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Abstract

Chronic, excessive neuroinflammation is a key feature of neurodegenerative diseases such as 

Alzheimer’s disease (AD) and Parkinson’s disease (PD). However, neuroinflammatory pathways 

have yet to be effectively targeted in clinical treatments for such diseases. Interestingly, increased 

inflammation and neurodegenerative disease risk have been associated with type 2 diabetes 

mellitus (T2DM) and insulin resistance (IR), suggesting that treatments that mitigate T2DM 

pathology may be successful in treating neuroinflammatory and neurodegenerative pathology 

as well. Glucagon-like peptide-1 (GLP-1) is an incretin hormone that promotes healthy insulin 

signaling, regulates blood sugar levels, and suppresses appetite. Consequently, numerous GLP-1 

receptor (GLP-1R) stimulating drugs have been developed and approved by the US Food 

and Drug Administration (FDA) and related global regulatory authorities for the treatment of 

T2DM. Furthermore, GLP-1R stimulating drugs have been associated with anti-inflammatory, 

neurotrophic, and neuroprotective properties in neurodegenerative disorder preclinical models, 

and hence hold promise for repurposing as a treatment for neurodegenerative diseases. In this 

review, we discuss incretin signaling, neuroinflammatory pathways, and the intersections between 

neuroinflammation, brain IR, and neurodegenerative diseases, with a focus on AD and PD. We 

additionally overview current FDA-approved incretin receptor stimulating drugs and agents in 

development, including unimolecular single, dual, and triple receptor agonists, and highlight 

those in clinical trials for neurodegenerative disease treatment. We propose that repurposing 

already-approved GLP-1R agonists for the treatment of neurodegenerative diseases may be a 

safe, efficacious, and cost-effective strategy for ameliorating AD and PD pathology by quelling 

neuroinflammation.
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1. Incretin Overview

Across all neurodegenerative disorders and injuries, neuroinflammation plays a key role in 

disease progression and recovery. There is currently a void in viable US Food and Drug 

Administration (FDA)-approved medications to treat let alone mitigate disease progression 

of chronic brain disorders, such as Parkinson’s disease (PD) and Alzheimer’s disease (AD), 

and more acute brain injuries such as traumatic brain injury (TBI). A recent genome-wide 

association study (GWAS) provides new genetic insights into AD and related dementias 

indicating elevation of inflammation-related pathways as a driver of risk for these chronic 

conditions (1). The repurposing of FDA-approved drugs towards treating inflammation-

related central nervous system (CNS) diseases and injuries would be ideal, as their safety 

profile in humans has already been established. Several FDA-approved incretin mimetics, 

originally developed for the treatment of type 2 diabetes mellitus (T2DM) (Table 1), are 

a promising class of drugs currently progressing towards repurposing as a new treatment 

strategy for a wide variety of brain/neurological disorders. A wealth of preclinical animal 

studies in models of stroke (2–4), PD (4–6), AD (6–8), glaucoma (9–11), and TBI (12) 

provide evidence for using incretin mimetics as a treatment option. In addition, several 

human clinical trials related to CNS diseases are progressing or have been completed 

(Table 2), with initial phases of trials in PD showing efficacy (13). Incretin mimetics 

exhibit pleiotropic signaling effects in a variety of different cell types (14), but their potent 

anti-inflammatory properties, together with their neurotrophic and neuroprotective features, 
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make them ideal for treating neurodegenerative disease. Within this review article we 

provide a brief overview of incretin mimetic drugs, both FDA-approved and in clinical and 

preclinical trials (Tables 1 and 2), and underscore their potent anti-inflammatory capacity 

that makes them ideal candidates for repurposing and investigation in clinical trials for 

neurodegenerative conditions.

1.1 Incretins – focus on the endocrine system

The incretin signaling system, constituting the gut-derived metabolic peptides glucagon-like 

peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), is responsible for 

blood glucose regulation following food ingestion (15). These peptides act by stimulating 

the release of insulin. The incretins GLP-1 and GIP are secreted from the small intestinal 

enteroendocrine L and K cells, respectively, and act on their target receptors present on 

the β-cells of the pancreas. The GLP-1 receptor (GLP-1R) and GIP receptor (GIPR) 

are class B G protein-coupled receptors, each with a seven-helix transmembrane domain 

and an extracellular ligand binding domain. The intracellular face interacts primarily with 

the Gαs subunit of G proteins and with β-arrestins, as well as various other signaling 

molecules. GLP-1R and GIPR signaling have several known functions in the endocrine 

system: GLP-1R activation initiates signaling cascades that promote insulin secretion and 

β-cell survival; GIPR activation promotes insulin secretion after feeding, glucagon (Gcg) 

secretion during fasting, triacylglycerol uptake by adipose tissue (16), and reduced bone 

resorption (17). Both members of the glucagon superfamily, GLP-1 and GIP activity both 

supplement as well as oppose select actions of Gcg, a structurally related secretin (Figure 

1A) synthesized in islet α-cells of the pancreas and within the small intestine, that acts by 

raising blood glucose levels in periods of fasting. Following their release, GLP-1, GIP, and 

Gcg are rapidly degraded to end their pharmacological/physiological regulatory action by 

the enzyme dipeptidyl peptidase-4 (DPP-IV), which is responsible for their short plasma 

half-lives of 1–2 minutes (18), 2–5 minutes (19), and 6–7 minutes (20), respectively. DPP-

IV acts as a relatively unpromiscuous amino-peptidase and releases a dipeptide from the N-

terminal end of its substrates. With a preference for an alanine or proline in the penultimate 

position, it additionally cleaves peptides with other amino acid residues (serine, glycine, 

valine) albeit more slowly. Discovery of reduced incretin actions in T2DM patients (21) 

led to robust research into GLP-1 and GIP as potential disease-modifying drug therapies. 

Although both peptides are highly insulinotropic in healthy individuals (22, 23), only GLP-1 

was demonstrated to have preserved insulinotropic effects in patients with T2DM (24, 25). 

This, combined with the ability of truncated GLP-1 to inhibit Gcg secretion (26), prompted 

drug developers to target GLP-1R agonists as potential treatments for T2DM.

1.2 FDA approval of incretin-based therapies

Various GLP-1 analogs have been developed to lengthen the half-life of the peptide and 

prolong the beneficial effects of GLP-1R signaling. In 1992, during the early research of 

incretin effects in diabetes, an endogenous GLP-1 analog, exendin-4, was isolated from 

the venom of the Gila monster lizard (Heloderma suspectum) (27) (Figure 1B). Exendin-4 

evades DPP-IV cleavage due to an alanine for glycine substitution at the enzyme cleavage 

site (Figure 1B) (28) and thus has a prolonged half-life relative to GLP-1 (2.4 hours 

in plasma) (29). In 2005, exendin-4, under the name “Exenatide”, became the first FDA-
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approved GLP-1R agonist for the treatment of T2DM. Since then, many other GLP-1 

analogs have been approved by the FDA, including liraglutide, semaglutide, lixisenatide, 

dulaglutide, and formerly albiglutide (discontinued in July of 2017) (12) (Table 1). In 

addition to GLP-1R agonist adoption for T2DM treatment, DPP-IV inhibitors, which elevate 

the levels of endogenously produced incretins throughout the body, have proven efficacious 

and been FDA-approved to treat the disease (Table 1).

1.3 Multi-agonism

More recent research has investigated the use of drugs that target a combination of secretin 

receptors (GLP-1R, GIPR, and GcgR) to treat T2DM. In 2009, a dual GLP-1R/GcgR 

agonist was pioneered for treating metabolic disorders in rodents (30). Later, in 2013, a 

dual GLP-1R/GIPR agonist, termed “twincretin”, demonstrated efficacy in animal models 

and humans with T2DM in reducing glycosylated hemoglobin A1c (HbA1c), an average 

measure of blood sugar levels over the duration of several months (31). Further research 

led to the development of Tirzepatide, a GLP-1R/GIPR dual agonist, which was found to 

enhance insulin signaling, reduce blood glucose, and promote weight loss in preclinical 

and phase 1 and 2 clinical trials (32). Moreover, the beneficial effects of Tirzepatide were 

significantly greater than the effects of a single GLP-1R agonist or a single GIPR agonist 

alone (32). A meta-analysis of randomized controlled trials found that Tirzepatide treatment 

in patients with T2DM significantly reduced HbA1c, fasting blood glucose, postprandial 

blood glucose, body mass index (BMI), waist circumference, and weight, as compared to 

single GLP-1R agonist treatment or insulin analog treatment (33). Tirzepatide (Mounjara™) 

(Table 1) is the only currently FDA-approved incretin multi-agonist (approved in 2022).

Additionally, unimolecular triple incretin-based agonists, or triagonists, have been developed 

that target the GLP-1, GIP, and Gcg receptors (GcgR). GLP-1R/GIPR/GcgR triagonist 

treatment in a high-fat diet mouse model system reduced plasma glucose levels, increased 

plasma insulin levels, and regulated blood glucose levels following food intake (34). Another 

rodent study demonstrated the heightened potency of a GLP-1R/GIPR/GcgR triagonist 

and its superior performance to a GLP-1R/GIPR dual agonist in reducing body weight, 

improving blood glucose regulation, and ameliorating fatty liver disease (35). A novel 

GLP-1R/GIPR/GcgR triagonist, SAR441255, has been shown to promote weight loss and 

maintain healthy blood glucose levels in a rodent model, and outperformed a GLP-1R/

GIPR dual agonist (36). In a mouse model of obesity, triagonist treatment enhanced weight 

loss and outperformed single and dual incretin-based receptor agonists (37). Furthermore, 

preclinical studies of SAR441255 revealed incretin receptor activation and maintenance 

of normal blood sugar levels in healthy monkeys in response to the drug, as well as the 

safety and tolerability of the drug in a phase 1 human clinical trial (36) (NCT04521738, 

48 participants, aged 18–55 years, lean to overweight). SAR4411255 demonstrated a 

terminal half-life of 3.5–6.1 hours, which is a relatively short exposure for a proposed 

once daily subcutaneously administered drug, and doses up to 150 ug were well tolerated, 

with the most frequent treatment-emergent adverse events being gastrointestinal, in accord 

with other GLP-1R agonists. Maintaining an appropriately balanced agonism among the 

three receptor subtypes (GLP-1, GIP, and Gcg) is key for single molecule triagonists to 

optimize efficacy across measures of glucose and body weight-lowering action, as well 

Kopp et al. Page 4

Pharmacol Res. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT04521738


as to maintain tolerability across organ systems. Consequent to business decisions within 

Sanofi, it is possible that SAR4411255 may not proceed forward in clinical development 

(38). The first human clinical trial (phase 1 - NCT03374241) of a novel GLP-1R/GIPR/

GcgR triagonist, HM15211, was initiated in 2018 in patients with obesity (39) (Table 1). 

This HM15211 (NCT03374241) trial was a first-in-human study to evaluate the safety, 

tolerability, pharmacokinetics, and pharmacodynamics after single ascending dose in healthy 

obese subjects (40 participants, aged 18–65 years). A further phase 1 trial to evaluate 

the safety, tolerability, pharmacokinetics, and pharmacodynamics of multiple doses of 

HM15211 in obese subjects with nonalcoholic fatty liver disease (NAFLD) has been 

reported as NCT03744182 (66 participants, aged 18–65 years). Finally, an ongoing phase 

2 study to evaluate efficacy, safety and tolerability of HM15211 treatment for 12 months 

in subjects with biopsy confirmed non-alcoholic steatohepatitis (NASH) has been reported 

as NCT04505436 (217 participants, aged 18–70 years, across multiple US sites with a 

proposed completion date of November 2025). Currently, no peer reviewed publications of 

results of any HM15211 clinical study appear available.

Although the dual GLP-1R/GIPR agonist Tirzepatide is the only FDA-approved incretin 

multi-agonist, unimolecular incretin receptor multi-agonists will likely dominate as 

treatment options in the future due to growing evidence of their increased efficacy over 

single GLP-1R agonists (15, 35, 40, 41). Several multi-agonist incretin analogues are in 

the preclinical or clinical trial phases (Table 1) and are likely to be approved over the 

coming decade to treat both obesity and diabetes. Interestingly, recent research is unraveling 

the nuances in intracellular biased agonism these drugs may have, including preferential 

cAMP and other intracellular pathway induction (42, 43). FDA approval of Tirzepatide and 

ongoing clinical trials indicate that the multi-agonist approach is safe in humans, which has 

important implications for treating a range of conditions, including nervous system-related 

chronic diseases and acute injuries. Preclinical animal models of chronic neurodegenerative 

disorders such as PD, AD, and glaucoma (9, 44) and acute injury models such as stroke 

and TBI (12, 45) have robustly demonstrated incretin therapy utility (both single and multi-

agonist approaches) as a potential treatment option for these conditions.

1.4 Insulin resistance and introducing incretins in the CNS

In healthy individuals, there is an appropriate balance between the activity of GLP-1, 

GIP, and Gcg, which is continuously adjusted and maintained by homeostasis. When 

this fails, a disrupted balance in GLP-1, GIP, and Gcg signaling can lead to chronically 

elevated blood glucose and subsequent development of insulin resistance (IR) (defined 

broadly as reduced cellular responsiveness to insulin), a feature of T2DM and obesity (46). 

Chronically high blood glucose can cause excessive inhibitory phosphorylation of key serine 

residues of insulin receptor substrates (IRS)-1 and 2 (for example, IRS-1 S312 and S616), 

resulting in reduced insulin receptor binding sensitivity, and triggers the translocation of 

IRS-1 and 2 from the cell membrane into the cytoplasm with reduced potential activation 

of downstream Ak strain transforming (Akt) and extracellular signal-regulated kinase 

1/2 (ERK1/2) signaling kinases (47, 48). Insulin can hence play a fundamental role in 

neurodegeneration through binding to its receptor, which is particularly abundant within the 

striatum, cerebral cortex, and hippocampus (49, 50). Postmortem studies have reported that 
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PD patients exhibit a reduced expression of insulin receptors (49, 51) and additionally have 

revealed a raised IRS-1 pS312 expression within nigral dopaminergic neurons as compared 

to aged-matched controls (52, 53), symbolic of dysfunctional insulin signaling. Since insulin 

stimulates glucose uptake into cells, a reduction in insulin sensitivity causes a reduction in 

glucose uptake; consequently, the elevation in blood glucose levels persists, and IR becomes 

more severe (54).

IR may be present in the brain and is a common feature of neurodegenerative diseases 

(55–58). Extensive research indicates that T2DM is a risk factor for AD (8, 59–62) and PD 

(58, 63–65). However, brain IR may occur in AD in the absence of a T2DM diagnosis, as 

indicated by reduced insulin and insulin-like growth factor-1 (IGF-1) responses in patients 

with AD and without T2DM (66). These findings suggest that, while peripheral IR as 

observed in T2DM can contribute to neurodegenerative disease pathology, IR in the CNS 

may occur via its own independent mechanisms as a separate entity. Yet, it is notable that 

increased weight circumference, mid-life adiposity, and metabolic syndrome (all allied to 

peripheral IR and systemic inflammation) are associated with an elevated risk of PD (67–

69). In relation to acute neurodegenerative disorders, T2DM in patients challenged with TBI 

is a significant predictor of mortality—in a study of 51,585 TBI patients, those with T2DM 

exhibited a significantly higher mortality rate (14.4%) than those without T2DM (8.2%) 

(70). Furthermore, brain glucose metabolism is dramatically altered following a TBI, with 

an acute increase in cerebral glucose metabolism typically followed by an extended decline 

in glucose metabolism (71). Aligned with this, there are multiple reports of hyperglycemia 

following TBI, with uncontrolled blood glucose levels resulting in poorer outcomes for 

recovery and an increased mortality risk (72–74). IR is a marker of increased risk for 

ischemic stroke (75) and, additionally, is associated with poorer functional outcomes (76).

Incretin receptors are prominent in the brain and are intricately associated with peripheral 

insulin regulation through increased control of feeding behaviors (77, 78). GLP-1R 

signaling in the hippocampus and hypothalamus improves memory function (79, 80) and 

is additionally linked to reduced appetite and regulation of food intake (77). GIPR is 

expressed in neurons and glial cells in the paraventricular nucleus (PVN), dorsomedial 

nucleus (DMN), and arcuate nucleus (ARC) of the hypothalamus, and reduces food intake in 

cooperation with GLP-1R signaling (78). GIPR signaling in cortical regions likely has a role 

in progenitor cell proliferation (81). The expression of incretin receptors in the CNS as well 

as the link between brain IR and neurodegeneration have fueled scientific interest in the use 

of GLP-1R and GIPR agonist treatments to promote neural health.

GLP-1R stimulation has been associated with neuroprotective and neurotrophic properties 

in several foundational studies conducted in the early 2000s (82–84). Rat hippocampal 

neurons treated with GLP-1 (82, 84) or exendin-4 (84) were more resistant to glutamate 

excitotoxicity, and both treatments enhanced neural growth and differentiation in a rat 

neuroendocrine cell model (83)—findings that have been replicated numerous times across 

cell types of neuronal origin and multiple animal models. In contrast, GLP-1R deficient 

mice have a learning deficit that can be restored by hippocampal Glp1r gene transfer 

(85), and have impairments in synaptic plasticity, long-term potentiation (LTP), and 

memory formation (86). GLP-1R overexpression results in a great resilience to a host 
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of physiological and pathological challenges—compared with parent SH-SY5Y cells, in 

a human neuroblastoma cell line (SH-SY5Y) overexpressing GLP-1R (by as little as 2-

fold) and challenged with hydrogen peroxide and 6-hydroxydopamine (6-OHDA), GLP-1R 

stimulation significantly enhanced cell viability and proliferation, clearly illustrating 

the neurotrophic and anti-apoptotic properties of GLP-1R signaling (87). The observed 

neuroprotective properties of GLP-1R-targeting drugs suggested the potential of incretin 

receptor agonists in treating diseases of the brain and, since the foundational studies, 

numerous studies with single, dual, and triple agonists have been undertaken across 

neurodegenerative and neuropsychiatric conditions preclinically and are now extending into 

clinical research trials.

An important consideration in GLP-1R/GIPR/GcgR agonist drug development and, indeed, 

in all neurological therapeutic development (88), is blood-brain barrier (BBB) penetration. 

GLP-1, GIP, and Gcg are large peptide molecules and thus have limited BBB penetration. 

Nevertheless, early studies by Kastin and colleagues (89, 90) as well as by Banks and 

colleagues (91) demonstrated that GLP-1, as well as many alike peptides (92), can access the 

brain in small but pharmacologically relevant amounts. GLP-1 influx was rapid, associated 

with simple diffusion and not a saturable transport system (89). A recent study confirmed 

the rapid brain uptake and pharmacological action of systemically administered GLP-1 

and exendin-4, and suggested the presence of a saturable BBB transporter that potentially 

involves the GLP-1R, as antagonists reduced brain uptake (93). Notably, this same study 

confirmed the abundance of the GLP-1R on brain vascular endothelial cells (93, 94) that 

has been reported to potentially mediate arteriolar dilation and, thereby, regulate tissue 

perfusion (95). The same study additionally demonstrated that resection of the vagus nerve 

(i.e., complete vagotomy) had no effect on brain GLP-1 uptake and pharmacological action 

(as evaluated by elevated protein kinase A (PKA) in rat brain), thus suggesting that such 

pharmacological action required the presence of drug in the brain and was not mediated via 

the peripheral (vagal) nervous system (93)—as vagal afferent neuron GLP-1Rs have been 

shown to have a role in facilitating the actions of GLP-1 on food intake and glycemic control 

(96).

Certain synthetic GLP-1R agonists described below, likewise, have varying ability to 

cross the BBB. In a study by Banks and colleagues (97) comparing the brain uptake 

pharmacokinetics of GLP-1R agonists, the acylated GLP-1R ligands liraglutide and 

semaglutide did not measurably cross the BBB, whereas the non-acylated and non-

PEGylated GLP-1R ligands exendin-4 and lixisenatide did measurably cross the BBB (97). 

However, despite the lack of evidence of semaglutide crossing the BBB, semaglutide has 

been reported to access the brain through interactions with certain ventricular sites and 

circumventricular organs, and can directly access the brainstem, hypothalamus, and septal 

nucleus (98). In separate studies involving the administration of exendin-4 (in the form of 

sustained-release exenatide as Bydureon®) to humans with PD (13) and as a twice daily 

immediate release form (BID Byetta®) in AD (99), cerebrospinal fluid (CSF) concentrations 

of exendin-4 were approximately 2.1% and 1.4% of concomitant plasma levels, respectively. 

In this regard, the maintenance of long-term steady-state plasma levels of exendin-4, as 

achieved by sustained-release PT320/PT302 in preclinical studies or by pump where peptide 
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plasma and CSF levels were quantified, results in greater levels in CSF and a higher CSF/

plasma ratio than the immediate release exendin-4 form (100, 101).

Several dual GLP-1R/GIPR agonists were also evaluated in the study by Banks and 

colleagues (97), and the non-acylated and non-PEGylated dual agonists Peptide 17 and 

Hölscher peptides DA3-CH and DA-JC4 were found to cross the BBB, with exendin-4 

and DA-JC4 exhibiting the best BBB penetration of the peptides assessed (97). This is 

not to say that PEGylated GLP-1R ligands cannot cross the BBB—novel GLP-1R agonist 

NLY01 is a PEGylated formulation reported to be effective in treating a mouse model of 

multiple sclerosis (MS) (102) and of PD (103) and is currently in a phase 2 clinical trial 

for PD treatment (104) (Table 1), highlighting the drug’s promise for potentially treating 

neurological disorders. In contrast, recent studies by Hölscher and colleagues (105) indicate 

that the brain delivery of NLY01 is very low, far less than that of exendin-4 and dual 

GLP-1R/GIPR dual agonists. This is likely consequent to NLY01’s attachment to a 40 kDa 

PEGylation to extend its systemic half-life but simultaneously making it the size of a small 

protein (with a consequentially lower BBB permeability than far smaller peptides such as 

GLP-1 (molecular mass 3,298.7 Da) and Exenatide (4,186.6 Da)). With the many variations 

of GLP-1R-based drugs on the market and in development, BBB penetration is a paramount 

consideration for treatment of neurodegenerative diseases and injuries (5).

2. Neuroinflammation Overview

2.1 Neuroinflammation

Although inflammation is part of the body’s healthy response to pathogens and injury, 

excessive inflammation can have detrimental health effects. In the brain, neuroinflammation 

is the product of cytokine, chemokine, reactive oxygen species (ROS), and second 

messenger signaling, involving interactions between neurons, microglia, and astrocytes 

(Figure 2) (106, 107). Generally, in response to a physiological or environmental 

trigger (for example, pathogens/pathogen-associated molecular patterns (PAMPs), infection, 

neurotoxins, neuronal damage, or injury), resting microglia (i.e., in their physiological 

state) are activated (106) (Figure 2A, B). Microglia exist in context-dependent activation 

states. In a healthy brain, microglia are homeostatic or quiescent when not activated by 

a stimulus and patrol for aberrant signaling and other cues of damage; when an insult is 

detected, microglia are activated into a pro-inflammatory state (12) and express a spectrum 

of associated phenotypes (Figure 2B). In the literature, pro-inflammatory microglia are 

often termed “M1” as opposed to “M2” microglia, which comprise a subtype of activated 

microglia (commonly referred to as “alternatively activated” or “anti-inflammatory”) that 

secrete anti-inflammatory cytokines and exhibit other reparative functions; however, it 

is important to note that the “M1” and “M2” terms are falling out of favor due to 

growing evidence of a spectrum of microglial phenotypes (108). M1 microglia release 

inflammatory molecules, ROS, chemokines (including C-X-C motif chemokine ligand 1 

(CXCL1), C-C motif chemokine ligand 1 (CCL1), and CCL5), prostaglandin E2 (PGE2), 

and cytokines (including interleukin (IL)-1 beta (IL-1β) and tumor necrosis factor (TNF)-

alpha (TNF-α)); which, when excessive, can damage neurons by activating intracellular 

inflammatory pathways involving nuclear factor kappa-light-chain-enhancer of activated 
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B cells (NF-κB), cyclooxygenases (COX) 1 and 2, and ROS, among other signaling 

molecules (109, 110) (Figure 2D). In response, the damaged and dying neurons release 

damage-associated molecular patterns (DAMPs), adenosine triphosphate (ATP), cell debris, 

neuroinflammatory cytokines, and microglial activators, further activating microglia and 

continuing the inflammatory cycle (80, 109) (Figure 2H). DAMPs include myelin sheath 

fragments, tau, amyloid-β, α-synuclein, advanced glycation end products (AGEs), and 

neuron-specific enolase (80). Astrocytes may exacerbate or ameliorate neuroinflammation 

depending on the signals present: interferon gamma (IFNγ), transforming growth factor β 
(TGF-β), signal transducer and activator of transcription 3 (STAT3), glycoprotein gp130, Fas 

ligand (FasL), and brain-derived neurotrophic factor (BDNF) stimulate protective pathways, 

but sphingolipids, IL-17, NF-κB, tropomyosin receptor kinase B (TrkB), suppressor of 

cytokine signaling 3 (SOCS3), vascular endothelial growth factor (VEGF), and chemokines 

can trigger harmful pathways that worsen inflammation (111). CNS disease or injury 

can induce astrocytes to convert to their reactive form (112) through a process termed 

reactive astrogliosis (113) (Figure 2F). More specifically, M1 microglia induce astrocytes to 

convert to their reactive state through the release of cytokines, particularly IL-1α, TNF-α, 

and complement component 1, subcomponent q (C1q) (112, 114) (Figure 2E). Reactive 

astrocytes are neurotoxic and can potentially destroy neurons and oligodendrocytes through 

release of saturated lipids in apolipoprotein (APO) E and APOJ lipoparticles (115) (Figure 

2G). This subtype of astrocytes, previously termed “A1” reactive astrocytes, have been 

identified in human Huntington’s disease, amyotrophic lateral sclerosis (ALS), AD, PD, 

and MS, with common gene markers of these cells becoming significantly upregulated in 

several brain regions (112). This “A1” state is typified by inflammatory transcriptional 

responses, a downregulation of phagocytic function, and neurotoxic activity that likely 

involve activation of toll-like receptor (TLR) 4 on the cell membrane and the downstream 

triggering of the inhibitor of κB kinase (IKK)-NF-κB and mitogen-activated protein kinase 

(MAPK) signaling pathways. Even in the absence of disease states, normal aging induces 

A1 astrocyte formation (116). Although neuroinflammation involves an incredibly complex 

interplay between stimuli (context dependent cascades), cell types, and organism health, 

we have briefly overviewed several key neuroinflammatory mechanisms in the following 

sections.

2.2 NF-κB signaling

Microglia initiate the first stages of neuroinflammation through the activation of NF-κB, a 

Rel family transcription factor. There are 5 members of the NF-κB family; 2 subunits, alike 

or different, may dimerize, translocate to the nucleus, and act as a transcription factor for 

a wide variety of inflammation-related genes (109). In the cytoplasm, NF-κB is inhibited 

by its interaction with inhibitor of κB (IκB)—only free NF-κB may translocate into the 

nucleus (117). The canonical NF-κB signaling pathway is initiated by a pro-inflammatory 

molecule such as IL-1, lipopolysaccharide (LPS), or TNF-α forming rimmers and binding 

to its respective receptor on the cell. This induces a signaling cascade that culminates in the 

inhibitory phosphorylation of IκB by the IKK complex (117, 118). Phosphorylated IκB is 

ubiquitinated and subsequently degraded, thereby freeing NF-κB for nuclear translocation 

(117, 118). In this manner, NF-κB is activated by cellular stresses (such as oxidative 

stress, cytokines, toxins, and carcinogens). Activation of receptors belonging to the TNF 
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superfamily induces the noncanonical pathway of NF-κB signaling, in addition to the 

aforementioned canonical pathway (117, 118). Following stimulation of the noncanonical 

pathway, NF-κB inducing kinase (NIK) is freed from its inhibitory interactions with TNF 

receptor-associated factors (TRAF) 2 and 3 and is thus stabilized; NIK accumulates and 

induces a signaling cascade through IKKα homodimers that allows a different NF-κB 

dimer to freely translocate into the nucleus (118). Once in the nucleus, dimerized NF-κB 

binds to κB elements on gene promoters, which augments the expression of downstream 

genes for various enzymes (such as COX-1 and COX-2, implicated in neuroinflammation 

and neurodegeneration), adhesion molecules, chemokines, and cytokines involved in the 

inflammatory response (119).

2.3 Pro-inflammatory cytokines

Pro-inflammatory cytokines, such as TNF-α and IL-1β, have important roles in 

neuroinflammation and apoptosis. Other cytokines are anti-inflammatory and counter these 

inflammatory responses to provide homeostatic regulatory control. A large imbalance 

between pro- and anti-inflammatory cytokines is problematic. Pro-inflammatory cytokine 

TNF-α activates various receptors that induce apoptosis, including TNF receptors (TNFR) 

1 and 2 and cluster of differentiation (CD) 95, whereas IL-1β activates IL-1 receptor 

(IL-1R) which induces signaling pathways leading to inflammation, excitotoxicity, and 

neurodegeneration (109, 120). Various TNF-α inhibitors have been examined in rodent 

models of CNS diseases and were found to improve neuronal survival, minimize 

neuroinflammation, maintain synapses, reduce apoptosis, and enhance cognitive function 

(121–125), implying detrimental effects of excessive TNF-α activity on CNS health and 

neuronal survival. IL-1β injections in the striatum of rats increased adhesion molecule 

expression, broke down the BBB, and promoted diffusion of toxic nitric oxide (NO) 

(126). Additionally, chronic neuroinflammation, activation of microglia, impaired cognitive 

function, and reduced neurogenesis were observed in mice engineered to overexpress IL-1β 
(127). In humans, elevated levels of these pro-inflammatory cytokines have been linked with 

various neurological disorders, including AD, PD (128, 129), stroke (130), TBI (12), and a 

host of psychiatric disorders that include major depressive disorder, generalized anxiety 

disorder, post-traumatic stress disorder, bipolar disorder, and schizophrenia (131–133). 

Furthermore, pro-inflammatory cytokines increase production of inducible NO synthase 

(iNOS), which in turn elevates levels of NO. NO exhibits multiple mechanisms of 

neurotoxicity, including formation of peroxynitrite and resulting DNA damage, glutamate 

excitotoxicity, and activation of apoptosis signaling cascades (134). In addition to the 

cytotoxic effects of high concentrations of NO, greater abundance of iNOS and NO allows 

for enhanced nitrotyrosination of neural proteins, a common feature of neurodegenerative 

diseases (135, 136).

2.4 ROS

Additional consequences of neuroinflammation include DNA damage, greater oxidative 

stress, and increases in ROS. Conversely, neuroinflammation can be a consequence of 

ROS. ROS are produced by mitochondrial dysfunction (137), and frequently observed 

in neurodegenerative disease (138–141). Oxidative stress and ROS co-occur with 

neuroinflammation, AD, and T2DM (142). Ferroptosis, an iron-dependent form of cell 
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death resulting from excess accumulation of intracellular lipids peroxidation, is linked 

to increased neuroinflammation, and is associated with several neurological disorders 

(143). ROS activate NF-κB and thus exacerbate neuroinflammatory gene and subsequent 

protein expression (144). Antioxidant treatments, such as N-acetyl cysteine (NAC), have 

demonstrated anti-ROS and anti-inflammatory capacity across a wide range of animal 

models of acute brain injury (TBI and stroke) and resulted in improved symptoms of 

military personnel who suffered a TBI in the Iraq war theater (145, 146).

2.5 Pericyte loss

In addition to neurons, astrocytes, and microglia, pericytes are a fourth cell type with 

evidence of GLP-1R expression and demonstrated roles in regulating neuroinflammation 

and neurodegeneration (147, 148). Pericytes are contractile cells found on capillaries 

that confer several important functions, including blood flow control through constriction 

and dilation of capillaries, BBB integrity through regulation of BBB protein expression, 

regulation of leukocyte entry into the brain, angiogenesis, and CNS injury responses (149–

151). Loss or dysfunction of pericytes has been repeatedly associated with BBB damage, 

consequent neurodegeneration, and several CNS diseases (149, 152–156). For instance, 

capillary abnormalities and reduced cerebral blood flow are known characteristics of AD 

and are linked with pericyte dysfunction (149, 157, 158). Pericyte activity is a significant 

component in regulating neuroinflammation and neurodegenerative disease pathology, yet 

few studies examine the therapeutic potential of GLP-1R signaling in pericytes, highlighting 

a need for future research in this realm.

2.6 Neuroinflammation in CNS disease

Neuroinflammation can exacerbate neurodegenerative disorders, and neurodegeneration 

routinely feeds further neuroinflammation (159) (Figure 2). Although healthy aging can 

naturally stimulate neuroinflammatory signaling in the brain (160, 161), AD patients exhibit 

notably higher levels of neuroinflammation (128, 162). Chronic neuroinflammation can 

impair neuroplasticity and cognition, damage neurons, and culminate in neurodegenerative 

diseases epitomized by AD (106) (Figure 2H). AD is the most common neurodegenerative 

disorder and is identified by the accumulation of amyloid-β plaques and neurofibrillary 

tau tangles, which form when tau protein becomes hyperphosphorylated (163). Microglial 

exposure to these plaques elevates pro-inflammatory cytokine production (Figure 2A, B, 

C, D, E), further aggravating the disease and contributing to hippocampal dysfunction 

and associated memory problems in patients (164). Neurotoxic amyloid-β is produced 

when amyloid precursor protein (APP) is disproportionally cleaved by β-site APP cleaving 

enzyme 1 (BACE1) (163). Amyloid-β deposits in the AD brain activate microglia through 

binding to TLR4 and 6 and CD36 receptors (Figure 2A, B), initiating release of pro-

inflammatory cytokines and chemokines that can then damage neurons (Figure 2D); the 

neuronal debris itself can also activate microglia (Figure 2C), perpetuating a cycle of 

chronic neuroinflammation and neurodegeneration (165) (Figure 2H). Furthermore, mass 

cytokine release also may disrupt microglial clearance of extracellular amyloid-β deposits 

by reducing the number of amyloid-β receptors expressed on the microglial cell surface 

(166). Transgenic mouse AD models exhibit increased markers of neuroinflammation 

relative to healthy controls, including elevated brain levels of IFNγ and IL-1β (166–
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168). Recent research proposes that treatments targeting neuroinflammation, particularly 

through reduction of TNF-α activity and resulting reduction in activated microglial activity 

and astrocyte reactivity, may outperform treatments targeting amyloid-β pathology in AD 

clinical trials (114). Although the amyloid-β hypothesis has persisted as a main contributor 

to AD pathology and morbidity, anti-amyloid therapies have not proven effective in 

preventing disrupted cognition (169). A recent GWAS examining common genetic features 

of AD has identified neuroinflammatory pathways (mainly associated with TNF) to be a key 

feature of AD (1), offering perhaps a more viable target for treating the disease.

PD is the second most common neurodegenerative disorder and features characteristic 

neuroinflammation and dopaminergic degeneration in the substantia nigra region of the 

midbrain—neuroinflammation exacerbates PD progression through interactions with PD-

linked gene products, mitochondrial dysfunction, and oxidative stress (170). Drugs targeting 

inflammatory pathways have been proposed as treatments to slow PD progression (171). 

In the PD brain, increased pro-inflammatory cytokine levels, microglial activation, ROS, 

and elevated α-synuclein in neurons are indicative of a neuroinflammatory environment (5). 

This neuroinflammation aggravates pre-existing noxious genetic factors and contributes to 

degeneration of dopaminergic neurons in PD (5, 171).

3. GLP-1R Signaling and Neuroinflammation

3.1 Brain IR and neuroinflammation

In the brain, IR exacerbates neuroinflammation (Figure 3). IR produces chronically 

elevated blood sugar levels and an unhealthy imbalance of lipids in the blood (Figure 

3A), conditions which can damage and increase the permeability of the BBB (48) 

(Figure 3B). In response to BBB damage, free fatty acids, and high blood glucose 

(Figure 3C), microglia are activated into a pro-inflammatory state (Figure 3D), which 

can lead to cytokine release (Figure 3E) and downstream neuroinflammatory cascades 

(Figure 3F) and reactive astrogliosis (Figure 3G) (48). In turn, neuroinflammation further 

damages the BBB, making it increasingly permeable (172)—this enhanced permeability 

elevates the already-high blood glucose concentrations in the brain and contributes to 

a vicious cycle of neuroinflammation as a result of hyperglycemia (173) (Figure 3H). 

Other neuroinflammatory consequences of brain IR include vascular dysfunction (which 

has been linked to dementia accompanying neurodegenerative disease (174)), greater NO 

production, oxidative stress, and consequent neuroinflammation (99). Additionally, chronic 

hyperglycemia and IR worsen neuroinflammation by stimulating excessive mitochondrial 

respiration in the brain, which leads to increased production of ROS and downstream 

activation of NF-κB, cytokine production, and corresponding neuroinflammatory signaling 

cascades (172).

3.2 Brain IR, neuroinflammation, and AD

Brain IR is a risk factor for neurodegenerative diseases such as AD as well as motor 

disorders such as multiple system atrophy (formerly known as Shy-Drager syndrome), 

a sporadic and progressive neurodegenerative condition commonly identified by motor 

abnormalities (ataxia and parkinsonism) and autonomic dysfunction (175), and PD 
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(176–179). Several studies using animal models provide strong evidence that IR and 

neuroinflammation feed AD neuropathology (167, 180–182). For example, in a double 

transgenic mouse model of AD (APP/PS1), brain levels of pro-inflammatory cytokines 

(IFNγ, IL-1β, and IL-4), reactive astrocytes, and IRS-1 phosphorylated at serine 616 (a 

marker of IR (99, 178)) were raised, suggesting that neuroinflammation and IR interact 

in the AD brain (167). Other studies in transgenic mouse models of AD (5xFAD; 

APN−/− and APP23) have found that disruptions in insulin signaling increase microglial 

activation, neuroinflammatory signaling, cognitive deficits, and AD neuropathology (181, 

182). Brain IR also promotes the hyperphosphorylation of tau, leading to the formation of 

tau neurofibrillary tangles characteristic of AD (99). Conversely, certain neurobiological 

characteristics of AD can aggravate IR and neuroinflammation. Amyloid-β oligomers 

stimulate serine phosphorylation of IRS-1, thus worsening brain IR, and a feed-forward 

cycle of IR and amyloid-β plaque formation ensues (99). Moreover, solubilized amyloid-β 
can trigger pro-inflammatory signaling cascades that amplify vascular inflammation and 

vasoconstriction (183). The unhealthy interactions between IR, inflammatory signaling 

cascades, amyloid-β deposition, endothelial dysfunction, and tau yperphosphorylation 

largely contribute to the progression of neuroinflammation and neurodegeneration in AD 

in both animal models and humans (66, 184).

3.3 GLP-1R agonists as treatment for neurodegeneration

Drugs that target brain IR by promoting healthy incretin and insulin signaling are a 

promising research direction for the treatment of neurodegenerative disease (185–188). 

GLP-1R has evidenced expression in neurons, microglia, and astrocytes across key brain 

regions (10) (Figure 4: right panel) and GLP-1R agonists have demonstrated neuroprotective 

and anti-inflammatory properties (189–191). GLP-1R and other secretin receptors GIPR and 

GcgR signal via multiple anti-inflammatory pathways (192, 193) that could be stimulated 

to reduce neuroinflammation and ameliorate conditions of neurodegenerative diseases 

(Figure 4: left panel). Ligand binding-induced activation of the Gαs subunit of a secretin 

receptor’s associated G protein stimulates adenylyl cyclase and consequently elevates cyclic 

adenosine monophosphate (cAMP) levels. cAMP activates exchange protein activated by 

cAMP (Epac) which has downstream anti-inflammatory and antiapoptotic effects (194, 

195). cAMP also stimulates protein kinase A (PKA), which stimulates MAPK/ERK anti-

inflammatory signaling and phosphorylates and activates the transcription factor cAMP 

response element (CRE)-binding protein (CREB) (196, 197). Another signaling pathway, 

the phosphatidylinositol-3 kinase (PI3K)/Akt pathway, likewise amplifies CREB signaling 

(198). CREB binds to CRE promoters and enhances expression of downstream genes, 

several of which are anti-inflammatory and neuroprotective, such as B-cell lymphoma 2 

(Bcl-2) and B-cell lymphoma-extra large (Bcl-xL) (199). Bcl-2 and Bcl-xL are antiapoptotic 

molecules that inhibit the activity of pro-apoptotic proteins including Bcl-2 associated 

agonist of cell death (BAD), p53, and caspases (12, 199, 200). CREB also activates apurinic/

apyrimidinic endonuclease 1 (APE1), with downstream effects of ameliorating oxidative 

stress-associated DNA damage (201). Notable in Figure 4 is that key signaling proteins, 

particularly Akt, act as a control center and thereby are master regulators of downstream 

biochemical cascades that can impact cell survival, metabolism, protein homeostasis, and 

inflammation—these proteins are a central hub of both insulin and GLP-1 signaling.
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The relevance of Akt in PD development is backed by reports of selective loss of 

dopaminergic neurons associated with a decreased expression of Akt pS473 in the PD 

brain (202, 203). Additionally, PD risk factor genes, such as PINK1, appear to converge 

and interact with Akt; while inhibition of this cascade promotes neurodegeneration (204, 

205). The site of action of incretin receptor activation on PI3K/Akt signaling has not 

been definitively elucidated but could be downstream of IRS-1 activation by incretin 

signaling (12). In addition to CREB regulation, the PI3K/Akt pathway also inhibits NF-κB 

inflammatory signaling; inhibits Forkhead box protein O1/O3 (FOXO1/O3)-, Jun N-terminal 

kinase (JNK)-, and glycogen synthase kinase-3β (GSK-3β)-mediated apoptotic signaling; 

and stimulates mammalian target of rapamycin (mTOR) neuroprotective signaling (12, 

206, 207). As in Figure 4 and above, GLP-1R stimulation as well as insulin also trigger 

the MAPK pathway. This is comprised of three primary arms, the JNKs, the ERKs, 

and p38 kinases that, together, can either augment survival and proliferation or engender 

stress and apoptosis, depending on the cell type and stimulus. With considerable cross 

talk and feedback between these pathways, these potentially protective signaling cascades 

downstream of GLP-1R, GIPR, and GcgR indicate the great potential in targeting these 

receptors for anti-inflammatory and anti-neurodegenerative drug treatments.

Numerous GLP-1R, GIPR, and/or GcgR agonists have been developed for the treatment 

of T2DM and obesity and have the potential to be repurposed for the treatment of 

neurodegenerative diseases (Table 1). GLP-1R agonists have been tested in preclinical and 

clinical studies to investigate whether restoring brain insulin signaling is a viable treatment 

option for neuroinflammation and corresponding neurodegeneration.

3.4 GLP-1R agonism reduces neuroinflammation in preclinical studies

The link between IR and neuroinflammation is highlighted by a multitude of cell culture 

and animal studies that utilize various incretin receptor-stimulating treatments to maintain 

healthy insulin signaling and reduce markers of neuroinflammation and neurodegeneration. 

Such preclinical studies are briefly overviewed in the following sections.

GLP-1—In the brain, GLP-1R stimulation by GLP-1 is associated with neuroprotective 

benefits to the CNS. Research in SH-SY5Y human neuroblastoma cells found that 

GLP-1 treatment promoted neuronal viability through anti-apoptotic, anti-oxidative, and 

neurotrophic mechanisms, involving elevated PKA and PI3K pathway activity, decreased 

expression of apoptotic factors, and increased expression of anti-apoptotic factors (87, 

191). Furthermore, GLP-1 activity has been demonstrated to have anti-neuroinflammatory 

and anti-neurodegenerative effects in preclinical model systems. Cultured rat primary 

hippocampal neurons treated with GLP-1 were protected against amyloid-β-induced 

neurotoxicity (218). In mice pretreated with LPS to simulate AD-like neuroinflammation, 

GLP-1-increasing treatments reversed inflammation-induced synaptic impairments in 

the hippocampus (219); reduced amyloid-β deposition, inflammatory glial activation, 

and expression of inflammatory molecules COX-2, TNF-α, IL-1β, and TLR4 (220); 

and inhibited activity along the inflammatory NF-κB/TLR4 and Akt/GSK-3β signaling 

pathways (221). Moreover, increasing GLP-1 levels in mice pretreated with LPS reduced 

memory impairment (221) and improved cognitive performance (219); in mice pretreated 
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with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to simulate motor dysfunction 

characteristic of PD, GLP-1 augmentation improved motor abilities (221). The potential 

for GLP-1 to improve AD and PD pathology was reinforced in experiments using primary 

mouse mixed neuronal cultures challenged with amyloid-β (modeling AD) or α-synuclein 

(modeling PD), in which GLP-1 metabolite (9–36) enhanced cell survival and decreased 

M1-like microglia numbers (191). Additionally, the metabolite reduced IL-6 and TNF-α 
levels secreted by LPS challenged human HMC3 and mouse IMG microglial cells lines 

(191). Hence, multiple studies have independently demonstrated that GLP-1R stimulation 

by GLP-1 and, more recently, by its primary metabolite GLP-1(9–36) (191) are anti-

inflammatory and neuroprotective.

Exendin-4/Exenatide—Neuroprotective and neurotrophic effects of exendin-4 treatment 

have been observed in mouse models of various neural diseases, including middle cerebral 

artery occlusion-induced stroke (4), ALS in SOD1 G93A mutant mice (222), and T2DM-

related neuropathies induced by pyroxidine (223). Furthermore, a study in cultured SH-

SY5Y human neuroblastoma cells demonstrated greater neuronal viability and proliferation 

with exendin-4 treatment (87). Exendin-4 treatment has been found to exhibit significant 

anti-inflammatory effects as well, especially in the context of neurodegenerative disease—

exendin-4 treatment in cultured primary rat astrocytes (224) and neurons (225) reduced 

amyloid-β-induced oxidative stress, cytotoxicity, and neuroinflammation. In transgenic 

mouse models of AD (5xFAD and 3xTg-AD) as well as in human cortical neurons 

obtained post-mortem, GLP-1R stimulation using an engineered exendin-4 treatment 

reduced amyloid-β-induced microglial activation, thus limiting neuroinflammation; inhibited 

reactive astrogliosis through the reduction of inducers TNF-α, C1q, and IL-1α; and 

improved neuronal viability (226). Similar effects, using the same GLP-1 mimetic, were 

demonstrated in a mouse PD model (103). Furthermore, GLP-1R activation through 

exendin-4 treatment was found to improve recognition memory impairment by dampening 

signaling along the AMPK/NF-κB pathway, reducing levels of neuroinflammatory cytokines 

IL-1β, IL-1β p17, and TNF-α, and increasing synaptic protein levels in mice with spared 

nerve injury modeling neuropathic pain (227). Markers of AD (amyloid-β deposition, 

abnormal glycoprotein glycan expression, and cognitive and memory impairments) and of 

brain IR (IRS-1 serine phosphorylation and elevated blood glucose levels) were reduced 

with exendin-4 treatment in transgenic mouse models of AD (225, 228, 229). With relevance 

to PD, MPTP and 6-OHDA mouse models of PD treated with exendin-4 exhibited enhanced 

motor function and dopamine signaling and minimized neurodegeneration (4, 101).

Exenatide, a synthetic version of exendin-4, exhibits similar anti-neuroinflammatory 

and anti-neurodegenerative benefits in preclinical models. In a 3xTg-AD mouse model, 

exenatide treatment reversed high fat diet-induced impairments of BDNF signaling and 

reduced levels of NF-κB and peroxisome proliferator-activated receptor proteins (PPARs) 

α and γ, indicating reduced inflammation; however, there was no significant effect on 

systemic metabolism nor cognitive performance in response to exenatide treatment in 

this experiment (230). Exenatide has also been found to combat neuroinflammation and 

AD as indicated by reduced ‘nucleotide-binding oligomerization domain, leucine-rich 

repeat, and pyrin domain containing 2’ (NLRP2; a component of the inflammasome in 
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astrocytes) levels in the piriform cortex, reduced amyloid-β deposition, and improved 

cognition in 5xFAD transgenic mice modeling AD (224). PD mice respond to exenatide 

treatment as well—6-OHDA and MitoPark PD mouse models treated with a sustained 

release exenatide formulation (PT320) experienced neuroprotective effects of the drug, 

including improved motor function (231) and enhanced dopamine signaling activity 

in midbrain networks (232). Additionally notable in these two PD preclinical studies 

was an exenatide-mediated reduction in L-3,4-dihydroxyphenylalanine (L-DOPA)-induced 

abnormal involuntary movements (AIMs) in the rat 6-OHDA model and a slowing of disease 

progression, dopamine loss, and motor deficits in the MitoPark mouse when administered a 

clinically translatable drug dose (231).

Liraglutide—Liraglutide is structurally similar to GLP-1; however, its acylation 

(supporting binding to serum albumin) increases the peptide’s half-life by slowing 

absorption and evading recognition by DPP-IV (233). Although FDA-approved for the 

treatment of T2DM, research indicates that liraglutide may provide neuroprotective effects. 

For example, in cultured SH-SY5Y human neuroblastoma cells, liraglutide pretreatment 

decreased oxidative stress and promoted neuroprotection and neurotrophy, likely through 

a cAMP-dependent PKA/CREB signaling pathway (234). Results of preclinical studies 

of liraglutide have important implications for treating AD and neuroinflammation. 

Interestingly, a 2016 study reported no significant effect of liraglutide treatment in reducing 

amyloid-β plaque load in transgenic APP/PS1 mouse models (235). This could potentially 

be due to relatively poor BBB penetration of liraglutide and highlights the need for the 

research into the development of GLP-1R-stimulating drugs that can measurably reach the 

brain from the periphery. However, other research has found that liraglutide appears capable 

of crossing the BBB in pharmacologically relevant amounts and acting on GLP-1R in the 

CNS (236). More recently, in a study using a streptozotocin (STZ)-induced insulin resistant 

and a 5xFAD mouse model, liraglutide treatment reversed markers of neuroinflammation 

(particularly astrocyte reactivity and microglial activity in the cortex and hippocampus) 

and amyloid-β plaque deposition (237). Furthermore, liraglutide pretreatment in human 

SH-SY5Y neuroblastoma cell culture protected against the apoptotic effects of okadaic 

acid and limited tau activation and BACE1 expression, and in a rat model of okadaic acid-

induced AD, liraglutide improved rat memory function and cognition and reduced neuronal 

apoptosis, tau phosphorylation, and BACE1 levels (163). These more recent studies suggest 

that liraglutide may be efficacious in improving certain markers of neuroinflammation and 

AD when administered in a sufficiently high dose. However, since relatively few studies 

evaluate plasma drug levels, how drug doses selected for evaluation in preclinical studies 

relate to those safely tolerated in and translatable to humans remains unknown.

Lixisenatide—Fewer studies have investigated neuroprotective effects of lixisenatide, 

a long-lasting GLP-1R agonist confirmed to be capable of measurably crossing the 

BBB and exerting neuroprotective effects (236). These neuroprotective effects of 

lixisenatide treatment include reductions in amyloid-β plaques, tau neurofibrillary tangles, 

and neuroinflammation (measured by microglial activation in the hippocampus), as 

demonstrated by a study utilizing an APP/PS1/tau mouse model of AD (238). These 

effects were a result of augmented PKA/CREB pathway and inhibited p38/MAPK pathway 
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signaling due to GLP-1R stimulation (238). Lixisenatide has also been found to enhance 

LTP in the hippocampus, improve working memory, maintain synapses, reduce amyloid-β 
plaque levels, and combat neuroinflammation in AD rodent models (APPswe/PS1ΔE9 mice 

and rats) (239–241). Furthermore, in a MPTP PD mouse model, lixisenatide treatment was 

associated with neuroprotective benefits and reduced PD-related motor impairment (242).

DPP-IV Inhibitors—Although not GLP-1R agonists, DPP-IV inhibitors block the action of 

DPP-IV and therefore reduce the rate of breakdown of GLP-1 and GIP, consequently raising 

levels of endogenous incretins and promoting healthy incretin hormone signaling. Numerous 

DPP-IV inhibitors are FDA-approved for the treatment of T2DM, and DPP-IV inhibition has 

demonstrated efficacy in reducing neuroinflammation and AD markers—DPP-IV inhibition 

in an STZ-induced rat model of AD elevated GLP-1 levels and decreased levels of amyloid-

β, total tau, phosphorylated tau, and pro-inflammatory cytokines TNF-α and IL-1β in 

a dose-dependent manner (243). Furthermore, treatment of Zucker diabetic fatty (ZDF) 

rats with the DPP-IV inhibitor alogliptin raised the expression of CREB target genes 

and decreased blood glucose in the hippocampus, thus dampening the neuroinflammatory 

response (244). Anti-neuroinflammatory effects were also observed with DPP-IV inhibitor 

sitagliptin, which significantly quelled the neuroinflammatory response in various rodent 

models by reducing levels of the pro-inflammatory molecules TNF-α, IL-6, IL-17, and 

CD163 and by raising levels of the anti-inflammatory molecules TGF-β and IL-10 (207). 

With regard to neurodegenerative disease treatment, sitagliptin has also been found to reduce 

amyloid-β deposition, have antiapoptotic and antioxidative properties, and improve scores 

on mini-mental state exam (MMSE) tests for dementia of elderly people with and without 

AD (207). Linagliptin, another DPP-IV inhibitor, was found to increase levels of GLP-1 and 

GIP in the brain; reduce amyloid-β, tau phosphorylation, and neuroinflammation (indicated 

by reduced glial fibrillary acidic protein (GFAP) immunoreactivity); and improve cognitive 

deficits of AD in a 3xTg-AD mouse model (245). Similarly, DPP-IV inhibitor Gramcyclin A 

treatment in a recent APP/PS1/tau triple transgenic mouse model of AD stimulated GLP-1R 

signaling, promoted glucose uptake in the brain, decreased levels of activated microglia and 

neuroinflammation in the hippocampus, and reduced amyloid-β plaques, soluble amyloid-β–

40, and soluble amyloid-β–42 levels (246). As a cautionary note, drug levels were not 

evaluated in majority of the above studies, and how the selected doses in these preclinical 

studies relate to those translatable to humans remains unknown.

Dual Agonists—Dual incretin agonists co-stimulate both GLP-1R and GIPR and, in 

general and when well-designed, have been found to outperform single GLP-1R agonists 

in ameliorating markers of neuroinflammation and neurodegeneration (247–249). Several 

GLP-1R/GIPR dual agonists generated by Hölscher and colleagues have been found to 

have anti-neuroinflammatory and anti-neurodegenerative benefits in preclinical studies 

(247–250). Treatment of APP/PS1 and APP/PS1/tau mouse models of AD with the 

Hölscher dual agonist DA-JC4 reduced pro-inflammatory cytokine levels, phosphorylated 

tau levels, and amyloid-β plaque load; improved memory impairments and mitochondrial 

volume and numbers; and strengthened synapses and LTP in the hippocampus (249, 250). 

DA-CH5, another of the Hölscher dual agonists, outperformed liraglutide in reducing 

neuroinflammation (as evaluated by reduced levels of activated microglia and astrocytes), 
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apoptosis, and oxidative stress in a MPTP mouse model of PD (247). Similarly, DA-JC1 

outperformed liraglutide in reducing oxidative stress and ROS, enhancing neuronal viability 

and neurogenesis, and reducing reactive astrocytes and neuroinflammation, both in an 

APP/PS1 mouse model of AD and in cultured SH-SY5Y human neuroblastoma cells 

challenged with hydrogen peroxide (248). Anti-neuroinflammatory benefits have also been 

observed using the original GLP-1R/GIPR agonist of DiMarchi and colleagues (termed 

“twincretin”). In cultured SH-SY5Y human neuroblastoma cells, twincretin has been 

demonstrated to enhance neurotrophic signaling through stimulating the CREB pathway and 

promote neuronal survival in conditions modeling neuroinflammation (251). Additionally, 

twincretin’s actions on elevating levels of cAMP (the initial event in the cascade triggered 

by receptor engagement, binding, and activation) and inducing neurotrophic activity were 

significantly greater than equimolar concentrations of single GLP-1R or GIPR agonists 

(251). Dual agonists also offer numerous other neuroprotective benefits including reduced 

oxidative stress and improved memory function, synaptic health, and neurogenesis in mice 

(252), as well as neuroprotective and antioxidant properties in rodent models of TBI 

(12, 100, 251). Interestingly, the human dose of liraglutide (single GLP-1R agonist) and 

twincretin (dual GLP-1R/GIPR agonist) in T2DM is the same: 1.8 mg subcutaneously daily. 

In the preclinical evaluation of twincretin in concussive head injury by Bader and colleagues 

(100), a direct comparison was made to liragultide treatment—a 247.6 μg/kg dose of 

liraglutide in mouse, which translates to a 1.8 mg dose in an 88.8 kg human, provided 

similar efficacy to a 5-fold lower dose of twincretin (50 μg/kg) to mitigate TBI-induced 

neuroinflammation, neuronal loss and behavioral impairments.

Triple Agonists—“Triagonists” are unimolecular peptide drugs that simultaneously 

target GLP-1R, GIPR, and GcgR. While primarily in development for treating metabolic 

disease (37), these triple agonists have also been linked with reduced neuroinflammation 

and neurodegeneration. A novel triple agonist stimulated CREB pathway signaling in 

hippocampal neurons in a 3xTg-AD mouse model of AD and produced improvements 

in cognition, working memory, and long-term spatial memory (253). The triple agonist 

was also found to reduce amyloid-β plaques, neuroinflammation, and oxidative stress and 

increase neurogenesis, number of synapses, and BDNF expression in APP/PS1 mice (254), 

indicating a potential for treating AD. In SH-SY5Y human neuroblastoma cells, a GLP-1R/

GIPR/GcgR triagonist reduced oxidative stress, enhanced neuronal health and viability, 

and minimized glutamate excitotoxicity, highlighting the neurotrophic/protective effects of 

secretin receptor stimulation (255). The ability of the triagonist to elevate cAMP levels 

was dramatically greater than that of a single GLP-1R agonist on an equimolar basis 

(255), and selective antagonists for each of the three secretin receptors were required 

to inhibit the triagonist mediated neurotrophic/protective actions, thereby suggesting 

balanced pharmacological action across these receptors (255). Moreover, the triagonist 

significantly reduced TNF-α secretion in primary mouse microglia challenged with LPS 

(255). Additionally, in a 30-gram weight drop close head injury mouse model of mild 

concussive TBI, the triagonist improved memory function following injury (255). These 

findings support the successful translation of neuroprotective and anti-neuroinflammatory 

properties from cellular to animal studies for this promising drug.
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3.5 GLP-1R agonists in human trials

Use of incretin receptor-targeting drugs for the treatment of CNS diseases is further 

supported by meta-analyses revealing that T2DM patients’ prescribed GLP-1R stimulating 

medications may promote CNS health. Cohort studies of T2DM patients using GLP-1R 

stimulating drugs, either through GLP-1R agonism or DPP-IV inhibition, exhibited 

decreased risk of developing PD (271, 272). Another cohort of T2DM patients taking 

GLP-1R agonists had a reduced risk of stroke relative to patients who were taking GLP-1R-

stimulating drugs (3, 273). These analyses suggest CNS disease modifying capability of 

drugs that promote GLP-1R signaling. Thus, clinical studies in humans have been proposed 

and completed to investigate the potential for GLP-1R agonists in treating neurodegenerative 

diseases (Table 2) and will be overviewed in the following sections.

GLP-1R agonists liraglutide (Victoza®), semaglutide (Ozempic®, Rybelsus®), exenatide 

(Bydureon®, Byetta®, PT320, NLY01), and lixisenatide (Adlyxin®/Lyxumia®) have been 

FDA-approved or are in trials for the treatment of T2DM and are currently being 

investigated to determine their potential efficacy in treating neurodegenerative diseases. 

Only trials of liraglutide and exenatide have reached completion. In a phase 2 clinical trial 

investigating liraglutide treatment in patients with AD, 6 months of liraglutide treatment 

significantly increased glucose transport at the BBB, elevating the cerebral metabolic 

rate for glucose and reversing the abnormalities in brain glucose transport commonly 

associated with AD pathology (274). In addition, a human study found that 12 weeks of 

liraglutide treatment improved brain connectivity but had no measurable effect on cognition 

(275). Furthermore, this research revealed a negative association between fasting plasma 

glucose level and bilateral hippocampal and anterior medial frontal connectivity (275), 

indicating a potential relationship between incretin signaling (regulates plasma glucose) 

and neural abnormalities. Most recently, a 52-week phase 2 clinical trial of liraglutide 

in PD patients found that liraglutide treatment was safe and well-tolerated and improved 

non-motor symptoms, mobility, and quality of life (276). Currently awaited is the peer-

reviewed analysis of the Evaluating Liraglutide in Alzheimer’s Disease (ELAD) study, 

a 12-month, multi-center, randomized, double-blind, placebo-controlled, phase 2b clinical 

trial of liraglutide in mild to moderate Alzheimer’s dementia (204 patients; NCT1843075) 

where the primary outcome is to measure changes in cortical glucose metabolic rates 

during the 12-month liraglutide treatment versus the placebo group (277). In a preliminary 

correspondence, there was no significant change in this primary marker; however, liraglutide 

was found to be well-tolerated, and positive numerical outcomes were evident amongst 

secondary outcome measures that comprise various markers of AD and neuroinflammation, 

including changes in several cognitive measures, brain volume and connectivity, microglial 

activation, tau phosphorylation, and amyloid-β levels (278). Another trial that is currently in 

progress investigates the safety and efficacy of liraglutide in treating patients with PD (279).

At present, exenatide is the most prevalent GLP-1R agonist in clinical trials for AD and 

PD treatment. In an 18-month phase 2 clinical trial investigating the safety and efficacy of 

exenatide (administered as BID Byetta®) in treating early AD, extracellular vesicles isolated 

from the patients exhibited reduced amyloid-β–42 concentrations with exenatide treatment 

(257). However, in the same study, there were no significant differences between exenatide 
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treatment and placebo in patients’ cognition, cortical thickness and volume, or biomarkers of 

AD in CSF or plasma (257). This was a small double-blind, randomized, placebo-controlled 

clinical trial whose primary outcome was to assess safety and tolerability. A total of 18 

patients completed the study, and partial outcomes were available on 21 patients prior 

to the premature termination of the study when the sponsor withdrew provision of drug 

and matched placebo pens. Exenatide proved to be well-tolerated but the study was 

underpowered to truly evaluate markers of efficacy and drug action (257). Hence, further 

research is required to elucidate the effects of exenatide and related drugs in AD patients.

Exenatide may also be efficacious in treating PD—a proof of concept, single-blinded 

phase 2 clinical trial assessed 45 moderate PD patients randomly delegated to receive 

subcutaneous exenatide (BID Byetta®) or to act as controls for 12 months. The trial 

evaluated overnight off-medication motor scores at baseline, time-dependently over the 

study, and following a 2-month washout period and found a significant exenatide-mediated 

improvement in the Movement Disorders Society Unified Parkinson’s Disease Rating 

Scale (MDS-UPDRS) part 3 that persisted through the washout period (258). A follow 

up of available patients indicated that the exenatide actions endured over 12 months 

following drug cessation (280). This open label clinical trial spurred a larger double-

blind, randomized, placebo-controlled trial by the same group that evaluated once weekly 

extended-release exenatide (Bydureon®) in moderate PD patients and reported significantly 

improved off-medication motor scores (13) assessed by MDS-UPDRS part 3, the primary 

outcome measure. In accompanying studies evaluating the contents of blood sampled, 

neuronal-derived exosomes demonstrated that the efficacious exenatide interactions were 

mediated through the brain insulin, Akt, and mTOR signaling pathways in PD patients 

(281). Moreover, in a post-hoc analysis, 12 weeks of exenatide treatment in patients with 

moderate stage PD was found to improve mood and reduce indicators of depression, 

and these beneficial effects persisted up to 48 weeks following exenatide treatment 

(282). Following the success of these single-center exenatide PD clinical trials, Foltynie 

and colleagues have initiated a multi-center, phase 3 clinical trial to evaluate once 

weekly extended-release exenatide (Bydureon®) over a 96-week period to define whether 

exenatide’s advantageous actions are symptomatic or disease-modifying to potentially 

impact disease progression, or combined elements of both (Exenatide-PD3; NCT04232969). 

A sustained-release exenatide phase 2, multi-center clinical trial involving a once weekly 

and once every other week administration (PT320; Peptron; NCT04269642) has recently 

been completed in South Korea that largely follows the clinical protocol of Foltynie and 

colleagues (13), and results are awaited. This trial, likewise, evaluates the contents of 

brain-enriched exosomes to define biomarkers of drug response. Additional clinical trials 

for exenatide and alike drugs in neurodegenerative disease treatment are currently underway 

(Table 2).

Although no clinical trials have yet been completed, semaglutide is also being investigated 

for treatment potential for AD and PD. Two phase 3 clinical trials are currently recruiting 

patients with early AD to test the effects of oral semaglutide treatment on dementia ratings 

and measures of various cognitive and behavioral symptoms of AD (283, 284). In the 

United Kingdom, a phase 2 clinical trial is recruiting to evaluate effects of oral semaglutide 

treatment on tau regulation in aged individuals (285). As concerns PD, a phase 2 trial has 
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been proposed to evaluate the effects of subcutaneous semaglutide treatment in improving 

motor function deficits in patients with PD (286).

The utilization of GLP-1R agonists to treat neurodegenerative diseases other than AD 

and PD, such as glaucoma and Friedreich ataxia (FRDA), has been investigated in very 

few clinical trials and requires further research. Glaucoma is a neurodegenerative disorder 

involving the deterioration and death of retinal ganglion cells (RGCs) and is, in large 

part, driven by neuroinflammation (287–289); thus, glaucoma has potential to be treated 

with incretin receptor agonists. In an observational retrospective study, the incidence of 

new glaucoma diagnoses in a cohort of approved GLP-1R agonist users was compared 

to that in a cohort of healthy control participants (11). The GLP-1R agonist user cohort 

exhibited a significantly lower incidence of new glaucoma diagnoses relative to the control 

cohort, suggesting a potential neuroprotective effect of GLP-1R stimulation in patients 

with glaucoma (11). FRDA is a heritable neurodegenerative movement disorder fueled 

and exacerbated by neuroinflammation (290–292), which could make it a candidate for 

GLP-1R agonist treatment. Exenatide treatment was found to re-elevate reduced levels 

of frataxin, a critical mitochondrial protein, in FRDA patients, which can enhance 

mitochondrial health and function and could, by extension, reduce neuroinflammation and 

neurodegeneration characteristic of the disease (293)—again, providing a potentially fruitful 

area of future basic and clinical research. Similarly, studies by Meissner and colleagues 

(178) demonstrated the presence of impaired insulin/IGF-1 and IR in vulnerable brain 

regions of multiple system atrophy patients and a related transgenic mouse model, and their 

mitigation in the latter by exendin-4, likewise suggesting a promising area of future research.

Finally, albeit it not a classical neurodegenerative disorder, studies by Sinclair and 

colleagues (294) demonstrated the efficacy of exenatide in reducing hypertension in a 

rat model of hydrocephalus, which has relevance to the human disorder of idiopathic 

intracranial hypertension for which effective pharmacological treatments are currently 

lacking (295). The choroid plexus expresses an abundance of GLP-1Rs and GLP-1R 

agonists reduce the activity of Na+/K+ ATPase, a marker of CSF secretion and, thereby, 

intracranial pressure (294). Whereas the primary pathogenesis of idiopathic intracranial 

hypertension remains to be identified, various mechanisms have been suggested to underpin 

the elevated CSF pressure that include heightened CSF generation, diminished CSF re-

absorption, cerebral edema, and a raised cerebral venous pressure (296), and there is a 

proposed neuroinflammatory element (297). Early neuronal cell loss, later vision loss, and 

a host of sequela, such as severe chronic headache, ensue (298). A recent randomized, 

placebo-controlled, double-blind clinical trial of exenatide in women with idiopathic 

intracranial hypertension significantly decreased intracranial pressure, reduced headache 

frequency, and improved visual acuity in the treatment arm over the 12-week duration 

of the study (299). Following up on this, a 24-week randomized double-blind clinical 

trial of Presendin (which contains 2 mg of exenatide) versus a matching placebo group 

(once weekly) has just been initiated with a focus to evaluate 240 idiopathic intracranial 

hypertension patients (NCT05347147).

GLP-1R agonists may additionally have potential in treating neurological disorders 

that are not classified as neurodegenerative diseases, given the wealth of evidence for 
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neurotrophic, neuroprotective, and anti-inflammatory properties of GLP-1R signaling. 

Extensive preclinical studies using cellular and animal models of TBI have revealed that 

GLP-1R stimulation provides neurotrophic, anti-neuroinflammatory, anti-neurodegenerative, 

and anti-oxidative effects and not only mitigates cognitive and memory impairments but 

blocks TBI-initiated gene pathways leading to longer-term neurodegenerative diseases (100, 

234, 251, 255, 300–305). In addition, GLP-1R agonists may protect against ischemic stroke 

(4) and ameliorate biological consequences of stroke, as indicated by aforementioned meta-

analyses (3, 273). Furthermore, studies in animal and cellular models of ischemic stroke 

demonstrated that GLP-1R stimulation reduced neuroinflammation (2, 306), endothelial 

leakage (2), neural apoptosis (307), and ROS (308); protected the BBB (306, 308); and 

enhanced cerebral blood flow (309). MS, a disease in which the immune system attacks 

the CNS, demyelinates axons, and disrupts nervous system signaling, may also be treatable 

using GLP-1R agonism. Preclinical trials in rodent models of MS report that GLP-1R 

agonists were neuroprotective, improved myelination, and reduced neuroinflammation, 

oxidative stress, and reactive astrogliosis (102, 310–312). Clinical trials in these conditions 

should be considered in order to investigate the therapeutic potential of GLP-1R agonists 

across a broader range of neurological diseases.

4. Conclusion

An abundance of research in cellular and animal model systems highlights the potential for 

GLP-1R agonists in reducing neuroinflammation and treating neurodegenerative diseases. 

Many GLP-1R agonists have already been approved by the FDA for the treatment of 

diabetes and obesity and could be repurposed for the treatment of neuroinflammation and 

neurodegeneration. This repurposing will require additional research in human clinical trials 

to confirm the safety, tolerability, and efficacy of each drug in reducing neuroinflammation 

in the human brain, as well as reveal the implications for neurodegenerative disease 

treatment. Several clinical trials have been completed or are currently underway to 

investigate the utility of GLP-1R agonists in treating neurodegenerative diseases, and 

the use of exosomes to evaluate biomarkers of drug target engagement and biological 

cascades involved in disease progression would provide valuable insight into drug action. 

In future research on the development of effective incretin receptor-stimulating drugs for 

reducing neuroinflammation as well as mitigating disease progression via multiple potential 

neurotrophic/protective actions, important considerations should include BBB penetration 

and the demonstrated enhanced efficacy of multi-agonism relative to single agonism agents. 

Across preclinical studies, the introduction of pharmacokinetics can provide a valuable 

measure as to whether chosen drug doses have any translatable relevance to the human 

condition.
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Figure 1. 
(A) The endogenous secretins have similar amino acid sequences and structures, most 

notably their favorable cleavage sites for DPP-IV. This results in very short half-lives 

for these peptides. (B) Exendin-4 is a GLP-1 analog naturally occurring in Gila monster 

lizard venom. The unique glycine residue at the DPP-IV cleavage site renders the protein 

unrecognizable by DPP-IV and prolongs the half-life of the peptide. Thus, the exendin-4 

backbone has been utilized in the creation of longer-acting synthetic GLP-1R agonists. 

Figure adapted from Glotfelty et al. 2020 (5).
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Figure 2. 
Cycle of neuroinflammation. Various cellular stressors (A) can activate microglia (B), which 

release cytokines, chemokines, and other pro-inflammatory molecules onto neurons (D) and 

astrocytes (E). These pro-inflammatory molecules can also bind to microglia in an autocrine 

fashion, triggering activation of additional microglia and further inflammatory signaling 

(C). Intracellular neuroinflammatory pathways in astrocytes and neurons are stimulated 

in response. As a result, a subpopulation of astrocytes undergoes reactive astrogliosis 

and convert to their neurotoxic reactive form (F) and release APOE and APOJ particles 

containing harmful saturated lipids onto neurons (G), producing further neuroinflammation 

and neurodegeneration (H). Damaged neurons release DAMPs, cell debris, ATP, and 

ROS and activate additional microglia (I), recommencing and amplifying the cycle of 

neuroinflammation.
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Figure 3. 
Interactions between IR, neuroinflammation, and neurodegenerative disease. Elevated blood 

sugar levels and dyslipidemia in the blood are consequences of IR (A) that can damage 

and increase permeability of the BBB (B). BBB damage results in the infiltration of the 

brain with free fatty acids and excessive glucose (C), thus activating microglia into a 

pro-inflammatory state (D). These activated microglia release cytokines (E) that stimulate 

neuroinflammation (F) and reactive astrogliosis (G). Chronic neuroinflammation fuels the 

development of brain IR, neurodegeneration, and the progression of AD (H).
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Figure 4. 
Anti-inflammatory mechanisms of GLP-1R/GIPR/GcgR signaling, and sites of receptor 

expression as evidenced in rats (red superscript), mice (blue superscript), and humans 

(black superscript). Signaling pathways downstream of secretin receptor activation minimize 

neuroinflammation, oxidative stress, and apoptosis and provide cytoprotective effects. 

Sources: (a.) ref(208); (b.) ref(77); (c.) ref(209); (d.) ref(210); (e.) ref(78); (f.) ref(81); (g.) 

ref(211); (h.) ref(212); (i.) ref(213); (j.) ref(214); (k.) ref(215); (l.) ref(216); (m.) ref(217). 

Figure adapted from Glotfelty et al. 2019 (12).
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Table 1.

Comprehensive list of incretin receptor-targeting drugs for metabolic disease treatment. Numerous incretin 

receptor-targeting treatments have been approved (red if in the United States, green if abroad) or are 

currently in clinical trials or being developed (blue) for metabolic diseases, namely T2DM and obesity, 

and/or promoting weight loss. Highlighted drugs are in clinical trials for the treatment of AD or PD. 

While DPP-IV inhibitors do not directly stimulate incretin receptors, they increase levels of endogenous 

incretins and, thereby, promote incretin receptor signaling, and thus are included in the table. Only Victoza®, 

Bydureon®, and Byetta® have completed clinical trials for incretin analog treatment for neurodegenerative 

diseases; Ozempic®, Rybelsus®, Adlyxin®/Lyxumia®, PT320, and NLY01 are currently in clinical trials for 

neurodegenerative disease treatment.

Mechanism 
of Action Company Drug Name Administration Uses Other Notes

GLP-1R 
Agonist

AstraZeneca Exenatide

Bydureon ® 

BCise ™ Once weekly SC T2DM
Latest formulation of 
Bydureon®.

Bydureon ® Once weekly SC T2DM

2 mg injection once each week, 
extended release formulation. 
Completed clinical trial in 
severely obese adolescents 

in 2020 (#NCT02496611). 
Phase 2 clinical trial 

(#NCT01971242) for PD 
patients completed in 2016 
(see (a.) Athauda et al. 2017). 
Additional clinical trials for PD 
patients ongoing.

Byetta ® Twice daily SC T2DM

Used any time within 1 hour 
before morning and evening 
meals (or before the two main 
meals of the day, approximately 
6 hours or more apart). In 

clinical trial (#NCT02442791), 
neuroprotective effects of 
Byetta® administration 
following cardiac arrest showed 
no significant outcomes 
(see (b.) Wiberg et al. 
2016). Phase 2 clinical trial 

(#NCT02838589) completed 
investigating effects on cerebral 
blood flow. Clinical trials in 

AD (#NCT01255163; see (c.) 
Mullins et al. 2019) and PD 

(*EUCTR2009-018137-37-GB; 
see (d.) Aviles-Olmos et al. 
2013) completed in 2016 and 
2013, respectively.

Sanofi-Aventis

Lixisenatide + 
insulin 

glargine
Soliqua ® Once daily SC T2DM

Approved for adults with 
T2DM to lower A1C. 15–
60 units of Soliqua® 100/33 
per injection. Each unit of 
Solique 100/33 contains 0.33 
mcg lixisenatide and 1 unit of 
Lantus.

Lixisenatide Adlyxin®/
Lyxumia® Once daily SC T2DM

10 mcg once daily injection for 
14 days. On Day 15, dosage 
increased to 20 mcg once daily. 
Administered within one hour 
before the first meal of the day. 
Currently in phase 2 clinical 
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Mechanism 
of Action Company Drug Name Administration Uses Other Notes

trial (#NCT03439943) for PD 
treatment.

Sanofi-Aventis/
Hanmi 

Pharmaceuticals
Efpeglenatide HM 11260C Once weekly SC T2DM

Completed Phase 3 clinical 
trial for T2DM treatment 

(#NCT03353350).

Novo Nordisk

Liraglutide

Victoza ® Once daily SC T2DM

Used at any time of day, 
independent of meals. Use 0.6 
mg per day for one week 
then increase to 1.2 mg, which 
can be increased to 1.8 mg 
for additional glycemic control. 
Clinical trial in AD patients 

(#NCT01469351) completed in 
2013 (see (e.) Gejl et al. 2016). 
Additional clinical trials for AD 
and PD patients ongoing.

Saxenda ® Once daily SC Weight 
Loss 3 mg daily SC injection.

Liraglutide + 
insulin 

degludec
Xultophy ® Once daily SC T2DM

10 units Xultophy® 100/3.6 (10 
units insulin degludec, 0.36 mg 
liraglutide) once daily SC. In 
patients converting from basal 
insulin or GLP 1R agonist: 16 
units Xultophy® 100/3.6 (16 
units insulin degludec, 0.58 mg 
liraglutide).

Semaglutide

Ozempic ® Once weekly SC T2DM

0.25 mg (with or without 
meals). After 4 weeks, dose 
increased to 0.5 mg once 
weekly. Can be increased 
to 1 mg once weekly if 
needed. Phase 2 clinical 

trial (#NCT03659682) not yet 
recruiting in PD patients.

Rybelsus ® Oral once daily T2DM

7 mg or 14 mg tablets. 
Approved to lower A1C, 
may help with weight loss. 
Currently recruiting for phase 3 

clinical trials (#NCT04777409, 

#NCT04777396) in early AD 
patients.

Wegovy ® Once weekly SC Obesity 2.4 mg weekly SC injection.

IcoSema Once weekly SC T2DM

Semaglutide + insulin icodec. 
Phase 3 clinical trial 

(#NCT05259033) currently 
recruiting.

NASH Daily SC NASH/
NAFLD

Phase 2 clinical trial 

(#NCT02970942) completed. 
NASH measurements are 
primary outcome with NAFLD 
as secondary outcome measure.

----------------- NN9926, 
NN9927 Oral T2DM

Long acting, new molecular 
entities currently in 
development.

Eli Lilly Dulaglutide Trulicity ® Once weekly SC T2DM
0.75 or 1.5 mg SC injection 
once weekly from single dose 
pen.

Beijing Dongfang 
Biotech Co., Ltd. Exendin-4 JY09 Once dailly SC T2DM

Phase 1 clinical trial 

(#NCT04354090) completed. 
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Mechanism 
of Action Company Drug Name Administration Uses Other Notes

Exendin-4 + human 
Immunoglobulin G2 (IgG2) Fc 
fragment.

Peptron Exenatide SR PT320 Biweekly SC
T2DM/
Obesity/

PD

Formerly PT302. Proprietary 
formulation allows for injection 
with smaller needle to reduce 
injection pain. Phase 1 

clinical trial (#NCT00964262) 
completed for treatment of 
T2DM. Phase 2 clinical trials 
completed in South Korea for 
T2DM. Phase 2 clinical tral 
in PD patients in progress 

(#NCT04269642).

Intarcia Exenatide ITCA 650 Long term 
implant T2DM

Implant with potential to offer 
6 month exenatide delivery 
with 1 year delivery options in 
development. Phase 3 clinical 
trials have been completed with 
New Drug Application (NDA) 
submitted to the Food and Drug 
Administration (FDA) (pending 
approval).

vTv Therapeutics ----------------- TTP273 Oral once or 
twice daily T2DM

Non-peptide GLP-1R agonist. 
Completed phase 2 clinical trial 

(#NCT02653599) for T2DM 
treatment.

CSPC ZhongQi 
Pharmaceutical 
Technology Co., 

Ltd.

Recombinant 
Exenatide rExenatide-4 SC twice daily T2DM

Phase 3 clinical trial 

(#NCT03239119) in Chinese 
T2DM patients initiated, but 
not yet recruiting.

Oramed Exenatide 
Oral ORMD-0901 Oral T2DM

US FDA cleared Investigational 
New Drug (IND) application 
for trials in humans as of 
September 2018.

Shanghai Biolaxy Exenatide Nodexen Oral T2DM
Nanoparticle oral delivery. 
Clinical trials ongoing in 
China.

Jiangsu Hengrui 
Medicine Co. Ltd. Loxenatide PEX168 Once weekly SC T2DM

Phase 3 clinical trial in progress 

(#NCT02477969). This is a 
PEGylated formulation.

Shanghai Benemae 
Pharmaceutical ----------------- Beinaglutide 3x daily SC T2DM/

Obesity

Phase 4 clinical trial recruiting 

(#NCT05005741). Approved 
for use in China in 2016.

Zydus Lifesciences 
Ltd. ----------------- ZYD1 Oral and SC T2DM

Phase 1 clinical trial completed 

(#NCT01972893).

PegBio Co., Ltd. ----------------- PB-119 Once weekly SC T2DM

Phase 3 clinical trial 

(#NCT04504396) recruiting. 
This is a PEGylated exenatide 
formulation.

Regor 
Pharmaceuticals 

Inc.
----------------- RGT001-075 Oral once daily T2DM

Phase 2 clinical trial 

(#NCT05297045) in progress.

CSPC Baike 
(Shandong) 

Biopharmaceutical 
Co., Ltd.

----------------- TG103 Once weekly SC Obesity
Phase 2 clinical trial 

(#NCT05299697) recruiting.

Pharmacol Res. Author manuscript; available in PMC 2023 December 01.

https://clinicaltrials.gov/ct2/show/NCT00964262
https://clinicaltrials.gov/ct2/show/NCT04269642
https://clinicaltrials.gov/ct2/show/NCT02653599
https://clinicaltrials.gov/ct2/show/NCT03239119
https://clinicaltrials.gov/ct2/show/NCT02477969
https://clinicaltrials.gov/ct2/show/NCT05005741
https://clinicaltrials.gov/ct2/show/NCT01972893
https://clinicaltrials.gov/ct2/show/NCT04504396
https://clinicaltrials.gov/ct2/show/NCT05297045
https://clinicaltrials.gov/ct2/show/NCT05299697


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kopp et al. Page 50

Mechanism 
of Action Company Drug Name Administration Uses Other Notes

Hansoh 
Pharmaceuticals

Polyethylene 
Glycol 

Loxenatide
Fu Laimei ® Once weekly SC T2DM

Approved in China for adults 
with poor blood glucose 
control. Recommended dose 
0.1–0.2 mg/week.

Neuraly Inc. Exenatide NLY01 Once weekly SC PD/AD

This is a PEGylated 
formulation. Phase 1 clinical 
trial completed in 2019 

(#NCT03672604; see (f.) Yun 
et al. 2018). Phase 2 clinical 
trial ongoing in patients with 

PD (#NCT04154072).

GIPR 
Agonist

----------------- GIP Peptide ----------------- ----------------- T1DM

GIP peptide completed 

clinical trial (#NCT03556098) 
investigating its efficacy 
as a safeguard against 
hypoglycemia in patients 
with Type-1 diabetes mellitus 
(T1DM).

Zealand 
Pharmaceuticals ----------------- ZP4165 Intra Venous 

(I.V.) or SC T2DM

DPP-IV resistance and 
potentiates GLP-1 mediated 
weight loss and improved 
glycemic control in rats (see 
(g.) Nørregaard et al. 2018).

GLP-1R/
GcgR Dual 

Agonist

Hamni 
Pharmaceuticals/
Janssen Research 
& Development, 

LLC

----------------- HM12525A/
JNJ-64565111 Once weekly SC T2DM/

Obesity
Phase 2 clinical trial completed 

(#NCT03586830).

Zealand 
Pharmaceuticals/

Boehringer 
Ingelheim

----------------- BI 456906 Once weekly SC Obesity

Long lasting analogue of 
amylin and partially builds on 
the effects of oxyntomodulin. 
Completed phase 1 clinical 

tral (#NCT03175211) to 
assess safety, tolerability, 
and pharmacokinetics/
pharmacodynamics. Phase 1 
trials in Germany for obesity 
initiated.

Astra Zeneca/
MedImmune ----------------- MEDI0382 Daily SC T2DM

Completed phase 2a (see 
(h.) Ambery et al. 2018) 
and phase 2b clinical trials 

(#NCT03235050).

Sanofi-Aventis ----------------- SAR425899 Daily SC T2DM/
Obesity

Completed phase 1 clinical 

trial (#NCT03414736; see (i.) 
Goebel et al. 2018).

Janssen 
Pharmaceuticals ----------------- JNJ-54728518 ----------------- T2DM/

Obesity

Phase 1 clinical trials initiated 
for obesity and T2DM in 2016. 
Pre-clinical trials for obesity 
also initiated in 2016.

Novo Nordisk ----------------- NNC9204-1177 Once weekly SC Obesity
Completed phase 1 clinical trial 

(#NCT03308721).

Prolor/OPKO 
Biological ----------------- OPK-88003 Once weekly SC T2DM

Completed phase 2 clinical trial 

(#NCT03406377).

Spitfire Pharma ----------------- SP-1373 Once daily SC
NASH/
T2DM/
Obesity

Clinical trial for T2DM and 
obesity planned for 2019.

Boehringer 
Ingelheim ----------------- BI 456906 ----------------- Obesity

Completed phase 1 clinical trial 

(#NCT03591718) in patients 
with obesity.
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Mechanism 
of Action Company Drug Name Administration Uses Other Notes

GLP-1R/
GLP-2R 

Dual 
Agonist

Zealand 
Pharmaceuticals ----------------- Dapiglutide ----------------- T2DM

Early phase 1 clinical trials 

completed (#NCT03994549, 

#NCT04612517).

GLP-1R/
GIPR Dual 

Agonist

Eli Lilly Tirzepatide Mounjaro ™ Once weekly SC T2DM

Approved for adults with 
T2DM. Available in 2.5 mg, 5 
mg, 7.5 mg, 10 mg, 12.5 mg, 
and 15 mg doses through auto-
injector pen.

Novo Nordisk -----------------
RG 7697/

NNC0090-2746/
MAR709 

Once daily SC T2DM
Completed phase 2 clinical trial 

(#NCT02205528; see (j.) Frias 
et al. 2017).

Kariya 
Pharmaceuticals ----------------- KP405 Info not 

available PD/AD
Ready for phase 1 clinical 
trials. Toxicology studies 
completed.

Sanofi ----------------- SAR438335 Info not 
available T2DM Currently in phase 1 clinical 

trals in France.

GLP-1R/
GIPR/
GcgR 

Triagonist

Novo Nordisk ----------------- NNC9204-1706 Once daily SC Obesity
Completed phase 1 clinical trial 

(#NCT03661879).

Hanmi 
Pharmaceutical 

Co. Lmtd.
----------------- HM15211 SC Obesity

Long acting formulation. 
Current phase 1 clinical trial 

(#NCT03374241) recruiting 
(see (k.) Kim et al. 2018 for 
latest research on compound).

Sanofi ----------------- SAR441255 SC
T2DM/
Obesity/
NASH

Preclinical.

DPP-IV 
Inhibition

Astra Zeneca

Saxagliptin Onglyza ™ Once daily oral T2DM 2.5 or 5 mg regardless of meals.

Saxagliptin + 
metformin 

HCl

Kombiglyze ® 

XR 
Once daily oral T2DM

Take once daily with evening 
meal. Available in 5 mg 
saxagliptin/500 mg metformin 
HCl, 5 mg saxagliptin/1000 
mg metformin HCl, or 2.5 mg 
saxagliptin/1000 mg metformin 
HCl doses.

Merck

Sitagliptin Januvia ® Once daily oral T2DM 25, 50, or 100 mg with or 
without food.

Sitagliptin 
phosphate + 
metformin 

HCl

Janumet ® / 
Janumet ® XR 

Oral twice daily/
Once daily (XR 

formula)
T2DM

Combination drug therapy with 
metformin. XR formulation is 
an extended release version. 
Max dosage 100 mg Sitagliptin 
and 2000 mg metformin HCl.

Omarigliptin Marizev ® Oral once 
weekly T2DM

Available in Japan. See 
(l.) Goldenberg et al. 2017 
for phase 3 clinical trial 
information (#NCT01703221). 
Possible repositioning of drug 
for intran asal delivery for PD 
(see (m.) Ayoub et al. 2018).

Takeda

Trelagliptin Zafatek ® Oral once 
weekly T2DM

Approved for use in Japan. 
Phase 2 clinical trials 
abandoned in the USA because 
of costs.

Alogliptin Nesina ® Oral once daily T2DM 25 mg with or without food.

Alogliptin + 
metformin 

HCl
Kazano ® Oral twice daily T2DM

Take oral twce daily with 
food. Available in 12.5 mg 
alogliptin/500 mg metformin 
HCl or 12.5 mg alogliptin/1000 
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Mechanism 
of Action Company Drug Name Administration Uses Other Notes

mg metformin HCl doses. Max 
dosage 25 mg alogliptin/2000 
mg metformin HCl per day.

Alogliptin + 
pioglitazone Oseni ® Oral once daily. T2DM

Take with or without food. 
Available in 12.5 or 25 mg 
alogliptin doses.

Boehringer 
Ingelheim

Linagliptin Tradjenta ® Oral once daily T2DM 5 mg once daily.

Linagliptin + 
empagliflozin Glyxambi ® Oral once daily T2DM

Take once daily in the morning 
with or without food. Available 
in 10 mg empagliflozin/5 
mg linagliptin and 25 mg 
empagliflozin/5 mg linagliptin 
doses.

Linagliptin + 
metformin 

HCl

Jentadueto ® / 
Jentadueto ® XR 

Oral twice daily/
Once daily (XR 

formula)
T2DM

Combination drug therapy with 
metformin. XR formulation is 
an extended release version. 
Max dosage 2.5 mg linagliptin 
and 1000 mg metformin HCl.

Dong-A ST Evogliptin Suganon ® Oral once daily T2DM

5 mg once daily. Approved for 
use in South Korea in 2015. 
Sold with extended release 
metformin.

SatRx LLC Gosogliptin SatRx ® Oral T2DM

Approved for use in Russia. 
Completed phase 3 clinical 
trial of safety alone or 
with metformin compared to 
Vildagliptin alone or with 

metformin (#NCT03088670).

LG Life Sciences/
Sanofi Gemigliptin Zemiglo ™ Oral once daily T2DM

Long acting DPP-IV inhibitor. 
See (n.) Kim et al. 2016 for 
characterization.

Zealand 
Pharmaceuticals Vildagliptin Galvus ® Oral once daily T2DM

50 mg in combination with 
metformin (see (o.) Mathieu & 
Degrande 2008).

Mitsubishi Tanabe 
Pharma and 

Daiichi Sankyo
Tenegliptin Tenelia ® Oral twice daily T2DM 20 mg twice daily. See (p.) 

Kishimoto 2013.

Zealand 
Pharmaceuticals Anagliptin Suiny ® Oral twice daily T2DM

Approved for use in Japan, 200 
mg daily. See (q.) Nishio et al. 
2015

#:
Visit https://clinicaltrials.gov to locate clinical trials registered in the United States.

*:
Visit https://trialsearch.who.int to locate clinical trials registered internationally.

NASH = nonalcoholic steatohepatitis; NAFLD = nonalcoholic fatty liver disease; SC = subcutaneous injection; T1DM = Type 1 Diabetes Mellitus. 
Sources: (a) ref(13); (b) ref(256); (c) ref(257); (d) ref(258); (e) ref(259); (f) ref(103); (g) ref(260); (h) ref(261); (i) ref(262); (j) ref(263); (k) 
ref(264); (l) ref(265); (m) ref(266); (n) ref(267); (o) ref(268); (p) ref(269); (q) ref(270). Table updated from Glotfelty et al., 2019 (12).
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Table 2.

GLP-1R agonists in clinical trials for repurposing to treat neurodegenerative diseases. Drugs in red (approved 

in the United States) or green (approved abroad) have been approved for metabolic disease treatment, and 

those in blue are in clinical trials for metabolic disease treatment. Only Bydureon®, Byetta®, and Victoza® 

have completed interventional clinical studies and demonstrated efficacy in treating a neurodegenerative 

disease.

Company Drug Name Use Clinical Trial Phase Status Outcomes

AstraZeneca Exenatide

Bydureon ® PD

#NCT03456687 1 Ongoing N/A

#NCT01971242 2 Completed 
(2020)

Treatment 
improved off-

medication motor 
scores. See (a.) 
Athauda et al., 

2017.

#NCT04305002 2 Recruiting N/A

*EUCTR2019-000732-26-
SE

2 Ongoing N/A

#NCT04232969 3 Ongoing N/A

*ISRCTN14552789 3 Ongoing N/A

*ACTRN12620000627954 4 Recruiting N/A

Byetta ® 

AD #NCT01255163 2 Completed 
(2016)

Treatment reduced 
amyloid-β-42 

concentration in 
extracellular 

vesicles.
See (b.) Mullins et 

al., 2019.

PD #NCT01174810 2 Completed 
(2013)

Treatment 
improved motor 

abilities and 
cognition. See (c.) 
Aviles-Olmos et 

al., 2013.

FRDA
*EUCTR2014-003598-41-

BE
Pilot Completed 

(2019)

Treatment 
improved frataxin 
levels in FRDA 

patients. See (d.) 
Igoillo-Esteve et 

al., 2020.

Novo Nordisk

Liraglutide Victoza ® 

AD
#NCT01469351 2 Completed 

(2013)

Treatment 
maintained healthy 

brain glucose 
metabolism. See 
(e.) Gejl et al., 

2016.

#NCT01843075 2 Ongoing N/A

PD #NCT02953665 2 Completed 
(2022)

Treatment 
improved non-

motor symptoms, 
quality of life, and 
mobility. See (f.) 
Hogg et al., 2022.

Semaglutide Ozempic ® PD #NCT03659682 2 Not yet 
recruiting N/A
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Company Drug Name Use Clinical Trial Phase Status Outcomes

Rybelsus ® AD

*ISRCTN71283871 2 Recruiting N/A

#NCT04777409 3 Recruiting N/A

#NCT04777396 3 Recruiting N/A

Neuraly Inc. Exenatide NLY01 PD
#NCT03672604 1 Ongoing N/A

#NCT04154072 2 Ongoing N/A

Peptron Exenatide PT320 PD #NCT04269642 2 Ongoing N/A

Sanofi-
Aventis Lixisenatide Adlyxin®/

Lyxumia® PD #NCT03439943 2 Ongoing N/A

Various

Any GLP-1R 
agonist 

approved for 
metabolic 

disease 
treatment

Various Glaucoma N/A N/A Completed 
(2021)

GLP-1R agonist 
treatment cohort 

had reduced risk of 
developing 

glaucoma. See (g.) 
Sterling et al., 

2021.

#:
Visit https://clinicaltrials.gov to locate clinical trials registered in the United States.

*:
Visit https://trialsearch.who.int to locate clinical trials registered internationally.

FRDA = Friedreich ataxia. Sources: (a) ref(13); (b) ref(257); (c) ref(258); (d) ref(293); (e) ref(259); (f) ref(276); (g) ref(11).
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