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Abstract
Background  Polytrauma is often accompanied by ischaemia–reperfusion injury to tissues and organs, and the resulting series 
of immune inflammatory reactions are a major cause of death in patients. The liver is one of the largest organs in the body, a 
characteristic that makes it the most vulnerable organ after multiple injuries. In addition, the liver is an important digestive 
organ that secretes a variety of inflammatory mediators involved in local as well as systemic immune inflammatory responses. 
Therefore, this review considers the main features of post-traumatic liver injury, focusing on the immuno-pathophysiological 
changes, the interactions between liver organs, and the principles of treatment deduced.
Methods  We focus on the local as well as systemic immune response involving the liver after multiple injuries, with emphasis 
on the pathophysiological mechanisms.
Results  An overview of the mechanisms underlying the pathophysiology of local as well as systemic immune responses 
involving the liver after multiple injuries, the latest research findings, and the current mainstream therapeutic approaches.
Conclusion  Cross-reactivity between various organs and cascade amplification effects are among the main causes of systemic 
immune inflammatory responses after multiple injuries. For the time being, the pathophysiological mechanisms underlying 
this interaction remain unclear. Future work will continue to focus on identifying potential signalling pathways as well as 
target genes and intervening at the right time points to prevent more severe immune inflammatory responses and promote 
better and faster recovery of the patient.

Keywords  Polytrauma · Inflammatory response · Liver · Organ crosstalk · Ischemia-reperfusion injury · Immunological 
microenvironment

Introduction

Despite major improvements in resuscitation and intensive 
care, trauma remains the leading cause of mortality among 
those aged under 45 years [1–4]. Although the liver is to 
some extent protected against external mechanic trauma 
vectors due to its partial location behind the costal arch, 
liver is the most vulnerable organ in abdominal trauma 
[5], where hepatic lesions occur in 66% of cases [6]. Liver 
trauma remains a clinical challenge for anaesthesiologists 
and surgeons who have to carefully balance their decision 
of surgical intervention or non-operative management, for 

example, depending on the haemodynamic stability of the 
patient [7]. The liver is a central metabolic organ and is 
pivotal for both, molecular damage clearance and regenera-
tive processes. Therefore, trauma-induced impairment of 
the liver function affects the post-traumatic recovery even 
independently of other additionally damaged organs [8–10]. 
Because the liver also represents a central hub for the organ 
crosstalk, it is important to understand the factors that leave 
trauma patients vulnerable to post-traumatic liver injury and 
define active measures to prevent additional hepatic damage 
after trauma. With improved diagnostics and treatment strat-
egies, overall mortality from liver trauma has been reduced. 
Depending on the injury type and grade, the current mortal-
ity rate for these patients is about 10% [11]. The proposed 
management concepts for liver trauma have been greatly 
debated for more than two decades. However, a paradigm 
shift appears to favour non-surgical treatment or damage 
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control surgery, such as liver packing in the case of severe 
liver trauma [6].

Regarding the complex underlying pathophysiologi-
cal mechanisms, it is currently suggested that the complex 
mechanism of post-traumatic liver dysfunction and damage 
are caused by a variety of factors, including ischaemia and 
reperfusion injury (IRI), local hepatic and systemic inflam-
mation, endotoxaemia, oxygen radical, cellular apoptosis, 
and necrosis [12, 13]. A comprehensive understanding of the 
diverse hepatic responses after trauma appears necessary to 
rationally address and prevent resulting clinical problems as 
a consequence of direct or indirect liver trauma.

Therefore, this review considers the main characteristics 
of liver injury after trauma with a focus on immuno-patho-
physiological changes, hepatic organ crosstalk, and deduced 
treatment principles.

Hepatic response to major trauma

Pathophysiological changes

Following major liver trauma or polytrauma, blood loss 
and the development of shock remain a clinical challenge. 
Indeed, hepatic failure occurs in 5–10% of patients with 
polytrauma or haemorrhagic shock [14]. In such cases, the 
liver function becomes impaired for multiple reasons: due 
to macro- and micro-perfusion disturbances and associ-
ated hypoxic conditions, barrier failure, cellular apoptosis, 
necroptosis, and necrosis can occur, as typically detected in 
liver IRI, but also after direct liver trauma [15, 16]. There-
fore, assessment and monitoring of the liver function after 
trauma appear essential. This can be accomplished by the 
measurement of concentrations of the liver transaminases 
alanine aminotransferase (AST) and aspartate transaminase 
(ALT), γ-glutamyl transferase (GGT), alkaline phosphatase 
(AP), and liver-type fatty acid-binding protein (L-FABP) 1. 
An acute elevation of AST and ALT blood concentrations 
to at least 20 times higher than normal can be observed in 
a shock liver, also known as ischaemic hepatitis [17]. By 
contrast, in the rare but severe complication of a post-trau-
matic sclerosing cholangitis, ALT and AST do not increase 
[18]. Both, AST and ALT were initially defined as markers 
of liver cell damage [19]. Their appearance in the circula-
tion was explained as passive leakage due to damaged and 
necrotic hepatocytes. Currently, ALT and AST are increas-
ingly considered as indicators of “hepatic metabolic activ-
ity” [20]. AST is widely present in the organism, not only 
in the cytoplasm and mitochondria of hepatocytes, but, 
for example, in cardiac and skeletal muscle, brain, and red 
blood cells. Therefore, it lacks specificity as a marker of liver 
injury. In humans, ALT1 is found in considerably high con-
centrations in hepatocytes (particularly in the cytoplasm), 

while ALT2 is expressed at high levels in fat tissue, kid-
neys, and brain. Therefore, the ALT1 concentration better 
reflects hepatocyte damage compared to AST2 [21]. Fol-
lowing major trauma, the development of hepatic failure was 
shown to be accompanied by significantly elevated AP and 
GGT concentrations early post-trauma, while the blood con-
centration of the transaminases remained close to normal but 
slightly increased at later stages [14]. AP is increased when 
the tubular membrane of the hepatocyte is disrupted, result-
ing in the transfer of the tubular membrane to the basal sur-
face of the hepatocyte and subsequent leakage into the serum 
[22]. GGT is an enzyme that catalyses the transfer of the 
γ-glutamine moiety of peptides found in the membranes of 
many tissue cells. It is present in the liver in the membranes 
of biliary epithelial cells and the apical hepatocytes [23]. 
When hepatocytes are damaged, GGT is a sensitive indica-
tor for the presence of liver damage by lysing and releasing 
membrane-bound GGT into the blood. However, many non-
hepatic diseases can also cause systemically elevated GGT; 
thus, its primary use is to confirm whether elevated AP lev-
els are of hepatic origin [24]. L-FABP is a soluble protein 
found in large quantities in the cytoplasm of hepatocytes and 
in proximal tubular epithelial cells in the kidney [25–27]. 
Changes in its levels were previously thought to be associ-
ated with liver diseases, including cirrhosis, hepatitis, and 
hepatocellular carcinoma, and appear to be a possible pre-
dictor for survival in chronic liver diseases [27, 28]. Serum 
L-FABP concentrations can also be applied to assess the 
amount of hepatocellular damage caused by liver surgery 
and to detect post-hypoxic tissue damage [29]. Following 
abdominal trauma, L-FABP appears also as an early marker 
for acute kidney injury [30].

All IRI events after liver trauma play a central role. IRI is 
also a common pathophysiological process after polytrauma, 
haemorrhagic shock, and major liver surgery (including liver 
transplantation) [31]. Ischaemic conditions with ATP reduc-
tion and glycogen consumption mainly in the hepatocytes 
derive from the consequent lack of sufficient oxygen avail-
ability. During a subsequent reperfusion phase, oxygen-
induced systemic and mitochondrial reactive oxygen species 
(ROS) production can exacerbate liver damage. Ischaemia-
induced cell dysfunction and death result also in the gen-
eration of damage-associated molecular patterns (DAMPs), 
including histones, mitochondrial DNA, and High-Mobil-
ity-Group-Protein Box 1 (HMGB-1), and of inflammatory 
mediators, including interleukin (IL)-1β and IL-6. The inter-
play of these hepatic and systemic factors contributes to the 
activation of the “hepatic” immune system, by activation of 
non-parenchymal liver cells, including neutrophils, Kupffer 
cells, dendritic cells, natural killer cells (NK cells), and T 
cells [32–34]. IRI induces hepatic generation of chemokines 
and chemoattractants (e.g., complement activation products), 
which in turn recruit more peripheral immune cells from the 
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circulation to the liver. The immigrated cells not only aid 
clearance of damaged and infected cells, but can also cause 
host damage and in consequence exacerbate IRI, reflecting a 
“vicious circle” of liver damage [35, 36]. In view of the dif-
ferent types and mechanisms of liver cell damage after IRI, 
liver IRI is classified into two types: (1) warm IRI, caused 
by liver cell damage at body temperature, mainly occurring 
after trauma and during haemorrhagic shock, which can lead 
to liver and multiple-organ dysfunction; and (2) cold IRI, 
which occurs outside the body at lower temperature during 
the period of liver preservation (for transplantation), which 
mainly causes hepatic sinusoidal endothelial cell damage 
and microcirculation disorders [35, 37, 38]. In addition to 
the metabolic changes of glycogen consumption, hypoxia, 
and ATP depletion, the inflammatory immune response can 
induce direct or indirect cytotoxic mechanisms [35]. Overall, 
liver IRI appears to result in "holistic" consequences that 
affect the function of many remote organs, not only of the 
lungs and kidneys, but also of the intestine, adrenal gland, 
brain, and other organs [39]. Therefore, therapeutic limita-
tion of liver IRI represents an important topic in clinical and 
experimental trauma research.

Intracellular calcium overload

At present, the exact mechanisms of liver IRI remain unclear 
[40], but several studies suggested that it is associated with 
calcium-ion overload and ROS generation [41]. There is evi-
dence that the intracellular Ca2+ concentration is a critical 
factor in hepatic IRI [42]. In a physiologic environment, the 
intracellular Ca2+ concentration is maintained at a relatively 
low level by mainly three mechanisms: cell membrane selec-
tive permeability, ion pumps, and the endoplasmic reticu-
lum. When hepatic IRI occurs, intracellular ATP decreases, 
resulting in reduced calcium-dependent sodium–potassium 
pump activity, affecting intracellular calcium-ion transfer to 
the extracellular space. Consequently, Ca2+ released from 
the endoplasmic reticulum further exacerbates Ca2+ accu-
mulation in the cells [43]. Moreover, mitochondria are also 
subject to Ca2+ overload during liver IRI [44, 45]: ischaemia 
lowered the mitochondrial membrane potential differences, 
and the transfer of Ca2+ to the mitochondrial membrane 
eventually caused Ca2+ overload in this membrane [43, 
45]. In vitro simulation of IRI in rat hepatocytes revealed 
that reperfusion-induced cell death was accompanied by 
Ca2+-dependent mitochondrial ROS formation, which 
caused mitochondrial permeability transition [46]. In turn, 
these mitochondrial changes can promote apoptotic events.

Oxidative stress response

Liver IRI damage caused by traumatic or other conditions 
manifests as a sterile inflammatory response marked by 

ROS overproduction and associated activation of the innate 
immune system [34, 47, 48]. Although liver epithelial cells 
can also directly produce ROS during IRI challenge, Kupffer 
cells are their primary source. At the later and final stages, 
aggregated and activated neutrophils are considered the pri-
mary ROS generators [49]. Numerous enzyme systems can 
produce ROS in mammalian cells, of which four enzyme 
systems dominate, which are nicotinamide adenine dinucleo-
tide phosphate (NADPH) oxidase, xanthine oxidase, nitric 
oxide (NO) uncoupling synthetase, and the mitochondrial 
electron transport chain. Cascading increases the interac-
tion between these four enzymes, hence intensifying ROS 
generation and oxidative stress upon stimulation [50]. When 
migrated neutrophils accumulate in the liver, the CD11b/
CD18 on their cells bind directly to intercellular cell adhe-
sion molecule-1 (ICAM-1) on liver cells, which in turn 
activates NADPH oxidase in neutrophils [51–53], finally 
resulting in superoxide anion generation. The superoxide 
dismutase catalyses the reduction of superoxide anion into 
hydrogen peroxide and then to hydroxyl free radicals [54]. 
However, it is well established that high levels of ROS cause 
an imbalance in the body's oxidation and antioxidant sys-
tems, leading to irreversible cell damage and cell death not 
only in the liver but also in remote organs.

Inflammatory response

Severe tissue injury, for example, after polytrauma with 
exposure of the patient to DAMPs and hypoxic micromilieus, 
leads to a local and systemic sterile inflammatory response 
with the release of multiple chemokines and cytokines [36]. 
In the liver, IRI is a classical and widely accepted exam-
ple of sterile liver inflammation [55–58], which includes 
hepatocytes, neutrophil recruitment and activation, Kupffer 
cell activation, inflammatory cytokine release, complement 
activation products, and cytotoxic mediators. Most of these 
DAMPs and inflammatory mediators are sensed by corre-
sponding pattern recognition receptors (PRRs) [55], which 
are chemokine and complement receptors on various liver 
cells that translate the danger signals to an intracellular path-
way and cellular defence response [36].

Hepatocytes

Multiple DAMPs released by traumatised or stressed liver 
cells, including HMGB1, ATP, mitochondrial DNA, nuclear 
DNA fragments, heat-shock proteins, and bile acids [59], 
bind to PRRs such as receptors for advanced glycation end-
products, P2X7R, and Toll-like receptors (TLRs) in the 
cytoplasm or on cell surfaces [44, 60]. Hepatocytes express 
a spectrum of TLRs, which mount a potent immune response 
to DAMPs and other early alarmins [61, 62]. Hepatocytes 
express TLR2, 3, 4, and 5, while Kupffer cells possess TLR2, 
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3, 4, and 9 on their surfaces [63]. Some studies suggested 
that TLR4 functions as an immune surveillance receptor that 
may exacerbate tissue damage during IRI by enhancing the 
inflammatory reaction [64, 65]. Of note, although minimal 
amounts of hepatocyte-derived ROS do not appear to cause 
cell damage, they can, however, induce HMGB1 release. In 
turn, hepatocyte-derived HMGB1 can bind to TLR4 on the 
Kupffer cells’ surface, inducing an inflammatory response 
and thereby generating larger amounts of ROS [49] which 
may create a vicious circle.

Kupffer cells

Kupffer cells (KCs) in the liver as the largest population of 
resident macrophages in the body are required for an effi-
cient inflammatory response [66]. KCs are mainly respon-
sible for phagocytosing and clearing tissue debris after 
trauma. However, in the early stage of reperfusion, acti-
vated KCs produce and release ROS and proinflammatory 
cytokines, including tumour necrosis factor (TNF)-α, IL-1β, 
IL-2, IL-6, IL-10, IL-12, and IL-18 [49, 67, 68] (Fig. 1). The 
association between TNF-α and the inflammatory cascade 
appears crucial for the development of liver damage. TNF-α 
activates epithelial neutrophil-activating protein-78, nuclear 

factor-κB (NF-κB), and mitogen-activated protein kinase 
(MAPK) through binding to corresponding hepatocyte sur-
face receptors, which can directly lead to liver injury [44]. 
In addition, TNF-α originating mainly from Kupffer Cells 
can also upregulate the expression of ICAM-1, vascular cell 
adhesion molecule (VCAM) 1, and adhesion molecules, 
such as P-selectin, and thereby contribute to inflammatory 
cell recruitment [69]. In addition to other non-parenchy-
mal cells, KCs also actively secrete HMGB1 as a DNA-
binding protein and strong DAMP. Additionally, HMGB1 
can be passively released by necrotic KCs and hepatocytes 
and, irrespective of the release mechanism, induce a strong 
inflammatory signal [70]. When the liver is subjected to 
warm ischaemia (after trauma), the HMGB1 level increases 
and remains elevated for a minimum of 24 h [31]. Overall, 
activated KCs cause damage to hepatocytes and sinusoidal 
endothelial cells, eventually leading to hepatocyte necrosis 
[71].

Hepatic stellate cells

Hepatic stellate cells (HSC) or Ito cells prevalent in the 
space of Dissé express TLR2, 4, and 9. DAMP-driven HSC 

Fig. 1   Polytrauma-associated IRI induces an inflammatory response. 
Polytrauma frequently causes ischaemia/reperfusion of tissues and 
organs, which in turn results in hepatocyte injury. The damaged 
hepatocytes become dysfunctional through the activation of KCs or 
HSCs by various inflammatory factors, including HMGB1, which 
further generate an inflammatory cascade amplification that acts 
back on the hepatocytes, causing them to become dysfunctional due 

to sterile inflammation [81–83]. The inflammatory factors (such as 
TNF) released into the bloodstream not only act on the liver itself, but 
also on the brain, lung, kidney, bone, and other distal organ tissues, 
thus triggering various local immune responses and systemic inflam-
matory responses. KC: Kupffer Cell; EC: Endothelial cell; HSC: 
Hepatic Stellate Cell; SAP: Serum Amyloid protein P
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activation is an important step towards inducing liver fibro-
sis, whereby HSCs differentiate into myofibroblasts. Fur-
thermore, DAMP sensing by HSCs also induce chemoat-
tractant release, including chemokine (C–C motif) ligand 2, 
3, and 4, in addition to the increase of adhesion molecules 
like VCAM1 or ICAM1 [72]. Thereby, further inflamma-
tory cells can be recruited and the proinflammatory and 
profibrotic process may progress. However, the exact role 
of HSCs after tissue trauma requires further clarification.

Neutrophils

Following trauma and ischaemia, neutrophils migrate to 
the liver and can not only clear tissue debris but also cause 
damage to liver cells via different pathways [44]. The main 
activators of neutrophils post-trauma are circulating DAMPs 
originating from damaged mitochondria and anaphylatox-
ins generated by complement activation [73, 74]. As a con-
sequence of neutrophil activation, these cells belonging 
to the “first line of defence” accumulate in the liver and 
increase their levels of CD11a/CD18 (LFA-1) and CD11b/
CD18 (Mac-1), which causes adherence to ICAMs, which 
are increasingly expressed on liver endothelial cells after 
trauma. Neutrophils migrate along the gradients of chemoat-
tractant, like anaphylatoxins and macrophage inflammatory 
protein-2(MIP-2) [57], through the hepatic sinusoids and 
accumulate in the interstitium of liver tissues. ROS genera-
tion by the emigrated neutrophils exacerbates liver tissue 
damage [75–77]. The release of Kupffer cell-inherent pro-
inflammatory chemokines and cytokines can also promote 
and amplify the neutrophil-mediated inflammatory response 
[78]. In the later phase of IRI, the emission of various pro-
teases by neutrophils, including collagenases, elastase, and 
cathepsin G, can cause further cellular liver damage [79, 
80] (Fig. 1).

Liver as a major driver of the inflammatory 
response

When the liver experiences ischaemia and reperfusion 
caused by trauma and/or haemorrhagic shock, direct or indi-
rect liver cell damage can occur as described above. The 
acute phase of IRI in the setting of liver transplantation is 
characterised by a lack of blood perfusion and oxygenation, 
which is currently considered as a highly regulated action of 
the innate and adaptive immunity [84]. It is well documented 
in the case of multiple injuries that inflammation in the early 
phase of hepatic IRI is mainly mediated by Kupffer cells and 
normally occurs rather early (within two hours) after trauma-
associated reperfusion. During this period, the pleiotropic 
cytokine tumour necrosis factor among others is involved as 
a major proinflammatory factor [42].

TNF as an important inflammatory contributor 
to liver damage

Apoptotic cell death in the ischaemic liver is mainly induced 
by TNF [85], which can be produced by various cells during 
the inflammatory response-induced apoptosis in liver cells 
results in NF-κB activation, ultimately altering cysteine and 
aspartic acid mediated by perforin and granzyme B and/or 
Fas–Fas ligand complex [86]. In addition, protease activa-
tion leads to leukocyte chemotaxis, neutrophil activation, 
ROS production, mitochondrial toxicity, and apoptosis [61, 
87, 88]. Recent research has demonstrated that after haemor-
rhagic shock-induced liver IRI, the damaging effect of TNF 
on the liver was mainly based on the following points: (i) 
During liver IRI, TNF alters Kupffer cell function via auto-
crine activation, which results in excessive ROS generation 
and lipid peroxidation, thereby exacerbating neutrophil infil-
tration and hepatocyte damage [89, 90]; (ii) TNF can partici-
pate in pathological processes by producing lipid and other 
peptide mediators such as prostaglandin [91]; (iii) TNF can 
activate neutrophils and increase their adhesion to hepatic 
endothelial cells, leading to the release of various proteolytic 
enzymes and other inflammatory mediators, and thereby to 
the constriction of hepatic arteries and an increase in the 
permeability of liver sinusoids, all of which finally disrupt 
the barrier and cause liver cell damage [92].

Complement activation augments the inflammatory 
liver response

As a major source of most of the plasma complement fac-
tors, the liver inherently plays an important role in the com-
plement system and its interactions. Complement as a cru-
cial component of the innate but also the adaptive immune 
response is typically activated by the binding of circulat-
ing recognition molecules like complement component 1q 
to corresponding molecular patterns [93]. Upon exposure 
to DAMPs and/or PAMPs, the classical, alternative, and 
lectin pathways become activated and cleave downstream 
the central complement protein C3. In ischaemic liver, the 
interaction of the key cleavage products C3a and C5a leads 
to neutrophil and hepatic endothelial cell activation via 
their corresponding receptors C3aR and C5aR1 or C5aR2, 
respectively. Upon exposure to the most potent chemoat-
tractant anaphylatoxin C5a, neutrophils migrate, aggregate, 
and adhere to liver sinusoidal endothelial cells. The com-
plement anaphylatoxins can also upregulate adhesion mol-
ecules, including VCAM-1 and ICAM-1. Thereby, the ana-
phylatoxins support inflammatory cell recruitment, resulting 
in liver cell damage, apoptosis, and necrosis [94–96]. C3b 
is also a C3 cleavage product and functions as an opsonin. 
It deposits on the cell surface of ischaemic tissue but can 
also function as an amplifier of the C3 activation loop via 



4436	 Y. Li et al.

1 3

the alternative pathway. Further downstream, cleavage of 
C5 into C5a and C5b enables the formation of the terminal 
C5b–9 complex, which can be inserted into the membrane 
as a membrane attack complex (MAC) or released to the 
fluid phase as sC5b–9 [94, 97, 98] (Fig. 2). The MAC can 
be directly introduced into the cell surface to produce two-
way hydrophilic pores to allow Ca2+ influx, resulting in cell 
osmotic dissolution and death due to an electrolyte–water 
imbalance and cellular lysis [99]. Besides these detrimental 
effects of complement activation triggered by trauma and IRI 
[74], C3a and C5a also play an important role in liver regen-
eration processes. C3- as well as C5-deficient mice displayed 
impaired liver regeneration after carbon tetrachloride- or 
partial hepatectomy-induced liver injury compared with the 
same injury in wild-type mice [100–102]. Taken together, 
complement activation appears in liver damage to be rather 
Janus-faced: it can add to the inflammatory response early 
after liver injury but may also help in the resolution of dam-
age and in mediating regenerative processes in later phases 
(Fig. 2).

Cytokines and chemokines mounting 
and disseminating the inflammatory response

IL-1β is a key factor for initiating inflammatory responses 
and frequently acts synergistically with TNF in hepatic IRI 
[103, 104]. In the early stages of hepatic IRI, IL-1β released 
by Kupffer Cells [105] causes neutrophil accumulation at 

sustainable high levels [106]. The additional release of IL-1β 
by recruited neutrophils leads to a series of proinflamma-
tory molecular events [107]. The resulting reaction is char-
acterised by the development of cellular oedema, as well as 
cell lysis and necrosis, which are associated with persistent 
ischaemia and capillary occlusion [108]. Numerous animal 
studies have demonstrated that in acute liver injury, necrosis-
induced cell death results in rapid IL-1α precursor release, 
followed by IL-1β and IL-18 up-regulation, ultimately 
resulting in tissue damage via the IL-1R/IL-18R-MyD88 
pathway [109, 110]. Upon initiation of hepatic IRI, exces-
sive TNF is produced in Kupffer cells [111], and this induces 
macrophages to produce large amounts of IL-10, which in 
turn inhibits NF-κB activation and reduces the overexpres-
sion of inflammatory cytokines. These events may reduce the 
hepatic and systemic inflammatory responses [112]. How-
ever, binding of proinflammatory cytokines such as TNF to 
hepatocytes appears to upregulate TLR mRNA levels [113]. 
This signalling cascade offers a promising therapeutic target 
to ameliorate the inflammatory response.

IL-6 is a multifunctional cytokine that can be rapidly 
produced during the acute phase of the inflammatory 
response and thus contributes to the host defence directly 
after trauma. In numerous studies, enhanced IL-6 con-
centrations in the circulation were detected correlating to 
the injury severity score and exhibiting some prognostic 
value [114, 115]. During the initial phase of inflamma-
tion, systemic IL-6 reaches the site of the liver through the 

Fig. 2   Effects of the com-
plement system on trauma-
associated liver damage. 
Trauma-induced activation of 
the classical, alternative, and LP 
pathways results in the genera-
tion of the complement ana-
phylatoxins C3a and C5a. These 
complement activation products 
can bind to neutrophils, result-
ing in indirect damage to liver 
cells and the formation of 
the MAC. The MAC causes 
calcium ions to flow into cells 
in large quantities, increasing 
in-cell osmotic pressure and 
eventually causing cell lysis and 
death. MAC: Membrane Attack 
Complex; CP: Classical Path-
way; AP: Alternative Pathway; 
LP: Lectin Pathway; sC5-9: 
soluble C5b-9
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bloodstream, which in response rapidly produces various 
acute phase proteins, including C-reactive protein (CRP), 
serum amyloid A (SAA), fibrinogen, and others [116]. In 
animal experiments, it was found that rats with genetic 
IL-6 knockout displayed more severe liver damage after 
hepatic IRI than the control group [117]. Rapid local and 
systemic IL-6 production after hepatic IRI also enhanced 
the activity of T and B lymphocytes and NK cells, and 
was central in inflammatory crosstalks of the liver [118].

IL-10 is a protein of approximately 18 kDa that can 
be synthesised by T lymphocytes, B lymphocytes, mono-
cytes, and macrophages. It is a mainly anti-inflammatory 
cytokine and has been shown to reduce TNF and IL-1 
synthesis in vitro and in vivo [119]. It is generally rec-
ognised that signal transducer and activator of transcrip-
tion 3 activation by IL-10 receptors in myeloid-derived 
cells is a necessary step for the anti-inflammatory effects 
of IL-10, as demonstrated by an STAT3-deficient mouse 
model [120]. IL-10 was found to reduce the IRI-induced 
microcirculatory impairment and oedema in the liver. On a 
molecular level, IL-10 reduced TNF and MIP-2 expression 
and blood levels [121]. By contrast, a study on intestinal 
IRI found that IL-10 resulted in increased tissue damage. 
This adverse effect may be the result of reduced nitric 
oxide synthase (NOS)-2 and haem oxygenase (HO)-1 
mRNA expression [122]. However, in the liver, the role 
of IL-10 during hepatic IRI appears rather to be protec-
tive. IL-10 plays a supportive role for hepatocyte prolif-
eration and a clear protective role in parenchymal liver 
injury (IRI-induced) with a reduction in the apoptosis and 
necrosis rates [53, 123]. Numerous IRI studies in rodents 
have also shown that animals with genetic IL-10 deletion 
or animals receiving anti-IL-10 treatment suffered more 
severe hepatic damage than the corresponding control 
groups [123, 124]. Therefore, IL-10 appears to be a prom-
ising therapeutic mediator in the case of liver injury, which 
requires further translational investigations.

IL-17 was originally reported by Rouvier et  al. as 
CTLA8 and was subsequently renamed IL-17 (also called 
IL-17A) [125]. It was first found to be derived from TH17 
cells. Later, Natural killer T and Paneth cells were also 
found to secrete IL-17 [126, 127]. The contribution of 
IL-17 to post-traumatic immune dysfunction following 
polytrauma is uncertain [128]. During liver IRI, dam-
aged hepatocytes induce KCs to release large amounts of 
cytokines, including IL-1β and IL-6, which in turn pro-
mote the generation of significant amounts of IL-17 by 
TH17. IL-17 is mainly found in neutrophils in the liver, 
and vice versa, IL-17 promotes the recruitment of neu-
trophils towards the inflammation site, thereby amplify-
ing hepatic IRI [129]. One research group proposed that 
systemic IL-17 has no predictive value for the prognosis 
after polytrauma. Although systemic IL-17 levels were 

elevated in a minority of patients with multiple injuries, 
they speculated that this may be related to individual 
variance and susceptibility [128]. Therefore, the value of 
IL-17 to assess a patient’s course and prognosis after mul-
tiple injuries requires further clinical evaluation.

Nuclear factor‑kappa B (NF‑κB) involvement 
in the liver cell response

Numerous studies have demonstrated that the NF-κB sig-
nalling pathway is one of the main mechanisms of liver 
IRI damage [130, 131]. It has been shown that NF-ΚB is 
regulated by many factors, including inducible NOS (iNOS), 
chemokines (C-X-C motif) ligand 78, and ICAM-1 [78, 132]. 
NF-κB-inducing kinase binds R-associated factor 2 in the 
tumour necrosis factor receptor complex in response to stim-
ulants and phosphorylates the I-kappa-B (IκB) kinase com-
plex (IκK) via the R signalling pathway. The activated IκK 
directly phosphorylates the IκB-specific site, Ser/Tyr, lead-
ing to its degradation and dissociation from NF-κB, thereby 
allowing the NF-κB p50/p65 dimer to enter the nucleus and 
initiate a series of subsequent transmembrane signal trans-
ductions [133]. During hepatic IRI, the binding activity of 
NF-κB to its specific regulatory gene sequences was found 
to be highest at 2–3 h after hepatic ischaemia–reperfusion, 
suggesting a direct relationship between this NF-κB-specific 
regulatory gene sequence-binding activity and the extent 
of injury [121]. Furthermore, it appears that NF-κB bind-
ing activity in liver tissue after IRI is temporally phased, 
together with increased TNF and ICAM-mRNA expression 
[134]. Takahashi et al. demonstrated that the NF-κB p65/p50 
dimer is activated early and rapidly expressed at high levels, 
initiating inflammatory responses in liver tissue [135–137]. 
During liver IRI, it has been shown that NF-κB activation in 
hepatocytes rather represents a protective mechanism, which 
can be enhanced by ischaemic hypothermia [138, 139]. In 
agreement with this, pre-treatment with NF-κB ligand recep-
tor activator attenuated IRI in the rat liver. This protective 
mechanism was associated with activation of the NF-κB sig-
nalling pathway in hepatocytes [140]. However, the exact 
role of NF-κB in trauma-induced direct and indirect hepatic 
injury beyond IRI remains to be defined.

Liver as the primarily damaged organ

Kupffer cells are the main source of cytokines and inflam-
matory mediators, and are involved in the amplification 
of the systemic inflammation as suggested in a setting of 
liver transplantation-induced IRI [141]. The DAMPs and 
associated inflammatory mediators signal via PRRs such as 
TLR4 (see above), eventually resulting in development of a 
systemic inflammatory response syndrome (SIRS), which 
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ultimately involves multiple organs, including the brain, 
lungs, and kidneys. If the remote organ response becomes 
dysfunctional, this is clinically manifested as multiple-organ 
dysfunction syndrome [142, 143]. Among many critical 
organs, the liver as the largest metabolic organ in the body 
is the central target organ for severe immuno-pathophys-
iological damage [144]. Vice versa, after liver injury, the 
transcriptome of extrahepatic organs is dramatically altered, 
suggesting that serum metabolite-mediated crosstalking net-
works between the liver and extrahepatic organs are very 
important [8].

Liver–organ crosstalk

Brain–liver‑axis hepatic IRI causes brain injury

In a hepatic IRI rat model, long-term cognitive function was 
impaired [145]. In mice, liver IRI led to short-term dimen-
sional cognitive deficits, which was time-dependent: the 
longer the time elapsed after the onset of ischaemia, the 
poorer was the cognitive function, which may be associated 
with the large amount of harmful substances produced at 
the time of IRI initiation, including ROS and inflammatory 
factors [146]. NF-κB can exacerbate liver ischaemia and rep-
erfusion damage with remote effects of disrupting neurologi-
cal development and brain damage repair processes, thereby 
impairing cognitive functions. In particular, the expression 
of inflammatory factors induced by NF-κB in brain tissue 
may result in short-term cognitive impairment [147]. Zheng 
et al. found that E2f transcription factor 8 (E2f8) plays an 
important role in the intersectional network between hepatic 
IRI and brain injury. In the underlying experimental design 
of two different surgical liver injury models of liver resec-
tion (LR) and bile duct ligation (BDL), principal component 
analyses revealed that the E2f8 transcription factor levels 
were upregulated in the LR and BDL group [8]. E2f8 is an 
essential transcription factor for angiogenesis, lymph angio-
genesis, embryonic development [148], and adult neuronal 
cell differentiation [149]. Therefore, the authors concluded 
that further investigations are required to determine whether 
E2f8 plays an important role in the development of hyper-
ammonaemia and how to regulate E2f8 in the brain during 
acute liver injury. Nevertheless, at present, the particular 
molecular mechanisms underlying brain damage after liver 
ischaemia–reperfusion and even more so in the setting of 
polytrauma remain unclear.

Lung–liver neighbourhood

Essential events in lung IRI are the formation of ROS and 
reactive nitrogen species (RNS), complement activation, 
and the generation of inflammatory mediators such as 
TNF [150]. The mitochondrial respiratory chain not only 

provides ATP but also produces by-products such as ROS. 
After hepatic IRI, KCs release large amounts of ROS that 
lead to cell death through the opening of voltage-dependent 
anion channels1 and alter the opening of the permeability 
transition pore complex in the presence of adenine nucleo-
tide transporter enzymes [151, 152]. Both RNS and NO can 
severely damage cells in a similar manner to ROS. RNS 
increase the opening capacity of the permeability transi-
tion pore complex by covalently modifying many proteins, 
including mitochondrial complex IV and glycerol-3-phos-
phate dehydrogenase, inducing cell death and subsequent 
pulmonary damage [153, 154]. An increase in both TNF and 
IL-1β has been detected 2–7 days after BDL surgery [155]. 
Accordingly, monitoring of inflammatory mediators, includ-
ing the IL-1β, IL-6, and IL-10 levels, in patients after major 
trauma (including liver transplantation) appears rational to 
minimise the risk of missing hidden damage to the liver 
and remote organs. However, respective clinical studies are 
currently lacking.

Hepato‑renal crosstalk

The liver–kidney axis represents a clinically established 
important cross-talk. Hepatic IRI is an important contribu-
tor to acute kidney injury (AKI) and trauma-related AKI 
[156] as well as reduced recipient survival and chronic kid-
ney disease in liver transplant recipients [157]. The onset of 
hepatic IRI frequently causes AKI characterised by a decline 
in urine output and enhanced retention parameters based 
on a decrease in the glomerular filtration rate. Histologi-
cally, the hepatic injury can result in early renal endothelial 
cell apoptosis, proximal tubular inflammation (by cytokine 
and neutrophil infiltration) and necrosis, intrarenal vascular 
permeability impairment, and renal proximal tubule epi-
thelial filamentous-actin degradation [158]. Interestingly, 
pre-ischaemic injection of human A1 adenosine receptor 
(huA1AR) in the liver is somehow effective in protecting 
against both hepatic and renal injury modelled by hepatic 
IRI. The reason for this dual beneficial effect is, however, 
associated with the selective overprotective nature of the 
cytoprotective A1AR in the kidneys [159]. Other mecha-
nisms have been proposed for an improved hepato-renal axis, 
such as the downregulation of HO-1, autophagy-related 7, 
and peroxisome proliferator-activated receptor gamma 
cofactor 1-alpha through the use of some anti-inflammatory 
and antioxidant drugs, including sphingosine-1-phosphate. 
These treatment strategies have also exerted a protective 
effect against hepatic IRI-induced kidney injury [160, 161].

Liver–bone relationship

Fractures to the pelvis, femur, and other major bones can 
lead to traumatic haemorrhagic shock, resulting in severe 
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liver IRI and subsequent sterile inflammation. The liver is 
involved in bone formation and repair mechanisms through 
the regulation of parathyroid hormones (PTH) and the syn-
thesis of growth factors such as insulin-like growth factor 
(IGF)-I and IGF-II [162, 163]. PTH affects the osteoactive 
hormone response by inducing liver IL-6 production [164]. 
It can even metabolise various bone-active molecules, short-
ening their half-life and affecting their circulating levels in 
humans [165]. Severe trauma with multiple fractures and 
subsequent haemorrhagic shock frequently lead to hepatic 
IRI [166]. The "second (multiple) hit" after trauma can 
amplify the existing inflammatory state and results in an 
excessive SIRS, which can lead to symptoms of liver fail-
ure [167, 168]. The length of time without treatment after 
the onset of trauma is thought to be an important factor for 
the liver and bone healing processes. A clinical study dem-
onstrated a significant increase in hepatic myeloperoxidase 
activity within 1 h after trauma, a significant increase in 
liver permeability after 2 h, and a peak in serum AST lev-
els at 3 and 5 h post-trauma [169]. The inflammatory fac-
tors released by femoral fractures are cross-linked to those 
released by hepatic IRI, yet the mechanism regarding the 
influence of femoral fracture healing remains unclear. The 
fact that systemic inflammation or excessive local inflam-
mation can compromise fracture healing has been confirmed 
by numerous studies [8, 170, 171], but the process by which 
fracture healing is affected remains unclear. Therefore, fur-
ther clarification is required on how individual inflammatory 
factors generated particularly in the liver are involved in the 
inflammatory and regenerative processes of fracture healing.

Therapeutic approaches

Recent studies have focused on the inhibition of the TLR4-
NK-κB signalling pathway to improve hepatic IRI. Inhibition 
of TLR4-NK-κB signalling by pre-treatment with injected 
Eucommia polysaccharide, iridoid glucoside aucubin, or 
cell-free matrix hydrogels attenuated hepatic IRI [172–174]. 
Huang et al. further found that the inhibition of miR-450b-5p 
ameliorated hepatic IRI by targeting alpha B-crystallin 
[175]. Therefore, the role of NF-κB in hepatic IRI remains 
of major interest for future research. The immunomodula-
tory regulation of the proinflammatory response of NF-κB 
and the regulation of the cell cycle and other related biologi-
cal effects may in principle play a beneficial role. Whether 
this is true in the clinical real-world setting remains to be 
evaluated.

Another approach aims to intervene earlier. Inflammas-
omes are multiprotein complexes that initiate the release of 
the proinflammatory cytokines IL-1β and IL-18 by activat-
ing caspase-1 through sensing danger signal release. Inflam-
masome activation also contributes to sterile inflammation 

following hepatic IRI [176]. Several groups have reported 
that employing caspase activators in animal models of 
hepatic IRI prevented apoptosis, improved organ function, 
and increased the survival rate [15]. In addition, numerous 
immunotherapies have been developed to target specific 
signalling pathways. A study of Artesunate to reduce liver 
injury due to haemorrhagic shock (HS) found that Artesu-
nate treatment of HS rats enhanced protein kinase B and 
endothelial NOS activation, inhibited phosphorylation 
of glycogen synthase kinase 3β, attenuated activation of 
NF-κB, and reduced the expression of iNOS, TNF and IL-6 
[177]. Clinical translation is feasible here, because Artesu-
nate is already used in the clinic as an approved anti-malaria 
drug.

Regarding complement targeting, specific C5 com-
plement inhibitors are also used to protect the liver from 
IRI. A study in mice found that blockade of C5a-mediated 
responses not only inhibited platelet aggregation in the early 
stages after the onset of hepatic IRI, but also attenuated infil-
trating macrophage/neutrophil activation and hepatocyte 
apoptosis in the later stages of reperfusion [178]. A clinical 
study similarly confirmed that the C5a/C5aR1 interaction 
has an important regulatory capacity on the trauma-induced 
delayed apoptosis of polymorphonuclear cells. Of note, 
while C5a significantly inhibited apoptosis in neutrophils, 
the other anaphylatoxin C3a failed to show similar effects 
[179]. Therefore, C5a may present a promising target.

Recent research also focused on the therapeutic poten-
tial of the activation of the nuclear factor E2-related factor 
2, for example, by triterpenoid CDDO-Imidazolide. In IRI, 
protective effects were identified by limiting the inflamma-
tory response of the liver and hepatocyte cell death [180]. 
Intrinsic cyclin-dependent kinase 2 (CDK2) expression typi-
cally increases after the reperfusion. Inhibition of CDK2 
by Roscovitin protected the damaged liver by inhibiting 
macrophage/neutrophil infiltration into the liver, and sup-
pressed in vitro the TLR 4 signalling pathway by regulating 
the MAPK pathway in macrophages [181]. However, these 
promising approaches need future translational evaluation, 
particularly in the context of trauma.

Outlook

The liver is the central metabolic organ of the human body; it 
not only generates and secretes inflammatory factors but also 
serves as a target organ for their actions. The mechanisms 
of liver self-repair and regeneration after trauma often entail 
cell-mediated clearance of dead cells and tissue remodelling 
regulated by different mediators. Currently, we still do not 
understand the exact mechanisms of hepatic inflammation, 
repair, and self-regeneration after the onset of traumatic liver 
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injury. Future studies including clinically relevant trauma 
modelling (in vitro and in vivo) will help to elucidate under-
lying molecular mechanisms and evaluate targeted therapeu-
tic approaches in the trauma setting to reduce the risk for 
secondary liver injury and thus to improve patient outcome 
post-trauma.
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