12 mutations) 
(Extended Data Figs. 6 and 7 and Supplementary Tables 4 and 5). Prog-
nostic association of these groups in the meta-cohort of patients with 
HGSC was consistent with previous findings10,12 (P = 0.0038; Extended 

Data Fig. 7d), with HRD-Del at a higher median survival than HRD-Dup, 
followed by FBI and TD with the worst median survival (Extended Data 
Fig. 7e; P = 0.0022). We then selected 23 cases (16 HGSC and 7 TNBC) 
from the meta-cohort across a range of signature types (Extended Data 
Fig. 1 and Supplementary Table 4), from which we generated patient- 
derived xenografts (PDXs), passaged over a multi-year period using  
subcutaneous engraftment33 (Extended Data Fig. 2c and Methods).  
DLP+ libraries from HRD-Dup (n = 8), TD (n = 3), and FBI (n = 12) PDXs 
and patient tissues yielded a total of 22,057 genomes (median 556 
per series), and a median of 1.96 million reads per genome (median 
0.05× coverage, IQR 0.05; Extended Data Fig. 4 and Supplementary 
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Tables 2 and 3). Single-nucleotide variant (SNV) and SV mutational 
signature profiles that were inferred from DLP+-derived pseudobulk 
from the PDXs clustered with their bulk WGS counterparts (Extended 
Data Fig. 8a), indicating consistent mutational signature types without 
significant distortion of the signals from the original source tumour. 
In addition, SIGNALS analysis from DLP+ showed that the proportion 
of the genome identified as homozygous was highly correlated with 
bulk sequencing (R = 0.9, P < 0.001; Extended Data Fig. 8b), and that 
VAFs of somatic mutations were distributed as expected (Extended 
Data Fig. 8c), indicating accurate single-cell HSCN inference.

Cellular copy number profiles revealed extensive subclonal hetero-
geneity and cell-to-cell variation in both HRD and FBI tumours (Fig. 3a,b 
and Extended Data Fig. 8d). However, FBI cells exhibited higher overall 

rates of polyploidy (Fig. 3c; P = 0.02) and chromosomal missegrega-
tion relative to HRD-Dup (Fig. 3d; P = 0.0015). In addition, FBI tumours 
accrued gains at a significantly higher rate than did HRD-Dup tumours, 
with more skewing of the gain/loss ratio (4.9 versus 2.1, P = 0.04; Fig. 3e 
and Extended Data Fig. 8e,f). This was more pronounced when con-
sidering the baseline ploidy of the tumours (P = 0.0012; Extended 
Data Fig. 8g). Indeed, higher rates of polyploidy and segmental copy 
number gains may provide a greater opportunity for—and greater 
tolerance of—the large interstitial deletions that are found in some FBI 
cancers (Extended Data Fig. 7b). Pairwise HSCN distances between cells, 
reflecting cell-population diversity, yielded highly variable distribu-
tions across samples, ranging from a median value of 2 for the diploid 
TD case SA1047 to more than 123 for the pentaploid FBI case SA604 
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plot). All box plots indicate the median, first and third quartiles (hinges),  
and the most extreme data points no farther than 1.5× the IQR from the hinge 
(whiskers).
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(Extended Data Fig. 8h). FBI tumours were more diverse than HRD-Dup 
or TD samples, with average HSCN distances of 71 (FBI), 46 (HRD-Dup) 
and 26 (TD) (P = 0.047 FBI versus HRD-Dup, P = 0.031 FBI versus TD; 
Extended Data Fig. 8i). Thus, considering whole-genome duplication, 
overall rates of segmental aneuploidy and the gain/loss ratio, FBI and 
HRD-Dup tumours showed markedly different patterns of CNA accrual 
at the single-cell level.

HLAMP amplitude varies within FBI tumours
Next, we determined whether the CNA patterns that gave rise to 
single-cell variation in the cell lines could also explain cell-to-cell 
variation in the amplitude of HLAMPs in the tumours. We found 
extensive heterogeneity in the amplitude of HLAMPs across clonal 
populations within tumours, that would otherwise be obscured in 
bulk sequencing. By first focusing on a specific example, we assessed 
the phenotypic effect of a clone-specific HLAMP in the KRAS locus, 
present with average copy number 16.1 in a clone with 55 cells relative 
to a sibling clone composed of 230 cells that lacked the amplification 
(Fig. 4a). KRAS was differentially expressed between cell clusters from 
matched scRNA-seq data (maximum log-transformed fold change 
(logFC) = 0.346, q < 0.05; Fig. 4b), and immunohistochemistry for 
KRAS both in tissue from the primary patient and in PDX tissue cor-
roborated a punctate pattern of expression across spatially separated 
regions within tumour sections (Fig. 4c). Thus, in a specific example, 
clone-specific HLAMP of an oncogene in a minor clone—otherwise not 
detectable with bulk methods—revealed co-associated clone-specific 
phenotypic variation. Across the dataset as a whole, FBI tumours had 
a 1.9-fold higher median HLAMP copy variance than did the other 
tumours (P = 0.00096; Fig. 4d,e), consistent with continual plastic-
ity of HLAMP amplitude as a general property of FBI. Most events 
were less than 10 Mb in width (56%; Fig. 4f) and exhibited a distribu-
tion of maximum observed copy number with median 16.1 and IQR 
8.7 (Fig. 4g). Furthermore, we noticed that amplitude variation in 
HLAMPs affected numerous other known oncogenes, including ERBB2 
(DG1197), KIT (DG1197), KRAS (SA1049 and SA604), MYC (SA1184 and 
SA1051), CCNE1 (DG1134, SA1162 and SA604) and FGFR1 (SA1049 and 
SA535) (Fig. 4h). Notably, oncogenes with a variable copy number 
between cells and clones also exhibited greater variability in gene 
expression than did other genes, as measured by matched scRNA-seq 
(P = 0.012; Fig. 4i).

To determine the structural processes that lead to these events, we 
found that the rearrangement properties of variable HLAMPs were 
enriched for FBIs, consistent with BFBCs being a central mechanism 
of variable HLAMPs in FBI tumours. We also found clusters enriched 
for simple tandem duplications driving variable HLAMPs in HRD-Dup 
tumours (Methods and Extended Data Fig. 9a), providing further evi-
dence for the different aetiological origin of these events in FBI and 
HRD-Dup tumours. This analysis also revealed that in many cases, 
clone-specific HLAMPs were part of complex genomic structures 
involving multiple chromosomes. For example, variable amplitude 
around the CTNNB1 locus in SA1096 coincided with a translocation 
between chr. 3 and chr. 6 (Fig. 4j). Long-read single-molecule nanop-
ore sequencing36 of the same samples validated the presence of this 
rearrangement (Extended Data Fig. 9d). Other examples of complex 
inter-chromosomal HLAMPs with orthogonal long-read sequenc-
ing included fixed non-variable amplification of CCNE1 in SA530 
(chr. 4 and chr. 19), variable MYC amplification in SA1184 (chr. 3 and  
chr. 8) and amplification on 5q in SA1184 (Extended Data Fig. 9b,c and 
Supplementary Note).

Thus, cell-to-cell variability in HLAMP—which is not observable with  
bulk sequencing—is a pervasive mutational pattern that is most pro-
nounced in FBI tumours, and consists of clone-specific complex rear-
rangements that influence phenotype through variable oncogene 
expression.

Haplotype-specific parallel evolution
We next investigated the extent of haplotype-specific parallel copy 
number evolution in tumours (Fig. 5). Phylogenetic tree analysis 
using breakpoints inferred from total copy number across the whole 
genome18,37 (see Methods) revealed that in some cases, alleles segre-
gated into distinct clades on the tree; for example, gains of 1q in SA1049 
(Fig. 5a) and losses at the terminal end of chr. 10 in SA1053 (Fig. 5b). In 
other cases, gains and losses of different alleles were sporadic and were 
distributed more randomly across the tree, such as chr. 8 in SA1093 
(Fig. 5c). Parallel copy number events were validated using VAFs of 
mutations found in these regions, in which—as expected—the VAF dis-
tribution inverted between two expected values, depending on allelic 
composition (Fig. 5d). We contend that in bulk sequencing, represented 
here by pseudobulk with mixtures (see Methods), the computed VAF 
no longer reflected the underlying copy number state in a heterogene-
ous mix of cells (Fig. 5e). We therefore suggest that accurate cancer 
cell fraction (CCF) inference, which depends on accurate VAF values, 
may be challenging in tumours with parallel copy number evolution.

We confirmed that parallel CNAs influence transcription with 
matched scRNA-seq. Inactivation of TP53 is invariably mediated by LOH 
of chr. 17 in these cancer types, and chr. 17 was indeed mono-allelically 
expressed across all tumours—in contrast to the hTERT wild-type cell 
line, which was used here as a control population (Fig. 5i). In addi-
tion, genes located at the terminal end of chr. 10 in SA1053 (Fig. 5b), 
were mono-allelically expressed in 100% of cells, with one cluster of 
cells expressing the B allele and another group of cells expressing the  
A allele (Fig. 5f,g). Across all data with matched scRNA-seq, mean BAF 
values per segment per sample measured in single-cell DNA sequenc-
ing (scDNA-seq) were strongly correlated (R = 0.91, P < 10−5) with those 
measured in scRNA-seq (Fig. 5h), consistent with allele bias at the DNA 
level translating to consequent allele bias in expression.

Notably, nearly all tumours exhibited parallel CNA evolution. We clas-
sified genomic segments as parallel CNAs if more than 1% of cells had 
gain or loss of both the A and B alleles and assigned the clonality using 
total copy number as follows: clonal (CCF > 80%, as in Fig. 5a,b), sub-
clonal (20% < CCF ≤ 80%) or rare (CCF ≤ 20%, as in Fig. 5c). Every tumour 
had at least one parallel CNA event, with most containing parallel CNAs 
at different clonalities (Fig. 5j). Across all samples, an average of 6% of 
clonal segments, 15% of subclonal segments and 7% of rare segments 
contained parallel CNAs, with a trend for higher event rates in FBI rela-
tive to HRD-Dup (Extended Data Fig. 8j,k; P = 0.02 for subclonal, P > 0.05 
for clonal and rare). Motivated by the sporadic pattern of losses of both 
alleles observed in Fig. 5c, we then tested whether parallel CNAs due to 
losses were more common on a tetraploid versus a diploid background, 
using ancestral state reconstruction to estimate the event rate across 
the phylogenetic tree (see Methods). We found that on a diploid (1|1) 
background, parallel gains were more common than losses, but that on 
a tetraploid (2|2) background, parallel losses became more common 
than gains. This was true for whole chromosome, chromosome arm 
and segmental aneuploidies (Fig. 5j). The number of parallel CNAs 
was significantly correlated with both copy number and phylogenetic 
distances computed using total copy number (Fig. 5k,l). Thus, parallel 
copy number evolution was a pervasive feature, affecting the interpre-
tation of somatic mutations, haplotype-specific expression and overall 
levels of genomic diversity in TNBC and HGSC tumours.

Increased CNA serriformity in FBI tumours
SSVs first identified in cell lines from single-cell WGS represent a 
structural mutation type that is not identifiable using bulk WGS, as 
the cell-to-cell variation in copy number breakpoints is obscured. We 
analysed the tumour DLP+ data for the presence of SSVs (Fig. 6a; heat 
maps 2–5 from left). SSVs, occurring at a megabase length scale, were 
distinct from small cell-to-cell variations in copy number breakpoint 
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localization, which may occur owing to fluctuations in sequencing 
coverage rather than true changes in copy number (for example, Fig. 6a; 
invariant copy number heat map boundaries, heat map 1 from left). 
SSVs were also visible in single cells comprising the serration pattern 
(Fig. 6b). Additional confirmation of the SSV scale was obtained from 
allele phasing, in which the concomitant loss of heterozygosity was 
observed (Fig. 6b, bottom track). We computed serration scores per 
breakpoint event to identify the relative degree of variation in break-
points across cells in each cancer. Scores were calculated as the fraction 
of event-containing cells with rare (less than 5% of cells) event break-
point positions (see Methods) and with breakpoint regions that met 
size and prevalence criteria (≥20 Mbp, that is, 40 genomic bins; ≥100 
cells with breakpoint event) to permit the detection of positional and 

cell-to-cell variation. Variable cell-to-cell breakpoints were common, 
with 6.6% of regions having serration scores of 0.15 or higher (that is, 
15% of cells or more have a rare event breakpoint position) across all 
cases, with FBI cases having the highest (12.1%), HRD-Dup cases the 
lowest (1.2%), and TD cases intermediate (10.5%) rates. Comparison of 
distributions of serration using a mixed effects linear model account-
ing for individual variation indicated that FBI cases had higher degrees 
of breakpoint variance in breakpoint regions (P = 0.0081; Fig. 6c,d). 
We further observed that serration scores increased in cases with 
more polyploid cells (R = 0.68, P = 0.001; Fig. 6e), and as a function of 
cell-to-cell HSCN distance (R = 0.62, P = 0.0033; Fig. 6f), implicating 
SSVs as an additional genome-diversifying mechanism in TNBC and 
HGSC cancers.
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number variance across cells for HLAMP bins within each dataset (number of 
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e, Distribution of mean copy variance in eight HRD-Dup cases versus 12 FBI cases. 
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points. f, Width of genomic segment containing the amplification; dashed red 
line indicates a width of 10 Mb. g, Maximum cell copy number (CN) per gene.  
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HLAMP regions. Genes across all cancer datasets with ratio > 2 are shown 
(n = 296). Colours as in d. For f–h, distributions of values are shown in a violin 
plot on the right. i, Distribution of the maximum logFC between gene 
expression clusters in matched scRNA-seq for variable oncogenes (n = 140) 
versus non-variable oncogenes (n = 159). P = 0.019 (two-sided Wilcoxon test).  
j, Consensus copy number profiles in two clones in SA1096 overlaid with lines 
indicating SVs. All box plots indicate the median, first and third quartiles 
(hinges), and the most extreme data points no farther than 1.5× the IQR from 
the hinge (whiskers).
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Discussion
Our findings show that cell-to-cell variation at the level of structural 
and copy number alteration is a pervasive 'foreground' feature of TNBC 
and HGSC cancers that is exhibited against distinct endogenous muta-
tional processes of genomic instability. Because CNAs can influence 
the expression levels of hundreds of genes, each of the foreground 
mutational patterns provides extensive and distinct genomic diver-
sity upon which selection may act. Oncogenic HLAMPs are under-
stood to be key drivers of tumour progression and are prognostic 
in HGSC when co-localized with FBIs12. Here we reveal an additional 

layer of complexity, finding that the amplitude of HLAMPs can vary 
substantially between cells. Although this has been recognized as 
a defining feature of extrachromosomal DNA amplifications38, we 
propose that it is also a general property of other classes of HLAMPs, 
such as those mediated by BFBCs and by complex inter-chromosomal 
rearrangement processes39. This has important implications for thera-
peutic strategies to target frequently altered oncogenes, as cancer 
types of high genomic instability may be predisposed to containing 
treatment-resistant clones. Multi-allelic variation within the same 
locus is also a highly prevalent feature of breast and ovarian cancers, 
consistent with some previous observations in other cancers21,22,30. 
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Notably, events that appeared clonal at the total copy number level 
were often composed of distinct clades with different alleles gained 
or lost; this might reflect evolutionary convergence for favourable 
karyotypes at the total copy number level, as shown by transcriptional 
phenotypic convergence. Evolutionary time series modelling18 is likely 
to further help to resolve patterns of phenotypic selection from par-
allel CNAs. We also highlight that sporadic gains and losses happen 
on both alleles, with rates increased on a whole-genome-doubled 
background relative to diploid, potentially reflecting increased fit-
ness tolerance owing to genomic redundancy. Finally, megabase-scale 
copy length variation at a single-cell level (SSV) has been observed 
in vitro with cell-selected single-cell sequencing1. Here we show with 
single-cell genome sequencing at the cell-population level that SSVs 

are in fact prevalent in TNBC and HGSC and distribute across clones 
within tumours. Although the underlying mechanisms that generate 
SSVs are unknown, they represent a new class of variation that may 
contribute to the structural copy evolution of tumours enriched in the 
FBI background and in polyploid genome states. We observed each 
of the foreground mutational patterns in all mutational processes, 
but FBI-type tumours showed a significant enrichment in all three 
foreground patterns. As such, FBI may comprise a distinct phenotypic 
class in which foreground mutational patterns generate diversity 
that could underlie poor prognostic significance. We conclude that 
scaled single-cell sequencing is a useful means to reveal hidden cel-
lular states of structural copy number diversity in genomically unsta-
ble tumours. The data that we present here show that foreground 
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Fig. 6 | Breakpoint serriform variability. a, Copy number heat maps showing 
variation in breakpoint location on the horizontal axis across single cells along 
the vertical axis. Top to bottom: dataset, breakpoint location and number of 
cells; ideogram indicating the chromosome region shown in the heat map; 
average copy number across cells in the heat map, with breakpoint-adjacent 
segment copy number states indicated with dotted black lines; copy number 
states inferred by HMMCopy; A allele (green) and B allele (purple) copy number 
states inferred by SIGNALS, Copy number state shading is shown in the 
adjacent key. Heat map x axis, genomic bins; y axis, cells with the indicated 
breakpoint. Cells are ordered by breakpoint position (left to right). Arrows in 
heat map 2 (from left) indicate the cells shown in b. b, Four single-cell copy 
number profiles from the SA609 SSV event in a. The cell number from the top  
of the heat map is indicated to the right of the profiles. Top, total copy number; 

bottom, HSCN. A and B alleles are indicated with green and purple, 
respectively. The dotted vertical line indicates the cell-specific breakpoint 
location. c, Breakpoint serration distribution for all cancer datasets for which 
scores could be computed (see Methods), segregated as FBI (brown), TD (red) 
and HRD (blue). d, Distribution of serration scores by case; colours as in  
c (number of scores shown below each violin). e, Mean per-case serration 
scores versus polyploid cell percentage. f, Mean cell-to-cell HSCN distance 
(even chromosomes only) per case versus serration (odd chromosomes only). 
Shaded areas show the 95% confidence interval of the linear regression; the 
correlation coefficient and P values are annotated at the top (P = 0.001 for  
e and P = 0.00061 for f). All box plots indicate the median, first and third 
quartiles (hinges), and the most extreme data points no farther than 1.5× the 
IQR from the hinge (whiskers).
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mutational patterns are key determinants of genomically encoded 
phenotypic diversity and consequent ‘evolvability’ in cancer.
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Methods

Generation and culture of human mammary epithelial cell lines
The wild-type human mammary epithelial cell line 184-hTERT L9 
(SA039) and isogenic 184-hTERT TP53 knockout (SA906) cell line, gen-
erated from 184-hTERT L9, were cultured as previously described18,19,40 
in Mammary epithelial cell growth basal medium (MEBM) (Lonza) 
supplemented with the SingleQuots kit (Lonza), 5 μg ml−1 transferrin 
(Sigma-Aldrich) and 10 μM isoproterenol (Sigma-Aldrich). Additional 
truncation mutations (Supplementary Table 4) of BRCA1 (SA1054: c. 
[427_441+36delGAAAATCCTTCCTTGGTAAAACCATTTGTTTTCTTC]; 
[437_441+8delCCTTGGTAAAACC]; SA1292 c.[71_75delGTCCC];[=]) 
and BRCA2 (SA1056: c.[6997delG];[6997_6998delGT]; SA1188: 
c.[6997_6999delGT];[=]; SA1055: c.[3507_3522delinsGA];[3509_352
0delinT]) (hg19) were introduced by CRISPR–Cas9 nuclease (pX330 
hSpCas9) with an RFP reporter gene using Mirus TransIT LT1 transfec-
tion (Mirus Bio). Clonal populations were generated by flow sorting and 
propagating single RFP-positive cells. Mutations were verified by TOPO 
cloning and Sanger sequencing of both alleles for genotypes, protein 
expression by western blotting and absence of off-target effects by 
sequencing of the top hits. SNV positions from Sanger sequencing data 
were annotated with information from GENCODE v.19 (ref. 41). Variant 
sequence and position was used to annotate variant calls with records 
from Clinvar 20200206_data_release42 and COSMIC v. 91 (ref. 43).  
Although multiple BRCA2 homozygous loss-of-function alleles 
could be derived from 184-hTERTp53−/−;BRCA2+/− intermediates, only a 
single homozygous BRCA1 allele was retrieved from the 119 clones of 
184-hTERTp53−/−,BRCA1+/− that were screened, emphasizing that even with 
a p53 deletion, full loss of BRCA1 is initially negatively selected. OV2295 
cells44 were maintained in a 1:1 mix of Media 199 (Sigma-Aldrich) and 
MCDB 105 (Sigma-Aldrich) supplemented with 10% fetal bovine serum 
(FBS) under normoxic conditions. Cell lines were authenticated by short 
tandem repeat (STR) profiling and tested for mycoplasma by LabCorp.

Immunoblotting
184-hTERT cells were lysed directly in 1× Laemmli buffer supplemented 
with 7.5% β-mercaptoethanol and proteins were denatured at 95 °C for 
15 min. Protein from 250,000 cells was resolved on a 4–15% acrylamide 
gel (Biorad) or 3–8% Tris-acetate acrylamide gel (Novex) and transferred 
to a nitrocellulose membrane with Towbin transfer buffer overnight 
at 30 V at 4 °C. Blots were blocked with 5% milk in TBST for 1 h and 
incubated overnight at 4 °C with mouse anti-p53 (Santa Cruz SC-126, 
1:500 in 5% bovine serum albumin (BSA)), mouse anti-BRCA1 (Santa 
Cruz SC-6954, 1:200 in 5% BSA), mouse anti-BRCA2 (Millipore OP95, 
1:200 in 5% BSA) or goat anti-GAPDH (SC-48166, 1:500 in 5% BSA). Blots 
were washed five times for 5 min in TBST and incubated with anti-goat 
HRP-conjugated secondary antibody (Abcam ab6721, 1:5,000 in 5% BSA) 
for 1 h at room temperature, then washed five times for 5 min and the 
signal was imaged using Immobilon Western Chemiluminescent HRP 
Substrate (MilliporeSigma, WBKL20500) and the ImageQuant LAS 
4000 (GE Healthcare) using the ImageQuant TL software.

Verification of mutations in the 184-hTERT cell line
Genomic DNA was extracted from 184-hTERT cell lines and regions of 
interest of BRCA1 or BRCA2 were amplified by PCR. Amplicons were 
inserted into a pCR-TOPO vector and transformed into Escherichia 
coli using the TOPO TA cloning kit (Thermo Fisher Scientific). Colonies 
were selected, DNA purified by Purelink Quick Plasmid Miniprep kit 
(Thermo Fisher Scientific) and sequenced by Sanger sequencing to 
assess CRISPR-induced mutations.

Acquisition of samples from patients and patient consent
Samples were acquired with informed consent, according to procedures 
approved by the Ethics Committees at the University of British Columbia.  
Patients with breast cancer undergoing diagnostic biopsy or surgery 

were recruited and samples were collected under protocols H06-00289 
(BCCA-TTR-BREAST), H11-01887 (Neoadjuvant Xenograft Study), 
H18-01113 (Large-scale genomic analysis of human tumours) or H20-
00170 (Linking clonal genomes to tumour evolution and therapeutics).  
HGSC samples were obtained from women undergoing debulking 
surgery under protocols H18-01652 and H18-01090. Banked HGSC and 
TNBC specimens were obtained at the Memorial Sloan Kettering Cancer 
Center following Institutional Review Board (IRB) approval and patient 
informed consent (protocols 15–200 (HGSC) and 18–376 (TNBC)). HGSC 
and TNBC clinical assignments were performed according to American 
Society of Clinical Oncology guidelines for ER, PR and HER2 positivity.

Xenografting
Fragments of tumours from patients were chopped finely with scalpels 
and mechanically disaggregated for one minute using a Stomacher 
80 Biomaster (Seward Limited) in 1 ml cold DMEM/F-12 with glucose, 
l-glutamine and HEPES (Lonza 12–719F). Two hundred microlitres 
of medium containing cells or organoids from the resulting suspen-
sion was used equally for transplantation in four mice. The remaining 
tissue fragments were cryopreserved viably in DMEM/F-12 supple-
mented with 47% FBS and 6% dimethyl sulfoxide (DMSO). Tumours 
were transplanted in mice as previously described (Eirew) in accord-
ance with SOP BCCRC 009. Female NOD/SCID/IL2rγ−/− (NSG) and NOD/
Rag1−/−Il2rγ−/− (NRG) mice were bred and housed at the Animal Resource 
Centre (ARC) at the British Columbia Cancer Research Centre. For sub-
cutaneous transplants, mechanically disaggregated cells and clumps 
of cells were resuspended in 150–200 µl of a 1:1 v/v mixture of cold 
DMEM/F-12:Matrigel (BD Biosciences). Female mice (8–12 weeks old) 
were anaesthetized with isoflurane and the mechanically disaggregated 
cell clump suspension was transplanted under the skin on the left flank 
using a 1-ml syringe and 21-gauge needle. Mice were housed at a 18–25 °C 
temperature range and 20–70% humidity range, with a 12-h daylight 
cycle (on at 06:00; off at 18:00). All animal experimental work was 
approved by the animal care committee (ACC) and animal welfare and 
ethical review committee at the University of British Columbia (UBC) 
under protocol A19-0298.

Tissue processing
Xenograft-bearing mice were euthanized when the size of the tumours 
approached 1,000 mm3 in volume, according to the limits of the experi-
mental protocol. The tumour material was excised aseptically and 
processed as described for primary tumour. A section of tumour was 
fixed in 10% buffered formalin for 24 h, dehydrated in 70% ethanol and 
paraffin-embedded before duplicate 1-mm cores were used to generate 
tissue microarrays for staining and pathological review. Remaining 
tumour was finely chopped and gently paddle-blended, and released 
single cells and fragments were viably frozen in DMEM supplemented 
with 47% FBS and 6% DMSO.

Histopathology of PDX tumours
Deparaffinized 4-µm sections of tissue microarrays were stained with 
haematoxylin and eosin or KRAS (Lifespan Bioscience, LS-B4683, 1:50), 
performed using the Ventana Discovery XT platform and the UltraMap 
DAB detection kit. HGSC pathology was confirmed by an anatomical 
pathology resident at University of British Columbia, under the super-
vision of a certified staff pathologist.

WGS
Genomic DNA was extracted from frozen tissue fragments using the 
DNeasy Blood and Tissue kit (Qiagen) and constructed libraries for 
whole genomes of 309 tumour–normal pairs were sequenced on the 
Illumina HiSeqX according to Illumina protocols, generating 100-bp 
paired-end reads for an estimated coverage of sequencing between 
40× (normal) and 80× (tumour). Sequenced reads were aligned to the 
human reference GRCh37 (hg19) using BWA-MEM.



Long-read sequencing
High-molecular weight (HMW) DNA was extracted from fresh and/or 
frozen tissue fragments using the MagAttract HMW DNA Kit (Qiagen) 
and size-selected using Blue Pippin for single long-molecule sequencing 
on the PromethION (Oxford Nanopore Technologies).

Generation of single-cell suspensions and nuclei for scDNA-seq
Viably frozen aliquots of patient tissues and PDX tumours were thawed 
and either homogenized and lysed using Nuclei EZ Buffer (Sigma) or 
enzymatically dissociated using a collagenase/hyaluronidase 1:10 (10×) 
enzyme mix (STEMCELL Technologies), as described previously3,18. 
Cells and nuclei were stained with CellTrace CFSE (Life Technologies) 
and LIVE/DEAD Fixable Red Dead Cell Stain (Thermo Fisher Scientific) 
in a 0.04% BSA/PBS (Miltenyi Biotec 130-091-376) incubated at 37 °C 
for 20 min. Cells were pelleted and resuspended in 0.04% BSA/PBS. 
This single-cell suspension was loaded into a contactless piezoelectric 
dispenser (Cellenone or sciFLEXARRAYER S3, Scienion) and spotted 
into open nanowell arrays (SmartChip, TakaraBio) preprinted with 
unique dual index sequencing primer pairs. Occupancy and cell state 
were confirmed by fluorescent imaging and wells were selected for 
single-cell copy number profiling using the DLP+ method3. In brief, 
cell dispensing was followed by enzymatic and heat lysis. After cell 
lysis, tagmentation mix (14.335 nl TD buffer, 3.5 nl TDE1 and 0.165 nl 
10% Tween-20) in PCR water was dispensed into each well followed by 
incubation and neutralization. For BRCA1+/− cells, the tagmentation mix 
consisted of 10 nl TB1 buffer and 10 nl BT1 enzyme without Tween-20 
in PCR water. Final recovery and purification of single-cell libraries 
was done after eight cycles of PCR. Pooled single-cell libraries were 
analysed using the Agilent Bioanalyzer 2100 HS kit. Libraries were 
sequenced at the UBC Biomedical Research Centre on the Illumina 
NextSeq 550 (mid- or high-output, paired-end 150-bp reads), or at 
the Genome Sciences Centre on the Illumina HiSeq2500 (paired-end 
125-bp reads) and Illumina HiSeqX (paired-end 150-bp reads). The 
data were then processed through a quantification and statistical 
analysis pipeline3.

Generation of 10X scRNA-seq data
The 184-hTERT cells were pelleted and gently resuspended in 200 µl 
PBS followed by 800 µl 100% methanol and incubation at −20 °C for 
30 min to fix, dehydrate and shrink cells. PDX tumour fragments were 
dissociated into single cells using collagenase/hyaluronidase at 37 °C 
for 2 h for TNBC tumours or with cold active Bacillus lichenformis (Crea-
tive Enzymes NATE0633) in PBS supplemented with 5 mM CaCl2 and 
125 U ml−1 DNAse for HGSC tumours, as described previously45 with 
additional mechanical dissociation using a gentleMACS dissociator 
(Miltenyi Biotec). Cells were then pelleted and resuspended in 0.04% 
BSA/PBS and immediately loaded onto a 10X Genomics Chromium 
single-cell controller targeting 3,000 cells for recovery. Libraries were 
prepared according to the 10X Genomics Single Cell 3′ Reagent kit 
standard protocol. Libraries were then sequenced on an Illumina Next-
seq500/550 with 42-bp paired-end reads, or a HiSeq2500 v4 with 125-bp 
paired-end reads. 10X Genomics Cell Ranger 3.0.2 was used to perform 
demultiplexing, counting and alignment to GRCh38 and mm10.

Processing of bulk whole-genome data
SNV and SV calls for 121 HGSC samples were acquired from a previous 
study12. For new samples, reads were aligned to the hg19 reference 
genomes using BWA-MEM. Processing proceeded as per the afore-
mentioned study12 to maintain consistency.

SNVs were called with MutationSeq46 (probability threshold = 0.9) 
and Strelka47. The intersection of calls from these methods were 
retained; however, SNVs falling in blacklist regions were removed. 
The blacklist regions include the UCSC Genome Browser Duke and 
DAC blacklists, and those in the CRG Alignability 36mer track that had 

more than two mismatched nucleotides. SNVs were then annotated 
with OncoKB48 for variant impact.

SVs were called using deStruct49 and LUMPY50, and breakpoints called 
by both methods were retained. We then filtered events with the follow-
ing criteria: any breakpoints falling in the blacklists described above; 
≤30-bp inter-breakpoint distance; <1,000-bp deletion; any breakpoints 
with fewer than 5 supporting reads in the tumour sample or any read 
support in the matched normal sample.

Gene mutation enrichment analysis was performed using the hyper-
geometric test for SNVs, amplifications and deep deletions separately, 
comparing each signature stratum to all other samples.

Nanopore data analysis
For Nanopore sequence data, base calling and read alignment were 
performed using Guppy v.3 and Minimap2, respectively51,52. Reads that 
were likely to be derived from mouse were filtered by first aligning to a 
concatenated hg19 and mm10 reference, removing reads with alignments 
to mm10 and re-aligning the remaining reads to hg19. Signal artefact 
regions as well as alignments with mapping quality of less than 60 were 
excluded from the final alignments. Alignments were then phased using 
the PEPPER-Margin-DeepVariant pipeline, after which WhatsHap was 
used to tag reads in the filtered alignments using phasing information53,54. 
SV calling was performed using Sniffles (v.1.0.12) and cuteSV (v.1.0.11) with 
5 read support, and subsequently merged using SURVIVOR for a union 
set of predicted variants55,56. Alignments and variants were visualized 
using IGV, Ribbon and the karyoploteR R package57–59.

HGSC and TNBC meta-cohort signature analysis
Signature analysis was performed according to a previous study10.  
The MMCTM model was run on the sample SNV and SV count matri-
ces. The number of signatures to estimate in the HGSC and TNBC inte-
grated cohort was chosen by running the above fitting procedure for 
k = 2–16 for both SNV and SV signatures with the number of restarts set 
to 500, in which k is the number of signatures. We performed this step 
on approximately half the mutations in each sample, then computed 
the average per-mutation log likelihood on the other held-out half of 
the mutations. The elbow curve method on log-likelihood values was 
used to select the final number of signatures to fit to the entire dataset.

To estimate MMCTM parameters on the full dataset, α hyper- 
parameters were set to 0.1. The model was initially fit to the data 1,500 
times. Each restart was run for a maximum of 1,000 iterations or until 
the relative difference in predictive log likelihood on the training 
data was less than 10−4 between iterations. The restarts with the best 
predictive log likelihoods for SNVs and SVs were selected as seeds for 
the final fitting step. The model was again fit to the data 1,500 times. 
The model parameters for each restart were set to the parameters of 
the optimal models from the previous step described above, then 
run for a maximum of 1,000 iterations or until the relative difference  
in predictive log likelihood on the training data was less than 10−5 between 
iterations. The restart with the best mean rank of the SNV and SV predic-
tive log likelihoods from this round was selected as the final model.

MMCTM estimated SNV signatures were matched to COSMIC sig-
natures by solving the linear sum assignment problem for cosine dis-
tances between the MMCTM and COSMIC signatures v.3 (minus tobacco 
smoking-associated COSMIC SBS4) using the clue R package60.

Samples were clustered by first applying UMAP61 to the normalized 
signature probabilities for the HRD SNV signature and all SV signatures 
with n_neighbors = 20 and min_dist = 0 to produce two-dimensional 
sample embeddings. Next, HDBSCAN62 was run on the sample embed-
dings with min_samples = 5, min_cluster_size = 5 and cluster_selection_
epsilon = 0.75 to produce the sample clusters (strata).

Survival analysis
For each patient, the number of days between diagnosis and death or 
last follow-up was collected. Patients were segregated into groups, 
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and a Kaplan–Meier curve was fitted for each group. Each cancer type 
was analysed separately and in two distinct grouping schemes. First, 
patients were split into HRD and 'Other' groups, in which the HRD group 
included patients whose cancers were identified as being in either the 
HRD-Dup or HRD-Del groups, and the 'Other' group included all other 
patients. Next, patients were grouped according to their assigned sig-
nature types: HRD-Dup, HRD-Del, TD or FBI.

DLP+ WGS quantification and analysis
Single-cell copy number, SNV and SV calls were generated using a previ-
ously described approach3, except that BWA-MEM63 was used to align 
DLP+ reads to the hg19 reference genome. The genome was segregated 
into 500-kb bins, and GC-corrected read counts were calculated for 
each bin. These read counts were then input into HMMCopy64 to pro-
duce integer copy number states for each bin.

DLP+ data filtering
Cells were retained for further analysis if the cell quality was at least 0.75 
(ref. 3), and they passed both the S-phase and the contamination filters. 
The contamination filter uses FastQ Screen65 to tag reads as matching 
human, mouse or salmon genomes. If more than 5% of reads in a cell 
are tagged as matching the mouse or salmon genomes, then the cell 
is flagged as contaminated. The S-phase filter uses the cell-cycle state 
Random Forest classifier from ref. 3 and removes cells for which S-phase 
is the most probable state. The HGSC and TNBC cells were also filtered 
to remove small numbers of contaminating diploid cells.

Finally, cell filtering was performed to remove putative early and 
late S-phase cells that passed the initial S-phase filter. This involved 
two steps: first, building a cell phylogeny with sitka37 and manually 
identifying the minimal phylogeny branches in which the cycling cells 
have been clustered. The cells in these branches were then removed. 
Next, clustering cells according to their copy number profiles and 
removing manually identified clusters of cycling cells.

We removed potentially problematic genome bins from our copy 
number results that had a mappability score of 0.99 or below, or that 
were contained in the ENCODE hg19 blacklist66.

To detect SNVs and SVs in each dataset, reads from all cells in a DLP+ 
library were merged to form 'pseudobulk' libraries. SNV calling was 
performed on these libraries individually using MutationSeq46 (prob-
ability threshold = 0.9) and Strelka (score > 20) (ref. 47). Only SNVs 
that were detected by both methods were retained. For each data-
set, the union of SNVs was aggregated, then for each cell and each 
SNV, the sequencing reads of that cell were searched for evidence of 
that SNV. SV calling was performed in a similar manner, by forming 
pseudobulk libraries, then running LUMPY50 and deStruct49 on each 
pseudobulk library, and retaining events that were detected by both 
methods. LUMPY and deStruct predictions were considered matched 
if the breakpoints matched in orientation and the positions involved 
were each no more than 200 nucleotides apart on the genome. Only 
deStruct predictions with a matching LUMPY prediction were retained. 
Sparse per-cell breakpoint read counts were extracted from deStruct 
using the cell identity of read evidence for each predicted breakpoint. 
SNV and SV calls were further post-processed according to a previous 
study12. When performing pseudobulk analysis on groups of cells, a 
breakpoint is considered present in a clone if at least one cell that 
constitutes the clone contains evidence of the breakpoint. A subsam-
pling experiment determined that this approach has 80% power to 
recover breakpoints at a cumulative coverage of 5× (100–150 cells) 
(see Supplementary Note).

Analysis of mutation signatures in DLP+ data
Mutation signature probabilities were fit to DLP+ pseudobulk-derived 
SNV and SV counts for each patient using the MMCTM method 
and pre-computed mutation signatures from the HGSC and TNBC 
meta-cohort. Inference was performed as per the bulk sequencing 

data, until the relative difference in predictive log likelihood was < 10−6 
between iterations.

Identifying clones in DLP+ WGS by clustering copy number 
profiles
For most datasets, clones were detected by first using UMAP on per-cell 
GC-corrected read count profiles, producing a two-dimensional embed-
ding of the cell profiles. We then ran HDBSCAN on the two-dimensional 
embedding from UMAP to detect clusters of cells with similar copy 
number profiles.

UMAP was run with min_dist = 0.0, and metric = “correlation”, whereas 
HDBSCAN was run with approx_min_span_tree = False, cluster_selec-
tion_epsilon = 0.2, and gen_min_span_tree = True. Dataset specific 
UMAP and HDBSCAN parameter settings are listed in Supplementary  
Table 3.

Calculating cell ploidy
Cell ploidy was calculated by taking the most common copy number 
state. Copy number states were those determined by HMMCopy.

Identifying missegregated chromosomes
The approach taken to identify putative chromosome missegregation 
events is similar to a previous one3. Cells were split into groups corre-
sponding to their clones. Clone copy number profiles were generated 
for each clone. Cells with ploidy not equal to the clone consensus 
profile were normalized to match the clone ploidy. Cell copy num-
ber profiles were compared to the clone copy number profile for the 
matching clone to which the cell belongs. The result was assignment 
of an offset value for each genomic bin in each cell, that represented 
the copy number difference between the cell and the clone-level con-
sensus profile. For each chromosome in each cell, if a particular copy 
number difference (that is, −1, 1, and so on) represented at least 75% 
of the chromosome, then we labelled that chromosome as having a 
missegregation event.

Identifying CNA segments
Gain and loss segments in each cell were found by comparing the copy 
number state in each 500-kb bin to that cell’s ploidy. A copy number 
higher than ploidy was labelled as a gain, and a copy number lower 
than ploidy was labelled as a loss. Gain and loss segments are a set of 
consecutive bins with the same gain–loss label. Segments ≤ 1.5 × 106 bp 
were excluded to reduce segments potentially resulting from noise in 
the HMMCopy copy number states.

Computing serriform variability scores in CNA breakpoints
For each dataset, consensus copy number profiles were generated 
for each clone. Copy number segments were identified as above for 
each consensus profile. Copy number segments were then identified 
for single-cell copy number profiles. The copy number profiles of 
each cell were normalized so that the adjusted cell ploidy matched 
the ploidy of the clone to which the cell belonged using the following 
formula: cell_state = cell_state/cell_ploidy × clone_ploidy

Cell copy number segments were matched to segments in the clone 
copy number profile as follows: for each segment in the clone copy 
number profile, inspect the copy number states of the adjacent seg-
ments. If the segment state was less than both adjacent states, then 
only cell segments whose state was less than both of the two adjacent 
clone segment states could be matched to that segment. If the clone 
segment state was higher than both adjacent states, only cell segments 
whose state was higher than both of the adjacent clone segment states 
could be matched to that segment. If the clone segment state was in 
between the two adjacent states, only cell segments whose state was 
in between the two adjacent clone segment states could be matched to 
that segment. Finally, each cell segment was matched to the compat-
ible clone segment that it overlapped the most, in which compatibility 



means that the cell segment state met the criteria described above and 
the cell belonged to the relevant clone.

Next, clone segment breakpoints were aggregated across all clones. 
For each breakpoint, matched cell breakpoints were identified. Sta-
ble cell breakpoints (that is, those cell breakpoints that matched the 
clone-level breakpoint position) and unstable cell breakpoints (all other 
cell breakpoints) were queried for their raw GC-corrected read count 
values up to five bins to the left and right of the breakpoint position. 
Breakpoint noise values were computed as the mean absolute value 
of the difference between these values and the integer copy number 
state inferred by HMMCopy. For each clone-level breakpoint event, 
cells were removed if their breakpoint noise values were higher than 
a threshold value, which was computed as the mean noise value of the 
stable cell breakpoints.

Serration scores for each event were calculated by first computing 
the frequency of cell-specific breakpoint positions. Each cell breakpoint 
position was considered 'rare' if it occurred in less than 5% of cells with 
the considered event. The final serration score was computed as the 
fraction of event cells whose breakpoint position was considered 'rare'.

For comparing serration rates between cases, breakpoints with at 
least 100 cells, and whose adjacent copy number segments were in 
total at least 20 Mbp (40 genomic bins) were retained. This was done 
to retain only those breakpoints for which serration could be reliably 
computed. As a result, SA605 was not included in comparisons as 
this case had fewer than 100 cells. A zero-inflated generalized linear 
mixed model with a beta response that accounted for case-specific 
and signature-type effects was fit to determine the effect of mutation 
signature type on serration scores.

Comparison of HLAMP copy number variance
HLAMPs were identified by first selecting 500-kb genomic bins in which 
at least 10 cells have a raw copy number (adjusted per-bin read counts) 
of at least 10. Copy number variance for each bin was calculated using 
the raw copy number that was adjusted for cell ploidy and cell clone 
by first dividing the copy number by the cell ploidy, then subtracting 
the mean clone raw copy number. The cell ploidy is the most common 
HMMCopy copy number state as described above, and the mean clone 
copy number is computed for each bin in each clone across all cells in 
that clone. Mean HLAMP copy number variance was calculated for 
each dataset across all HLAMP bins, and these values were compared 
between signature type dataset groups.

Clustering HLAMP genomic features
To explore plausible mechanistic origins of oncogenic HLAMPs we 
extracted genomic features proximal to the locus of interest. We took 
a region 15 Mbp either side of the locus of interest and pulled out copy 
number and SV features. We extracted the following features: entropy 
of haplotype-specific states; total number of SVs identified; proportion 
of SVs of each type (fold-back inversions, duplications, deletions and 
translocations); number of chromosomes involved in translocations; 
ratio of copy numbers between the bin containing the oncogene and the 
average copy number across the chromosome; average copy number 
state; average size of segments; average number of segments; and aver-
age minor allele copy number. All averages are across cells. We then per-
formed hierarchical clustering on a scaled matrix of all features, using 
the silhouette width to determine the appropriate number of clusters.

HSCN analysis
See the Supplementary Note for a detailed discussion of our method, 
SIGNALS, for HSCN analysis. This includes validation of the method and 
benchmarking against other methods. In brief, SIGNALS uses haplotype 
blocks genotyped in single cells and implements an hidden Markov 
model (HMM) based on a Beta-Binomial likelihood to infer the most 
probable haplotype-specific state. We used default parameters for all 
datasets apart from SA1292, in which we increased the self transition 

probability from 0.95 to 0.999 to mitigate against the noisier copy 
number data in this sample.

Pseudobulk HSCN profiles
In numerous places in this study we construct 'pseudobulk' 
haplotype-specific or total copy number profiles either across all cells 
in a sample or subsets of cells that share some features of interest. To do 
this, we group the cells of interest and then compute an average profile 
by taking the median values of copy number and BAF and the mode of 
the haplotype-specific state. The function 'consensuscopynumber' 
provided in SIGNALS was used for this.

Comparing segmentation profiles across cells
To facilitate comparisons of genomic profiles across cells, we inferred 
a set of disjoint segments from the consensus copy number profiles of 
clusters. For each clone or cluster we generated a consensus segmen-
tation profile, and then used the 'disjoin_ranges' function from ply-
ranges67 to generate a non-overlapping disjoint segmentation profile. 
Each segment was then genotyped in each cell by taking a consensus 
across the bins within each segment, producing a consistent set of 
genomic segments and states that could be compared across cells.

Identification of parallel copy number events
The set of genotyped disjoint segmentation profiles was used to cal-
culate the number of parallel copy number CNAs. Parallel CNAs were 
defined as genomic regions greater than 4 Mbp in which gain or loss 
of both the maternal and paternal haplotype was observed in more 
than 1% of cells. Copy number breakpoints of segments do not need 
to match to be included.

Phylogenetic analysis
We computed phylogenetic trees using sitka as previously described37, 
using the consensus tree from the posterior distribution for down-
stream analysis. For visualization, clades with a high fraction of sin-
gletons (nodes with a single descendant) were removed. To remove 
nodes, nodes were ordered by the fraction of descendants that were 
singletons, and nodes were removed iteratively until a maximum of 3% 
of cells in the tree were removed. Trees were visualized using ggtree68 
and functionality in SIGNALS. Phylogenetic distances were computed 
as the mean pairwise distances between phylogenetic tips (cells) using 
the cophenetic function in APE69. Distances represent the number of 
copy number change points between two cells on the phylogeny.

Event rates inferred from single-cell phylogenies
To compute the rates of gains and losses of whole chromosomes, chro-
mosome arms and segmental aneuploidies we enumerated the number 
of events from our single-cell phylogenies using parsimony-based 
ancestral state reconstruction. We used the genotyped disjoint seg-
mentation profiles for this.

We first defined states for each segment in each cell relative to the 
most common state across all cells. For each segment, cells can have 
one of two possible states for each class of interest: (gain, not gained), 
(loss, not lost). By casting the problem as reconstructing the ancestral 
states within the phylogeny, we can then compute the number of tran-
sitions between these states that most parsimoniously explains the  
phylogenetic tree. We used a simple transition matrix in which transi-
tions between states incur a cost of 1. Ancestral state reconstruction 
then amounts to finding the reconstruction that minimizes this cost. 
The event frequency per sample is then calculated by dividing the par-
simony score (number of events) by the number of cells. We used castor 
v.1.6.6 in R to perform the ancestral state reconstruction70. The unit 
of this quantity is the number of events per cell division, assuming no 
cell death. It is possible (perhaps likely) that many cells get segmental 
gains or losses but then die, we never sample such cells and our phy-
logenetic tree reconstructs ancestral relationships between cells that 



Article
survive and that we sample. It is challenging to decouple the death rate 
of cells from the true event rate per cell division71; thus, our event rate 
is an effective event rate; that is, the event rate scaled by the (unknown) 
death rate of cells. To contrast the rates across different types of events, 
we classified segments as whole chromosomes, chromosome arms or 
segmental aneuploidies.

Calculation of copy number distance
The copy number distance calculates the number segments that need 
to be modified to transform one copy number profile into another20. 
We use this measure to compute cell-to-cell variation in our dataset. 
To compute this measure, we modified the code provided in a previous 
study25 to take into account whole-genome doubling of cells (https://
github.com/raphael-group/WCND). We did this as follows: given two 
copy number profiles (integer copy number states of individual hap-
lotypes in bins across the genome) CNPA and CNPB, we computed the 
following distances:

d f= (CNP , CNP )1 A B

d f= (2 × CNP , CNP )2 A B

d f= (CNP , 2 × CNP )3 A B

in which 2× refers to doubling the copy number state across the whole 
genome. We then took the copy number distance to be

d d d d= min( , , ).1 2 3

If the minimum was d2 or d3, we increased d by 1 (that is, counting 
WGD as an additional event). Calculating all pairwise comparisons is 
computationally expensive, so for each dataset we subsampled 250 
cells and calculated all pairwise distances for these 250 cells.

10X scRNA-seq processing
CellRanger software (v.3.1.0) was used to perform read alignment, 
barcode filtering and quantification of unique molecular identifi-
ers (UMIs) using the 10X GRCh38 transcriptome (v.3.0.0) for FASTQ 
inputs. CellRanger filtered matrices were loaded into individual Seurat 
objects using the Seurat R package (v.4.1.0) (refs. 72,73). The resulting 
gene-by-cell matrix was normalized and scaled for each sample. Cells 
retained for analysis had a minimum of 500 expressed genes and 1,000 
UMI counts and less than 25% mitochondrial gene expression. Genes 
expressed in fewer than three cells were removed. Cell-cycle phase 
was assigned using the Seurat73 CellCycleScoring function. Scrublet74 
(v.0.2.3) was used to calculate and filter cells predicted to be doublets. 
We then applied the standard Seurat processing pipeline using default 
parameters apart from using the first 20 principal component analysis 
(PCA) dimensions for nearest neighbour and UMAP calculations.

Allelic imbalance in scRNA-seq
We called heterozygous SNPs in the scRNA-seq data using cellSNP v.1.2.2 
(ref. 75). As input, we used the same set of heterozygous SNPs identified 
in the scDNA-seq and the corresponding normal sample for each sam-
ple. The liftover script provided in cellSNP was used to lift over SNPs 
from hg19 to hg38. After genotyping, we phased the SNPs using the 
phasing information computed from the haplotype-specific inference 
in the scDNA-seq. As SNP counts are much more sparse in scRNA-seq 
than in scDNA-seq (around two orders of magnitude lower), we aggre-
gated counts across segments (minimum size = 10 Mbp), computing the 
BAF for each segment. We then generated a cell by segment BAF matrix 
and incorporated this into our gene expression Seurat objects. We 
applied an additional filtering criterion here, removing cells with fewer 
than 200 SNP counts. Functionality to map scDNA-seq to scRNA-seq 
and call allelic imbalance is provided in SIGNALS.

Differential expression analysis
Differential expression analysis between gene expression clusters was 
computed using the Wilcoxon rank sum test with the presto R package. 
Gene expression clusters were computed using the FindClusters func-
tion in Seurat. Only cells in G1 phase were included. To compare gene 
expression variability for oncogenes, we took the absolute maximum 
log-transformed fold change for each sample for each oncogene and 
contrasted this value in cases in which oncogene copy number was 
determined to be fixed or variable from DLP+ single-cell sequencing of 
the same samples. 'Variable' oncogenes were defined as those that had 
a minimum ratio of 2 between the maximum to minimum clone-level 
copy number, and 'non-variable' oncogenes as those that had a ratio 
of less than 2.

Nearest neighbour gene expression analysis
To assess transcriptional convergence of losses of alleles we made use 
of the shared nearest neighbour graph computed using Seurat. This was 
done for chr. 2q in sample SA906b. For a given cell, an enrichment score 
was defined as the observed fraction of nearest neighbours divided 
by the expected fraction of nearest neighbours. Here, the expected 
fraction of neighbours with the same allelic state was defined as the 
global fraction of cells in each state. Hence, a positive enrichment 
score indicates an overrepresentation of cells in the allelic state of 
interest among its nearest neighbours, a negative score indicates an 
underrepresentation and a score of 0 would reflect a perfectly mixed 
neighbourhood of cells with different allelic states. To mitigate the 
influence of other technical or biological variability, for this analysis 
we only included cells in G1 phase, and removed cells with greater than 
7.5% mitochondrial gene expression as we found that this was variable 
between gene expression clusters.

Statistical tests
The statistical tests used were two-tailed unequal-variance t-tests unless 
otherwise specified: log-rank tests were used for comparing survival 
curves; Wilcoxon rank sum two-tailed tests were used for comparing 
segment lengths, segment counts, missegregations and ploidy percent-
ages, copy variances, bin counts, gene copy number distributions, gene 
expression log-transformed fold changes, parallel copy number counts 
and breakpoint counts; and hypergeometric tests were used to identify 
enrichment of gene mutations. P values from multiple comparisons 
were corrected using the Benjamini–Hochberg method76.

Box plot statistics
All box plots indicate the median, first and third quartiles (hinges), 
and the most extreme data points no farther than 1.5× the IQR from 
the hinge (whiskers).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
All data are available for general research use. Processed data includ-
ing somatic mutation data for bulk WGS, total (and allele-specific) 
copy number profiles for DLP+ data and filtered count matrices for 
scRNA-seq data are available for download at https://zenodo.org/
record/6998936. Raw scRNA-seq data are available for download at 
https://ega-archive.org/studies/EGAS00001006343. Raw single-cell 
sequencing data generated for this study are available from https://
ega-archive.org/studies/EGAS00001006343, and previously published 
single-cell sequencing data used in this study are available at https://
ega-archive.org/studies/EGAS00001004448 and https://ega-archive.
org/studies/EGAS00001003190. Somatic mutation calls from bulk 
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WGS for 16 patients with TNBC for whom the IRB consent does not 
include public deposition of raw sequencing data are available at 
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_
id=phs003038.v1.p1, and raw sequencing data can be provided upon 
request under material transfer agreement to shahs3@mskcc.org. Bulk 
WGS BAM files from patients under IRB consent protocols for public 
release of raw data are available for download at https://ega-archive.
org/studies/EGAS00001006343, http://www.ncbi.nlm.nih.gov/pro-
jects/gap/cgi-bin/study.cgi?study_id=phs003036.v1.p1 and https://
ega-archive.org/datasets/EGAD00001003268 (for previously pub-
lished data12) or by request under material transfer agreement to 
shahs3@mskcc.org and saparicio@bccrc.ca.

Code availability
MMCTM method: https://github.com/shahcompbio/MultiModal-
MuSig.jl. DLP+ single-cell WGS pipeline: https://github.com/shah-
compbio/single_cell_pipeline. Bulk WGS pipeline: https://github.
com/shahcompbio/wgs. SIGNALS processing pipeline: https://github.
com/marcjwilliams1/hscn_pipeline. SIGNALS: https://github.com/
shahcompbio/signals; v.0.7.2 archived at https://doi.org/10.5281/
zenodo.6642342. 
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BRCA2 mutations) a) or PDX tissue from patients with TNBC and patients with 
HGSC from a meta-cohort with assigned SV or SNV mutational signatures b). 

Single-cell and long-read sequencing (c) was used to examine mutational 
processes and haplotype-specific genomic diversity, including HLAMPs or 
rearrangements d), parallel events e) and SSVs f) at single-cell resolution and 
within clonal and subclonal populations. Generated using Biorender.com.



Extended Data Fig. 2 | Sanger sequencing of cell lines and tumour 
histology. a,b) Verification of CRISPR–Cas9 induced genotypes of 184-hTERT 
cell lines. a) Sanger sequencing of TOPO cloned BRCA1 and BRCA2 regions.  
b) Western blotting for p53, BRCA1 and BRCA2 proteins for 184-hTERT cell lines 
and including an additional BRCA2−/− clone, 112.72 and TP53−/− clone, SA1101. 
GAPDH and vinculin loading controls were performed on the same blot as p53, 

BRCA1 or BRCA2 probes. Blots shown are representative of n = 3 (WT), n = 3 
(BRCA1) and n = 6 (BRCA2) independent experiments. For source blots, refer to 
Supplementary Fig. 1. c) Histology of HGSC PDXs in the dataset. Scale bars 
300 µm and 50 µm as indicated. Images are representative of two cores stained 
from each PDX tissue.
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Extended Data Fig. 7 | Meta-cohort signature analysis of 139 TNBC and 170 
HGSC bulk whole genomes. a) Heat map representing individual patients as 
columns, annotation tracks (top) including cancer type and mutation status of 
key genes (strata with adjusted p-values ≤ 0.1 shown as coloured bars on left), 
standardized signature probabilities of SNVs and SVs (middle) and event 
counts (bottom). b) Signature type (see stratum annotation track) proportions 
by cancer type. c) SNV and SV count distributions per signature type (number 

of samples shown below each violin, data points shown left of violins). Kaplan–
Meier survival probability of HGSCs faceted by d) HRD and e) more granular 
signatures (p-values computed using the log-rank test, p = 0.0038 for d) and 
p = 0.0022 for e)). All box plots indicate the median, 1st and 3rd quartiles 
(hinges), and the most extreme data points no farther than 1.5x the IQR from 
the hinge (whiskers).
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Extended Data Fig. 8 | Summary, quality control and features of single-cell 
WGS of tumours. a) UMAP of meta-cohort signature probabilities. Lines 
connect DLP-pseudobulk to their bulk data counterpart. b) Correlation of 
proportion of the genome that is LOH between DLP-pseudobulk (horizontal) 
and matched bulk WGS (vertical). Correlation coefficient (R) and p-value (p) 
derived from a linear regression in inset, shaded area shows the 95% CI of the 
linear regression. c) VAF distributions (horizontal) for somatic mutations 
called in single cells as a function of haplotype-specific state (vertical), coded 
as integer copy level allele A | integer copy level allele B. Data from all DLP 
samples are included. d) Heat map showing total copy number (left) and HSCN 
(right) of single cells from a TNBC HRD-Dup case (SA501). e) Chromosomal 
gains and losses across different ploidy states and mutational signature 
grouping. Total counts (black), gains (red), and losses (blue) shown.  
f) Relationship between gain/loss ratios and number of gained or lost 
segments for representative datasets from each signature type (left) and all 
HRD-Dup, TD, or FBI cases (right). g) Differences in copy number segmental 
gain and loss counts (n = 12 FBI, n = 8 HRD-Dup, n = 3 TD), comparing ploidy-

relative case-level consensus copy number profiles (green) and mean cell-level 
changes relative to clone copy number profiles (purple). h) HSCN distance 
distributions for all PDX samples. Distribution is over n = 1,000 sampled 
pairwise HSCN distances. Horizontal black line shows the mean value of the 
distribution. i) HSCN distance distributions as a function of signature type, 
each dataset is summarized as the mean of the distributions on the left. 
P-values indicate per group comparisons using the two-sided Wilcoxon test 
(n = 12 FBI, n = 8 HRD-Dup, n = 3 TD). j) Number of parallel copy number 
segments (n, size of circle) and the proportion of segments containing parallel 
events (f, colour of circle) across all datasets as a function of clonality. Clonal: 
CCF > 80%, Subclonal: 20% < CCF ≤ 80%, Rare: 1% < CCF ≤ 20%. k) Proportion of 
segments with parallel CNA in HRD-Dup vs FBI, * = p < 0.05, ns = p > 0.05, two-
sided Wilcoxon test (n = 12 FBI, n = 8 HRD-Dup). Exact p-values from left to 
right, p = 0.85, p = 0.031, p = 0.1. All box plots represent the median, 1st and 3rd 
quartiles (hinges), and the most extreme data points no farther than 1.5x the 
IQR from the hinge (whiskers).
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Genomic features of HLAMPS and long read 
sequencing validation. a) Each column is a HLAMP that amplifies an 
oncogene. Each row is a feature extracted from a region 15Mb either side of the 
amplification. Complexity = entropy of haplotype-specific states, #SV = total 
number of structural variants identified, proportion of SVs of each type: fold-
back inversions, duplications, deletions and translocations. #chr = number of 
chromosomes involved in translocation. bin/chr ratio copy number of the bin 
containing the oncogene to the average copy number across the chromosome. 
Ratio is the copy number ratio between the clone with the maximum copy 
number state and the minimum copy number state. b–c) HLAMPs involving 

multiple chromosomes, left plot shows copy number profiles from pseudobulk 
clones derived from DLP, lines indicate rearrangement breakpoints, right plot 
shows example long reads from Oxford nanopore technologies  that support 
inter-chromosomal translocations. Example reads and their mapping to 
chromosomes of interest (top right), long-read coverage of genomic region and 
alignment of all supporting reads (bottom right). b) SA1184 MYC amplification 
c) SA1181 chr5q amplification. d) Long-read support for inter-chromosomal 
alterations involving chromosomes 3 and 6 in SA1096, DLP clone-level plots 
shown in Fig. 4j.
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