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Abstract
Background: The path to childhood asthma is thought to initiate in utero and be further 
promoted by postnatal exposures. However, the underlying mechanisms remain un-
derexplored. We hypothesized that prenatal maternal immune dysfunction associated 
with increased childhood asthma risk (revealed by low IFN-γ:IL-13 secretion during 
the third trimester of pregnancy) alters neonatal immune training through epigenetic 
mechanisms and promotes early-life airway colonization by asthmagenic microbiota.
Methods: We examined epigenetic, immunologic, and microbial features potentially re-
lated to maternal prenatal immunity (IFN-γ:IL-13 ratio) and childhood asthma in a birth 
cohort of mother–child dyads sampled pre-, peri-, and postnatally (N = 155). Epigenome-
wide DNA methylation and cytokine production were assessed in cord blood mononu-
clear cells (CBMC) by array profiling and ELISA, respectively. Nasopharyngeal microbiome 
composition was characterized at age 2–36 months by 16S rRNA sequencing.
Results: Maternal prenatal immune status related to methylome profiles in neonates 
born to non-asthmatic mothers. A module of differentially methylated CpG sites en-
riched for microbe-responsive elements was associated with childhood asthma. In vitro 
responsiveness to microbial products was impaired in CBMCs from neonates born to 
mothers with the lowest IFN-γ:IL-13 ratio, suggesting defective neonatal innate immu-
nity in those who developed asthma during childhood. These infants exhibited a distinct 
pattern of upper airway microbiota development characterized by early-life colonization 
by Haemophilus that transitioned to a Moraxella-dominated microbiota by age 36 months.
Conclusions: Maternal prenatal immune status shapes asthma development in her 
child by altering the epigenome and trained innate immunity at birth, and is associated 
with pathologic upper airway microbial colonization in early life.
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1  |  INTRODUC TION

Although asthma is the most prevalent chronic disease of child-
hood,1 our understanding of its inception mechanisms remains lim-
ited. Maternal prenatal traits and exposures [asthma,2 smoking,3,4 
diet,5 antibiotic use,6 infections7,8] as well as mode of delivery9 and 
postnatal diet10 influence asthma susceptibility in children, suggest-
ing that the path to the disease initiates in utero and progresses 
under the influence of postnatal exposures.1,11–14

The role of maternal prenatal immune status in shaping this path 
was recently highlighted by our work in the Infant Immune Study 
(IIS), a birth cohort of mother–child dyads sampled pre-, peri-, and 
postnatally over a decade.15 A decreased ratio of interferon (IFN)-γ 
to interleukin (IL)-13 (IFN-γ:IL-13) secretion by mitogen-stimulated 
peripheral blood mononuclear cells (PBMC) isolated during the third 
trimester of pregnancy was associated with increased prevalence of 
childhood asthma.16 This relation was limited to pregnancy, suggest-
ing this period may provide a temporal window for intrinsic cellular 
events involved in childhood asthma inception. Moreover, the asso-
ciation between childhood asthma risk and maternal prenatal IFN-
γ:IL-13 was specific to nonasthmatic mothers,16 pointing to a distinct, 
inter-generational path to asthma development in this group.

Because children born to non-asthmatic mothers account for the 
largest absolute number of asthmatic children in the population at 
large,16 mechanisms that lead to disease development in this under-
studied group require elucidation. Our epigenome-wide study in a 
subset of IIS neonates revealed distinct DNA methylation profiles 
in cord blood mononuclear cells (CBMC) of children who did or did 

not become asthmatic by age 9 years,17 suggesting that perinatal epi-
genetic regulation of immunity acts as a gatekeeper for the asthma 
trajectory from birth to childhood.18 Early life, and particularly the 
period between birth and age 3 years, represents a critical period of 
immune functional development and microbiota establishment.19–21 
Cross-sectional and longitudinal studies have linked early-life gut and 
airway microbiota perturbations and altered microbial developmen-
tal trajectories over the first three years of life with increased risk 
of asthma and atopy in childhood.22–25 In infancy, colonization of the 
upper airways by microbiota dominated by putatively pathogenic gen-
era (Moraxella, Streptococcus, or Haemophilus) increased risk of lower 
airway infection and development of asthma in later childhood.26,27

Here, we integrated these heretofore independent lines of re-
search and tested the hypothesis that the relationship between 
maternal prenatal immune dysfunction (revealed by decreased IFN-
γ:IL-13) and childhood asthma development reflects altered epigene-
tic regulation of neonatal innate immune responsiveness to microbial 
stimuli which, we propose, results in early-life airway colonization by 
asthmagenic microbiota.

2  |  METHODS

2.1  |  Study population

The IIS, a birth cohort of 482 mother–child dyads, was designed to 
identify immune maturation patterns in early life and their impact on 
asthma risk, as well as maternal influences shaping these patterns. 

G R A P H I C A L  A B S T R A C T
Through an integrated, inter-generational approach, we characterized maternal and early-life epigenetic, immunologic and microbial features 
that influence asthma development during childhood. We demonstrate that, in children of non-asthmatic mothers, maternal prenatal 
immune status (IFN-γ:IL-13) shapes the child's path to asthma by altering the epigenome and trained innate immunity in the neonate, and 
promoting pathologic upper airway microbial colonization in early life. These results provide a novel framework for mechanistic research 
linking maternal prenatal health to childhood asthma pathogenesis. 
Abbreviations: CBMC, cord blood mononuclear cells; IFN, interferon; IL, interleukin; LPS, lipopolysaccharide; PBMC, peripheral blood 
mononuclear cells; rRNA, ribosomal RNA



    |  3619DEVRIES et al.

Pregnant women were recruited between 1996 and 2004 during a 
prenatal visit. Any healthy newborn was eligible for IIS provided that 
her/his mother spoke English and planned to use a local, participat-
ing pediatrician. Subjects were only excluded from the study if the 
mother was diagnosed with an immune deficiency disorder or had 
plans to leave Tucson.15 Parents completed a respiratory health his-
tory questionnaire at enrollment. Enrolled children were monitored 
for respiratory and immune phenotypes associated with asthma 
and allergies within the first decade of life. This study included all 
mother–child dyads for whom maternal prenatal IFN-γ:IL-13 was 
measured, maternal and child (2–9 years) asthma status was known, 
and CBMC DNA samples were available (N = 182). Nasopharyngeal 
swabs were longitudinally collected from children at 2–36 months 
of age and stored at −80°C in fetal calf serum until DNA was ex-
tracted. 16S rRNA amplicon sequencing was performed on 149 
nasal samples from 73 participants, 43 of whom provided samples 
at more than one time point (Figure S1). Informed consent or assent 
was obtained from the parents of all participants and the study was 
approved by the University of Arizona Institutional Review Board.

Further details about maternal and child characteristics are pro-
vided as online supporting information.

2.2  |  DNA methylation studies

CBMC DNA was isolated with the DNeasy Blood & Tissue kit (Qiagen), 
quantified using Qubit, and provided (~1.6 μg) to Illumina (San Diego, 
CA) for epigenome-wide DNA methylation profiling on the EPIC plat-
form, which surveys 853,307 CpG sites.28 Analysis was limited to 
722,677 sites/probes after excluding probes that map to sex chromo-
somes, overlap loci with common SNPs (minor allele frequency ≥0.05), 
have been previously identified as cross-reactive,29 or provided signals 
indistinguishable from background (detection p-value > .01 in ≥75% of 
samples). Methylation data were processed using the minfi R pack-
age,30 and raw probe intensities were corrected for background and 
color imbalance by control-probe normalization. Infinium type I and 
II probe bias was corrected using the SWAN algorithm,31 signals were 
quantile-normalized, and methylation data (M-values) were extracted.

Proportions of CBMC populations (CD4+ and CD8+ T cells, B 
cells, NK cells, and monocytes) were estimated using the minfi pack-
age.32 Principal component analysis was performed to identify chip 
effects and potential confounding variables (minfi-estimated cell 
proportions, gestational age, mode of delivery, child ethnicity, and 
child sex). The ComBat function [sva33] was used to adjust for chip 
effects while preserving the effects of maternal immune status and 
childhood asthma. Estimated cell proportions, mode of delivery, 
and child sex remained significantly associated with at least one of 
the first ten principal components and were selected as covariates. 
Two additional covariates were identified by latent factor analysis 
[CorrConf34] and included in subsequent analyses. Linear regression 
(limma) was used to test for associations between maternal prenatal 
IFN-γ:IL-13 and neonatal DNA methylation at individual CpG sites 
(M-values). Analyses were performed in R (v3.4.4).

2.3  |  Weighted gene co-expression network 
analysis (WGCNA)

Networks of differentially methylated CpG sites (DMCs) in CBMCs 
were constructed by hierarchical clustering through WGCNA.35–38 
Linear regression was used to adjust M-values for confounding vari-
ables (minfi-estimated cell proportions, child sex, mode of delivery, 
and latent factors) identified in the differential methylation analysis. 
The power threshold was set at 2 to meet scale-free topology, and co-
methylated networks (modules) were constructed using the unsigned 
network algorithm. Branch cutting was performed using a “deepSplit” 
value of 2 with “pamStage” turned off. Minimum module size was set 
to 5 CpGs. All other settings were at default values.35 Methylation data 
for each module were summarized using the eigengene vector, that is, 
the first principal component of the module. Spearman correlation was 
used to test for associations between eigengene vectors and traits of 
interest. The association between Turquoise (TRQ) module DMCs and 
asthma was further analyzed using linear regression (limma).

Additional details about DMC annotation and bioinformatic 
analyses, 16S rRNA sequencing, and other statistical approaches are 
provided as online supporting information.

3  |  RESULTS

3.1  |  Maternal prenatal immune status relates 
to the neonatal immune methylome and childhood 
asthma risk

We initially examined IIS mother–child dyads with complete data 
on maternal prenatal IFN-γ:IL-13, maternal and child (age 2–9 years) 
asthma status, and CBMC DNA for methylation analyses (N = 182; 
Figure  S1). Consistent with our original findings,16 this population 
exhibited a robust inverse association between maternal prenatal 
IFN-γ:IL-13 and childhood asthma risk (OR 0.2, 95% CI 0.07–0.7, 
p = .008), which became even stronger when analyses were limited 
to nonasthmatic mothers and their children (OR 0.1, 95% CI 0.03–
0.4, p = .001; p = .025 for the interaction between maternal immune 
status and maternal asthma, Figure S2A). Therefore, all subsequent 
studies focused on nonasthmatic mother–child dyads (N  =  155). 
Table S1 shows the characteristics of study participants. We next 
compared childhood asthma prevalence across quartiles of mater-
nal prenatal IFN-γ:IL-13 (Figure S2B). While a significant trend was 
found across the quartiles (trend chi-square p =  .001, 1 degree of 
freedom), this trend was driven by the relationship between Q1 
and asthma: logistic regression analysis revealed no significant dif-
ferences in asthma risk among Q2, Q3, and Q4—only between Q1 
and the other three quartiles (Table S2). Children of mothers with 
the lowest prenatal IFN-γ:IL-13 (Q1) were significantly more likely 
to develop asthma during childhood compared to all other quartiles 
combined (Q2-4; OR 5.3, 95% CI 2.0–13.8, p = .0008, Figure S2B). 
Therefore, all subsequent analyses compared children born to Q1 
mothers (N = 39) with children born to Q2-4 mothers (N = 116).
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To assess how prenatal maternal immunity influences the path 
to childhood asthma, we initially determined whether maternal 
prenatal IFN-γ:IL-13 related to the epigenetic profiles of paired 
fresh-frozen, untreated CBMCs. An epigenome-wide comparison 
of DNA methylation in neonates born to mothers with low (Q1) or 
high (Q2-4) prenatal IFN-γ:IL-13 identified 2316 DMCs (FDR <0.05: 
Figure  1A and Table  S3). Interestingly, top hits among CpG sites 
hypermethylated in at-risk infants born to mothers with low (Q1) 
IFN-γ:IL-13 mapped to genes involved in innate immune responses 
to microbes. ZFYVE9/SARA is a TGF-β pathway member39 that regu-
lates macrophage responses to intracellular pathogenic microbes40; 
ANXA5 binds directly to LPS, dampening cytokine responses to 
gram-negative bacteria41; CCR1, a chemokine receptor, is involved in 
leukocyte migration to sites of inflammation and infection.42 These 
findings provided the first hint that maternal prenatal IFN-γ:IL-13 
and the epigenetic landscape at birth influence neonatal responses 
to microbes.

Next, we performed WGCNA to determine which of the 2316 
DMCs that distinguish neonates born to mothers with low (Q1) or 
high (Q2-4) IFN-γ:IL-13 were associated with childhood asthma and/

or atopy at age 5–9 years. Ten co-methylation modules were identi-
fied (Figure 1B), and key features (eigengene vectors representing 
the first principal component of each module) were used to assess 
module/phenotype relationships. The largest module, Turquoise 
(TRQ, 578 DMCs: Table S4) showed no association with atopy but 
correlated significantly with childhood asthma (Spearman's ρ = 0.24, 
p  =  .0022, Figure  1C). High TRQ module methylation at birth sig-
nificantly increased childhood asthma risk (OR 5.6, 95% CI 1.9–16.1, 
p  =  .002, Figure  1D), suggesting that maternal prenatal immune 
status shapes the path to childhood asthma through epigenetic 
mechanisms.

3.2  |  Immune training at birth influences asthma 
risk during childhood

Because TRQ module methylation in CBMCs was associated with 
childhood asthma (Figure 1C,D), exploring the functional potential 
of DMCs in this module might reveal early-life mechanisms of child-
hood asthma development. Indeed, we found that 410 of the 578 

F I G U R E  1  Maternal prenatal IFN-γ:IL-13 relates to differences in the CBMC methylome. (A) Differentially methylated CBMC CpGs 
associated with Q1 versus Q2-4. The x- and y-axes represent the log2(fold change) and significance, respectively, for differential methylation 
at each CpG. The dashed line marks the threshold of significance [false discovery rate (FDR) < 0.05]. The most significant DMCs are 
annotated with their gene symbol (or CpG identifier). (B) Modules identified by hierarchical clustering of maternal prenatal IFN-γ:IL-13 Q1 
vs. Q2-4-associated DMCs (n = 2316) using WGCNA. Distinct modules are denoted by colors represented in the bar below the dendrogram. 
Gray represents DMCs that did not cluster into a module. (C) Relationships between maternal prenatal IFN-γ:IL-13–associated methylation 
modules at birth and asthma-related phenotypes in childhood. The table shows Spearman correlation coefficients and p-values for 
relationships between module eigengene vectors and asthma-associated clinical traits. Only modules with >10 CpGs are shown. Bolded 
associations remained significant after Bonferroni correction (p = .05/14 = .0036). (D) Asthma risk among children with high or low TRQ 
module eigenvalues at birth (divided at “0”), as determined by logistic regression.
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TRQ module DMCs mapped to genomic elements with regulatory 
potential (promoters or enhancers). Of these regulatory DMCs, 
116 were differentially methylated (p < .05) in neonates who did or 
did not develop asthma by age 9 years. As many as 59% of these 
asthma-associated regulatory DMCs resided in elements known to 
modify their chromatin configuration in responses to stimulation by 
microbes or their products43–49 (Figure 2, Tables S5 and S6).

Combined with our initial analyses of neonatal differential meth-
ylation associated with maternal prenatal IFN-γ:IL-13 (Figure  1A), 
these findings led us to hypothesize that maternal prenatal immune 
status leverages epigenetic mechanisms to train neonatal innate 
immunity to microbes and susceptibility to asthma. To test this hy-
pothesis, we explored the relationship between maternal prenatal 
IFN-γ:IL-13 and concentrations of innate or adaptive cytokines se-
creted by CBMCs stimulated with LPS or mitogens (Concanavalin A, 
ConA/phorbol 12-myristate 13-acetate, PMA). A significant positive 
association (Spearman's ρ = 0.23, p = .009) was found between ma-
ternal prenatal IFN-γ:IL-13 and neonatal LPS-induced IL-6 produc-
tion. TNF secretion also exhibited a trending positive relationship. 
In contrast, no other cytokine responses, including those triggered 
by mitogens, were significantly associated with maternal IFN-γ:IL-13 
after correction for multiple testing (Table 1). LPS-induced IL-6 pro-
duction likely derived from monocytes because it was strongly and 
positively correlated with the estimated proportion of these cells 
(Spearman's ρ = 0.30, p = 3.6e−04), but not with other CBMC cell 
types. These relations point to decreased myeloid cell responsive-
ness to microbial stimuli —a reflection of inefficient innate immune 
training50—in neonates born to mothers with prenatal immune 
dysfunction.

We next took a stepwise approach to analyze the relationship 
between neonatal DNA methylation, neonatal LPS-induced IL-6 pro-
duction, and childhood asthma. We detected a significant inverse 
correlation between TRQ module methylation (i.e., TRQ module ei-
gengene vector) and LPS-induced IL-6 responses at birth (Spearman's 
ρ = −0.34, p = 6e−05). We then found that neonates who developed 
asthma during childhood clustered in a group characterized by low 
LPS-induced IL-6 production and high TRQ module methylation at 
birth (Figure  3A). Notably, TRQ methylation levels did not affect 
asthma prevalence in neonates with high IL-6 production but had 
a profound effect on asthma prevalence among neonates with low 
IL-6 (p for interaction = .12, Figure 3B). Indeed, only neonates with 
high TRQ and low IL-6 values had substantially higher risk for asthma 
(OR 7.8, 95% CI 2.0–30.0, p = .003, Figure 3C). In combination, these 
data suggest that low maternal prenatal IFN-γ:IL-13 enhances the 
neonate's risk of asthma by altering epigenetic CBMC programming 
and impairing innate immune responsiveness to microbial signals.

3.3  |  Prenatal immune training relates to early-life 
nasal microbiota development and asthma

Because we found that infants at high-risk for asthma exhibited 
impaired capacity to respond to bacterial products at birth, we 

hypothesized that this impairment favors the development of a path-
ogenic airway microbiota enriched for asthmagenic bacteria. To test 
this hypothesis, we assessed repeated nasopharyngeal microbiota 
profiles (N = 149) collected over the first three years of life from a 
subset of IIS children (N = 73). Though smaller than our study cohort, 
associations between maternal prenatal immunity, CBMC methy-
lome and immune function, and childhood asthma development 
identified in the entire dataset (N = 155) replicated in this smaller 
population (Table S7). To examine relationships between early-life 
nasal microbiota development and maternal prenatal or neonatal 
features associated with asthma development, we deconstructed 
upper airway microbiota compositional trajectories over the first 
three years of life into their first three principal coordinates (PC1-3, 
explaining 30.1% of variance). Consistent with previous findings,51,52 
the dominant bacterial genus present was significantly related to the 
first principal coordinate (Weighted UniFrac; Linear Mixed Effects; 
PC1; p < .001; Table S8), explaining the largest proportion of micro-
biota variance over time. Maternal prenatal IFN-γ:IL-13 quartiles, 
TRQ module methylation, CBMC IL-6 responses to LPS, and child-
hood asthma also explained variance in microbiota development on 
PC2 and PC3 during this period (Table S8). This suggests that pre-
natal maternal immune status and early-life innate immune training 
and function relate to features of upper airway microbiota devel-
opment over the first three years of life. To identify these specific 
microbiological features, we next assessed airway microbiota de-
velopment in children born to mothers in the highest (Q1) or lower 
(Q2-4) risk groups who exhibited significantly distinct trajectories 
of upper airway microbiota development on PC3 (LME interaction 
ANOVA, p = .01; Figure 4A). Variance on PC3 was primarily driven 
by Haemophilus, Dolosigranulum, and Moraxella (Figure 4B); the upper 
airways of children born to Q1 mothers were colonized in very 
early life (~first 12 months) by Haemophilus and in later childhood 
(by 36 months of age) by Moraxella, suggesting that this pattern of 
upper airway colonization is linked to both prenatal immune status 
and childhood asthma development. Samples from children who re-
ceived antibiotics or asthma medications within 1 week of sample 
collection (n = 4) were not distinct with respect to nasal microbiome 
diversity or composition. In addition, these relationships were not 
driven by the children who developed asthma before the 36-month 
sample collection (n = 6). Removing these participants did not re-
duce the significance of the interactions we observed.

Next, to determine duration of effect of neonatal immune train-
ing on microbiota development, we examined relationships between 
the TRQ methylation module and nasal microbiota composition at 
24 and 36 months. TRQ module methylation was significantly asso-
ciated with variance in nasal microbiota composition at 24 months 
(N = 31) but not at 36 months (N = 48) of age (Linear Model; PC1; 
p  =  .020 and p  =  .583, respectively; Figure  4C), suggesting that 
CBMC epigenetic modifications may exert the greatest influence 
on microbiota development over the first 2 years of life. Bacteria 
whose abundance correlated with PC1 at 24 months included those 
previously found to dominate the upper airways in early life and 
relate to childhood asthma susceptibility (Moraxella) or protection 
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(Corynebacterium; Figure  4D).27,53 This suggested that hypo- or 
hyper-methylation in specific CpGs at birth associates with the pres-
ence of these bacteria in the upper airways at 24 months of age. To 
further deconstruct these relationships, we examined correlations 
between bacteria on PC1 and asthma-associated DMCs within the 
TRQ module (identified in Figure 2 and Table S5). Multiple Moraxella 
were negatively correlated with hyper-methylation at genes involved 
in vesicle-mediated transport (CUX1, SFT2D3), lipid binding (ACBD6), 
and regulation of myeloid cell effector function (VSTM1; Figure S3). 

In contrast, genera including Corynebacterium correlated positively 
with some of these genes (e.g., SFT2D3 and ACBD6), suggesting that 
methylation at these sites influences the presence of bacterial spe-
cies associated with development of, or protection against, child-
hood asthma. Collectively, these data suggest that differences in 
neonatal immune training associated with maternal prenatal immune 
status and immune responsiveness to microbes in very early life pro-
mote distinct microbiota developmental trajectories that relate to 
asthma development in childhood.

F I G U R E  2  Asthma-associated differential methylation in the TRQ module co-localizes with microbe-responsive elements. Heatmap 
of TRQ module DMCs (rows) that mapped to promoters/enhancers (as assessed by Roadmap Epigenomics consortium chromatin state 
annotations) and were significantly (p < .05) associated with asthma. The color bar at the top denotes individual neonates (columns) who 
did or did not develop asthma during childhood. Microbe-responsive elements (purple text in the right side legend) were defined as DMCs 
mapping to genes exhibiting dynamic expression, or putative enhancers exhibiting dynamic changes in chromatin marks (DNaseI/ATAC 
accessibility, H3K27ac, H3K4me1) in response to microbes or their products.43–49 Statistics and annotations for these DMCs are provided in 
Table S5.

TA B L E  1  Maternal prenatal IFN-γ:IL-13 is related to LPS- but not ConA/PMA-stimulated cytokine production by CBMC

LPS ConA/PMA

IL-1β IL-6 TNF IL-12 IL-10 IFN-γ IL-4 IL-5 IL-13 IL-10

Spearman's ρ −0.067 0.225 0.210 0.092 0.149 −0.036 −0.046 0.031 −0.015 −0.055

N 133 133 133 133 133 149 149 149 149 149

p .447 .009 .015 .294 .088 .665 .581 .709 .852 .509

Note: Cytokine levels were measured by ELISA in supernatants of LPS- or ConA/PMA-stimulated CBMC cultures. Data for each cytokine were 
z-scored prior to testing for associations, and maternal prenatal IFN-γ:IL-13 was coded as a dichotomous variable (0 = Q1 and 1 = Q2-4). Bolded p-
values remained significant after Bonferroni correction (p = .05/5 = .01).

F I G U R E  3  CBMC TRQ module 
and LPS-stimulated IL-6 production 
co-associate with childhood asthma 
development. (A) CBMC TRQ eigengene 
values and IL-6 responses to LPS 
stimulation at birth are significantly 
correlated. Red and black dots represent 
neonates with or without a diagnosis of 
asthma during childhood, respectively. 
(B) Interaction between TRQ module 
methylation (eigengene value), LPS-
induced IL-6 responses at birth, and 
prevalence of asthma during childhood. 
p for interaction was assessed using 
logistic regression. (C) The risk of 
childhood asthma is related to CBMC TRQ 
methylation status and IL-6 responses. 
Odds ratios were calculated by logistic 
regression. For panels B and C, TRQ 
eigengene vector and z-scored LPS-
stimulated IL-6 production were each 
categorized into “High” and “Low” values, 
divided at zero.
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4  |  DISCUSSION

Childhood asthma is a complex disease characterized by distinct 
endotypes54 and a multifactorial pathogenesis. Previous work ex-
amined the role of individual factors—pre- or postnatal, genetic, epi-
genetic, immunologic, microbial—in the development of the disease. 
In contrast, we took an integrated, inter-generational approach and 
sought to characterize maternal and early-life epigenetic, immuno-
logic, and microbial features that influence childhood asthma de-
velopment to identify tractable targets and temporal windows for 
disease-preventing interventions. To this end we relied on a unique 
birth cohort of mother–child dyads carefully monitored pre-, peri-, 
and postnatally for a decade. In this cohort, maternal prenatal im-
mune status, specifically IFNγ:IL-13, predicts asthma during child-
hood.16 Here, we demonstrate that the prenatal immune status of 
nonasthmatic mothers influences their newborns' epigenetic land-
scape and innate immune responsiveness to microbes, and the sub-
sequent development of their upper airway microbiome in early life. 

Each of these components independently and interdependently re-
lated to childhood asthma development.

The selective association between neonatal methylation and 
childhood asthma but not atopy points to a distinct epigenetic path 
to asthma that is independent of allergy—a notion supported by our 
previous epidemiological work.16 As importantly, the epigenetic 
network associated with asthma development in at-risk neonates 
born to mothers with low IFN-γ:IL-13 comprised over 100 differ-
entially methylated CpG sites, more than half of which mapped 
to microbe-responsive elements. Consistent with a role of these 
epigenetic modifications in innate immune function, monocyte-
derived IL-6 and TNF production in those neonates was reduced 
upon stimulation with bacterial LPS. The implications of these 
findings are novel and profound. Innate cytokine responses to 
microbial pro-inflammatory triggers are a hallmark of trained im-
munity, a de facto innate immune memory that enhances subse-
quent myeloid cell responsiveness following an initial infectious or 
sterile pro-inflammatory challenge.50,55 Unlike adaptive immune 

F I G U R E  4  Early-life upper airway microbiota development is influenced by maternal IFN-γ:IL-13 and asthma-associated DNA methylation 
in the TRQ module. (A) Upper airway microbiota development over the first three years of life relates to maternal IFN-γ:IL-13 status. Lines 
indicate the slopes from linear mixed effects models. Background represents directionality from panel B. (B) Variance in principal coordinate 
(PC) 3 is driven by Haemophilus (Spearman's ρ > 0.25), and Dolosigranulum and Moraxella (ρ < −0.25; dotted lines represent ρ of 0.5 or − 0.5, 
respectively). (C) Weighted UniFrac PC1 correlates with the TRQ eigengene at 24 months, but not 36 months of age (line represents linear 
model and standard error). (D) Weighted UniFrac PC1 is primarily driven by differences in Moraxella decreases (ρ < −0.25) and Staphylococcus 
and Corynebacterium (ρ > 0.25) abundances.
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memory, which depends on de novo rearrangements of antigen 
receptor genes in lymphocytes, trained immunity relies on long-
term functional reprogramming of innate myeloid cells (primarily 
monocytes and dendritic cells) through epigenetic mechanisms.50,55 
Post-translational histone modifications in trained immune cells 
have been well characterized,56 but DNA methylation patterns also 
discriminate individuals who do or do not develop trained immu-
nity following a primary innate stimulation.57,58 Our results further 
support the role of DNA methylation in trained immunity, providing 
targets for future mechanistic analyses. Most importantly, our data 
provide the first explicit, population-based link between maternal 
prenatal immunity, trained immunity at birth and childhood asthma 
by identifying a network of epigenetically modified genes that as-
sociate with decreased innate immune responsiveness to microbes, 
asthmagenic upper airway bacterial colonization during the critical 
first three years of life, and increased risk of asthma during child-
hood. Because innate cytokine responses to microbes were mea-
sured at birth, our findings also imply that exposures influencing 
neonatal innate training and asthma risk occurred in utero. Indeed, 
recent evidence indicates that fetal innate immunity can be trained 
by microbial infections59,60 or maternal vaccination during preg-
nancy,61 implicating maternal prenatal microbiome-immune inter-
actions in these processes.

The mechanisms underpinning in utero training of fetal innate 
immunity remain unclear. While direct movement of maternal mi-
crobes to the fetal intestine can occur and modulate immune cell 
function,62,63 data from mice64–66 and humans67 also suggest that 
metabolites released by maternal prenatal microbiota are sensed 
by fetal bone marrow progenitors with long-lasting effects on the 
progeny's immune function. To the extent that delayed immune mat-
uration in early life promotes type-2 responses and contributes to 
asthma and allergy risk,1,63 effective immune training in utero may 
avert this risk by enabling rapid responses to maturation-inducing 
microbial signals. Asthma protection in children raised in traditional, 
microbe-rich farm environments68 provides a case in point. CBMCs 
from these children demonstrated prenatal priming evidenced by 
upregulation of microbial-sensing TLRs68 and innate cytokines,69 
reiterating that maternal prenatal microbial exposures calibrate the 
development and maturation of immune responses in the offspring 
both quantitatively and temporally, ultimately enhancing asthma 
resistance.70–73

Reduced capacity to respond to microbes in the postnatal period 
undoubtedly influences microbial colonization trajectories, though 
this had not been previously investigated in human populations. 
Indeed, children born to mothers with lower IFN-γ:IL-13 exhib-
ited microbial successional states in the upper airways dominated 
by Haemophilus in early infancy, and Moraxella in early childhood. 
Several independent studies have linked respiratory microbi-
ota dominated by these genera in early life with increased risk of 
acute respiratory infection and febrile illness in the lower respira-
tory tract,26 and with asthma development and susceptibility to 
pulmonary exacerbations later in childhood.26,52,74 Species within 
both genera, specifically nontypeable Haemophilus influenzae and 

Moraxella catarrhalis, chronically colonize the upper airways and can 
survive in host cells.75–79 Hence, inter-generational transmission of 
compromised host immunity to intracellular microbial pathogens 
appears as a keystone of asthma development in children of nonas-
thmatic mothers.

Although novel and potentially significant, our results should be 
interpreted with caution. The size of the IIS population was limited. 
Therefore, despite the suggestive temporal architecture of our data 
that span the prenatal, perinatal, and early-life periods, perform-
ing formal statistical mediation analyses would have been unwise. 
Moreover, the unique sample collection schedule in the IIS popu-
lation prevented direct replication of our findings in other cohorts. 
Thus, the conceptual framework we propose needs to be tested in 
future studies, some of which are already ongoing.73 Moreover, sam-
ples appropriate for chromatin and gene expression analyses were 
not collected, and thus histone and/or transcriptional signatures of 
trained immunity related to asthma status later in life56 could not be 
surveyed in neonatal immune cells. These limitations were partially 
mitigated by the availability of epigenome-wide DNA methylation 
data and extensive information about cytokine protein secretion 
in response to diverse signals. The biological underpinnings of ma-
ternal prenatal IFN-γ:IL-13 also remain unclear, even though this 
study further highlighted its persistent, trans-generational impact. 
Finally, sample availability dictated that microbiome composition in 
early life could be studied in the children's upper airways but not in 
their gut, and only in a subset of subjects. Therefore, despite their 
potential implications, these analyses should be considered purely 
exploratory.

Despite these limitations, our findings appear to suggest that 
maternal prenatal immune status shapes the child's path to asthma 
by altering the epigenome and trained innate immunity in the neo-
nate, and then promoting pathologic upper airway microbial coloni-
zation in early life. This scenario provides a novel, robust framework 
for further mechanistic research linking maternal prenatal health to 
childhood asthma pathogenesis.
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