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Analysis of the first genetic engineering
attribution challenge

Oliver M. Crook 1, Kelsey Lane Warmbrod 2,3, Greg Lipstein4,
Christine Chung4, Christopher W. Bakerlee5, T. Greg McKelvey Jr. 5,
Shelly R. Holland5, Jacob L. Swett5, Kevin M. Esvelt5,6, Ethan C. Alley 5,6 &
William J. Bradshaw 5,6

The ability to identify the designer of engineered biological sequences—
termed genetic engineering attribution (GEA)—would help ensure due credit
for biotechnological innovation, while holding designers accountable to the
communities they affect. Here, we present the results of the first Genetic
Engineering Attribution Challenge, a public data-science competition to
advance GEA techniques. Top-scoring teams dramatically outperformed pre-
vious models at identifying the true lab-of-origin of engineered plasmid
sequences, including an increase in top-1 and top-10 accuracy of 10 percentage
points. A simple ensemble of prizewinning models further increased perfor-
mance. New metrics, designed to assess a model’s ability to confidently
exclude candidate labs, also showed major improvements, especially for the
ensemble. Most winning teams adopted CNN-based machine-learning
approaches; however, one team achieved very high accuracy with an extre-
mely fast neural-network-free approach. Future work, including future com-
petitions, should further explore a wide diversity of approaches for bringing
GEA technology into practical use.

Genetic engineering is becoming increasingly powerful, widespread,
and accessible, enabling ever-more people tomanipulate organisms in
increasingly sophisticated ways. As biotechnology advances and
spreads, the ability to attribute genetically engineered organisms to
their designers becomes increasingly important—both as a means to
ensure due recognition and prevent plagiarism, and as a means of
holding these designers accountable to the communities their work
affects1–4. While many academic researchers openly claim credit for
their strains and sequences, the provenance of other products—
including unpublished work, the products of industrial and govern-
ment labs, and thework of amateur enthusiasts—is oftenmore difficult
to establish.

While tools for attributing these products of biotechnology—for
genetic engineering attribution (GEA)—have historically lagged behind

the pace of scientific development, recent years have seen rapid
progress1,2,5,6. Genetic engineers face many design choices when
creating an engineered nucleic-acid sequence, and the sum of these
choices constitutes a design signature which, in at least some cases, is
detectable by GEA algorithms2,5 (Fig. 1a). The more reliably and pre-
cisely these algorithms can identify the true designer of a sequence,
the greater the potential benefits for accountability and innovation.

Past work on GEA2,5,6 has largely focused on predicting the origin
lab of plasmid sequences from the Addgene data repository. Perfor-
mance on this problem has improved rapidly (Fig. 1b). Most recently,
Alley et al. used a Recurrent Neural Network (RNN) approach to
achieve an accuracy of 70% and a top-10 accuracy (the frequency with
which the true lab-of-origin is within the model’s top-10 predictions)
of 85%2.
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A recent publication using a non-machine-learning (ML) pan-
genome method reported comparable results, with 76% accuracy
(henceforth, “top-1 accuracy”) and 85% top-10 accuracy6.

Inspired by these results and the success of past citizen science
initiatives7–10, we took a community-led approach to the problem,
running the first Genetic Engineering Attribution Challenge (GEAC,
Fig. 1c) in July-November 2020 (Methods). This public data-science
competition, hosted on the DrivenData online platform11, consisted of
two sequential tracks, termed the Prediction Track and the Innovation
Track. In the Prediction Track, teams competed to predict the lab-of-
origin of plasmid sequences with the highest possible top-10 accuracy.
High-scoring teams from the Prediction Track were then invited to
participate in the Innovation Track, writing short reports on their
approaches which were assessed by amultidisciplinary panel of expert
judges. A prize pool of $30,000 was offered for each track (Supple-
mentary Table Supplementary Table 1).

We focus here on the results of the Prediction Track, which
received more submissions and is more amenable to quantitative ana-
lysis. The dataset for the Prediction Track was derived from the
Addgene dataset used by Alley et al.2, comprising sequences and mini-
mal metadata from 81,833 plasmids (Methods). These plasmids were
deposited by 3751 origin labs; labs with fewer than ten plasmids were
pooled into an auxiliary category (labelled “Unknown Engineered”),

leaving a total of 1314 categories for classification. The dataset was
divided into training, leaderboard, and holdout test sets (Fig. 1c), with
top-10 accuracy on the holdout set determining the final ranking.

Results
Core competition outcomes
Over 1200 users, from 78 countries (Fig. 2a, Supplementary Table
Supplementary Table 2 and Supplementary Table 3), registered to
participate in the competition. Of these, 318 users, organised into 299
teams, made at least one submission. There was a strong positive
correlation between the number of submissions made by a team and
their final top-10 accuracy (Spearman’s ρ =0.82, Fig. 2b, Supplemen-
tary Fig. 1): the mean number of submissions made by the top 10% of
teams was 49.1, compared to 8.8 for the bottom 90% of teams and 1.4
for the bottom 10%.

The accuracies achieved by Prediction Track teams far exceeded
previous work (Fig. 2c, d, Supplementary Figs. 2–3 and 22). 75 teams
(25%) achieved higher top-10 accuracies than any previous ML-based
GEA model2,5; the top-10 accuracy of the highest-scoring team (94.9%)
exceeded the previous published record by over 10 percentage points.
The other three prizewinning teams also achieved very high prediction
accuracy, with top-10 accuracies ranging from 93.0% to 94.4%—all of
which exceed the previous record by at least 8 percentage points.
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Fig. 1 | The Genetic Engineering Attribution Challenge. a The creation of any
synthetic nucleic-acid sequence involves numerous designdecisions, eachofwhich
leaves amark in the resulting sequence. Genetic engineering attribution (GEA) aims
to use these marks to identify the designer. b Misclassification rate (1-(Top-N
accuracy)) of past ML approaches to GEA on the Addgene plasmid database,
compared to BLAST (left) and the results of the Genetic Engineering Attribution
Challenge (GEAC, right). Lowermisclassification rates indicate higher accuracy.Our
BLAST method achieves higher accuracy than previous implementations; see

Methods for details. c In the GEAC, teams were provided with engineered plasmid
sequences fromAddgene, alongside basicmetadata for each plasmid. Lab-of-origin
labels were provided for the training dataset, but withheld from the leaderboard
and holdout test datasets. In the Prediction Track, teams competed to identify
these withheld labs-of-origin with the greatest top-10 accuracy. In the Innovation
Track, high-scoring teams from the Prediction Track were then invited to submit
reports describing their approaches to a panel of expert judges for assessment.
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While a single, simple scoring metric was required for the com-
petition, top-10 accuracy represents only one perspective on the per-
formance of an attribution model. To investigate whether the gains
seen in thismetric represent robust improvements in performance, we
broadened our analysis to include top-N accuracy for different values
of N (Fig. 2c, d, Supplementary Figs. 2–4). The best models from the
competition outperformed previous work across a wide range of N-
values—in the case of top-1 accuracy, for example, 40 teams (13.4%)
outperformed the published record, with the top-scoring team’s
accuracy (81.9%) exceeding it by over 11 percentage points. A similar
degree of outperformancewasobserved for top-5 and top-20 accuracy
(Supplementary Fig. 3).

In addition to improved accuracy, the best models from the Pre-
diction Track also outperformed previous work on other measures of
model performance. The first-, second-, and fourth-place teams all
exhibited higher precision and recall than the best previous model,
and all four prizewinning teams outperformed the previous best
F1 score (Fig. 2e, f, Supplementary Figs. 5–7). As with previous GEA
models, most submissions exhibited higher precision than recall,
indicating that they returned a higher rate of false negatives than false
positives. This tendency can be counterbalanced by looking at a larger
number of top predictions from each model—that is, by measuring
top-N accuracy for N > 1.

Evaluating negative attribution with rank metrics
In many important practical applications of GEA, the ability to con-
fidently exclude a potential designer (so-called “negative attribution”)
can be highly valuable, even if the true designer cannot be identified
with confidence4. In these contexts, a longer list of candidates pre-
sentedwith veryhigh confidencemaybemoreuseful thana shorter list
presented with lower confidence.

To investigate the degree to which Prediction Track models
enable this sort of confident negative attribution, we developed a new
metric. The X99 score of a predictor is the minimum positive integer N
such that the top-N accuracy of that predictor is at least 99% (Fig. 3a).

Analogous metrics can be defined for other accuracy thresholds; for
example, the X95 score of a predictor is the smallest value of N such
that its top-Naccuracy is at least 95%. The lower the values of these two
metrics, the better the predictor is able to confidently focus sub-
sequent investigation on a manageable set of candidates.

We computed X99 and X95 scores for every team in the Pre-
diction Track, as well as for previously published GEA models
(Fig. 3b, c, Fig. 4, Supplementary Figs. 8–13 and 22). The lowest
X99 score achieved by any previous model on the same dataset was
898 (using the CNNmodel of Nielsen & Voigt 2018), while the lowest
previous X95 score was 311 (using the RNN model of Alley et al.
2020). In contrast, the lowest X99 score achieved in the Prediction
Track was 244, achieved by the fourth-place Prediction Track team—

a 73% reduction compared to the previous record. The X99 score of
the first-place team was 299. The lowest X95 score achieved in the
Prediction was 11, achieved by the first-place team—a 96% reduction.
The competition results thus represent a dramatic improvement in
negative attribution capability.

Improving performance with ensembling
Ensembles ofmultiplemodels routinely improve performance across a
wide range of ML problems12–14. Indeed, all prizewinning teams in the
Prediction Track made use of some sort of ensemble to generate their
predictions (see below). We therefore hypothesised that further
ensembling could achieve even greater performance.

Our simple ensemble of the winning models (Methods) achieved
marginally higher top-10 accuracy than the 1st-place team, showing a
gain of 0.2 percentage points (95.1 vs 94.9%, Fig. 1b, Supplementary
Figs. 3 and 14). The improvement seen in top-1 accuracy was larger,
with an increase of 1.4 percentage points (83.1% vs 81.9%). This degree
of top-1 accuracy approaches the best top-10 accuracies previously
reported in the literature2,6. The ensemble model also achieved the
highest F1 score of any ML-based GEA model to date (Supplementary
Fig. 6), reflecting a better balance between precision and recall than
was achieved by individual winning teams.
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By far the largest improvement from the ensemblewas seen in the
X99 negative-attribution metric discussed above (Fig. 3c, Supple-
mentary Fig. 9). The ensemble achieved anX99 score of 177, compared
to299 for theoverall competitionwinner and244 for the teamwith the
lowest X99 (a 27.5% reduction). This dramatic improvement suggests
that significant further gains inX99maybe possible, further increasing
the practical applicability of GEA models.

Effects of large composite classes on prediction accuracy
As discussed above, small labs in the competition dataset were pooled
into a single auxiliary category, labelled “Unknown Engineered”. This
category was the largest in the dataset, making up 7.5% of sequences,
compared to 2.4% for the largest unique lab (Supplementary Fig. 15).
Given this frequency, it is possible that teams could inflate their Pre-
diction Track scores by always including Unknown Engineered in their
top 10 lab-of-origin guesses. Indeed, high-scoring teams included
Unknown Engineered in their top-10 guesses at a rate far exceeding its
true frequency, and the frequency with which they did so was corre-
lated with their overall top-10 accuracy (Spearman’s ρ =0.57, Supple-
mentary Fig. 16a, b).

As a result, the top-10 accuracy achieved by most teams on
Unknown Engineered sequences far exceeded that of sequences
assigned to a unique lab category, inflating teams’ top-10 accuracy
overall (Supplementary Fig. 16c). Previous GEA models exhibited
similar behaviour (Supplementary Fig. 17). In general, however, the
effect was marginal: for the top 10% of teams, the average top-10
accuracy on unique (non-Unknown-Engineered) labs was only 0.7
percentage points lower than their accuracy on the entire dataset.
Nevertheless, these results illustrate an important weakness in this
approach to handling small and unseen labs in GEA datasets.

Calibration of competition models
Deep-learning models are often overconfident in their predictions15.
This can cause problems for their interpretation, especially in cases,
like GEA, where the evidence from such models needs to be weighed
alongsidemultiple other data sources. Under these circumstances, it is
useful tomeasure the calibration ofmodel predictions, and potentially
to take steps to improve that calibration prior to use15–17.

Under conventional definitions of calibration, a predictor is con-
sidered to be well-calibrated if events it predicts with probability Y

occur 100 × Y % of the time. Common metrics for measuring calibra-
tion in this vein include the Expected Calibration Error (ECE) and
Maximum Calibration Error (MCE)15, which measure the average and
maximumabsolute deviation observed across somenumber of binned
ranges (Methods).

Previous work on GEA has included calibration analysis. Alley
et al.2 found that their RNN-based model was reasonably well-
calibrated (ECE = 4.7%, MCE = 8.9%); our reanalysis of that model’s
predictions returned similar values (ECE = 5.9%, MCE = 8.9%, Supple-
mentary Fig. 18). We also found that this RNN model was far better
calibrated than other previous attempts at GEA, especially with regard
to MCE (Supplementary Fig. 18). Given these results, we decided to
investigate the calibration of Prediction Track teams.

The MCEs and ECEs exhibited by Prediction Track teams varied
widely, and were only modestly correlated with Prediction Track
ranking (Spearman’s ρ vs ECE =0.15, ρ vs MCE=0.38, Supplementary
Fig. 19). Among the prizewinning teams, the 4th-place winner per-
formed best in terms of calibration, achieving results comparable to
Alley et al. (ECE = 3.4% and MCE = 11.8%, Supplementary Fig. 18). The
other prizewinners exhibited worse performance, with an average ECE
of 23.5% and an average MCE of 27.7%. This reflects generally poor
calibration among teams generally: the top 10% of teams achieved an
average ECE of 17.5% and an average MCE of 33.5% (Supplemen-
tary Fig. 20).

These results are not surprising: it is common for deep-learning
models to be very miscalibrated15, and models in the Prediction Track
were not penalised for poor calibration. Nevertheless, our results
demonstrate that the relative rankings produced by these models are
generally more informative than their specific probability estimates.

Strategies used by prize-winning teams
At the close of the competition, the prizewinning teams shared their
model code with organisers, allowing us to investigate the strategies
they employed18,19. At a high level, the 1st-, 2nd- and 4th-place teams
took remarkably similar approaches, with all of them employing
ensembles containing at least one convolutional network12,13,20. How-
ever, the precise structure of these ensembles, including the number
and size of the component networks14 and the preprocessingmethods
employed, varied considerably. Several teams normalised or aug-
mented their dataset using the reverse complement of each sequence,
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and one team used principal component analysis21 on BLAST features
as input to their neural network. The 1st-place team combinedmultiple
CNNs with a model based on k-mer counts, which appeared to com-
plement the CNNs. Unlike the previous best-performing GEA model2,
none of the winning teams employed an RNN-based approach.

In sharp contrast to other winning teams, the 3rd-place Prediction
Track team did not employ neural networks at all. Instead, they took a
radically different approach, using k-mer kernels, naive Bayes21, soft
masks and rank merging22. In addition to achieving top-10 accuracy
comparable with the best neural-network-based solutions, this
approachwas alsodramatically faster: 0.66CPUhours to train and run,
compared to >40 GPU hours for similarly performant deep-learning-
based solutions—a 1000-fold difference in the cost of compute
(Methods, Supplementary Table 4). This approach had substantially
worse top-1 accuracy (Fig. 2d) and X95/X99 scores (Fig. 4) than the
other winning solutions; however, these shortfalls may result from
over-optimisation for the top-10-accuracy metric used in the compe-
tition, rather than inherent limitations.

Discussion
By most quantitative metrics we investigated, the first GEAC was a
resounding success. Along its core evaluationmetric, top-10 accuracy,
winning teams achieved dramatically better results than any previous
attempt at GEA, with the top-scoring team and all-winners ensemble
both beating the previous state-of-the-art by over 10 percentage
points. Similarly large gainswere seen for themore-conventional top-1-
accuracy metric, despite submissions receiving no additional benefit
from placing the true lab in first place.

To investigate whether models at this level of performancemight
be useful in practice, we developed two new metrics: X95 and X99.
These metrics evaluate whether a model can generate a manageable
list of candidates while reliably (with 95 or 99% confidence) including
the true lab-of-origin. At the 95% level, the best models from the
competition essentially solved this problem for the Addgene dataset,
reducing X95 from over 300 to <15. Progress on X99 was similarly
dramatic: our ensemble of the winning models achieved an X99 score
of 177, an 80% reduction compared to previous work. Nevertheless, at
the 99% level, further progress is needed before the problem can be
considered solved.

While high-scoring competition teams performed very well on
accuracy and X95/X99 metrics, not all the metrics we investigated
showed suchpositive results. In particular, winningmodelsweremuch
less well-calibrated than some previously published models, making it
difficult to take the specific probabilities of their predictions at face
value. Recall and F1 scores also showed further room for improvement.

These suboptimal results are not surprising: ECE,MCE, recall, and F1 all
focus on the single toppredictionmade by amodel for each sequence,
but models in the competition were rewarded for ranking the true lab
anywhere in their top 10 predictions. Future models, trained under
broader optimisation incentives, will hopefully achieve similar or
greater accuracy while excelling along a wider variety of metrics; fur-
ther focus onX99 inparticular couldhelp rewardmodels that aremore
robustly useful.

While the results of this competition are highly encouraging, it is
important to keep in mind the gulf between the form of attribution
problem presented here, and the problems to which GEA might be
applied in practice. In many respects, the Addgene dataset—a large,
well-curated database of broadly similar plasmid sequences, with the
authorship of each sequence made freely available—represents a
highly simplified form of GEA. While the availability of this dataset has
been critical to the development of GEA approaches to date, if they are
to be practically useful, attribution models will eventually need to
generalise far beyond this initial scenario.

From this perspective of practical application, the fact that so
many teams outperformed the previous best models in this field is
promising, as it suggests that a wide variety of approaches could
perform well on this problem. That one of the prizewinning teams
adopted a very fast and completely neural-network-free approach to
the problem is also encouraging, since speed of deployment and ease
of retraining will be important in many applications of attribution
technology. Future exploration of these and other desirable proper-
ties, alongside improvements in accuracy, will be an important part of
bringing GEA into regular use. Further work on model interpretability
will also be key, to enable human experts to incorporate GEA results
alongside other forms of evidence.

At the same time, we envisage that investigating a wider range of
methods, such as equivariant neural networks23, transformers/atten-
tion methods24 and uncertainty-aware approaches25–28 may prove
fruitful. Alternative approaches to handling small andunseen classes in
GEA datasets—such as data augmentation29,30, anomaly detection31–33,
or the use of more robust evaluation metrics34,35—should also be
explored. Given the rapid improvement inGEAmodels to date, and the
gains made during this competition, we are optimistic that further
dramatic improvements, even to the point of practical application,
may be within sight.

Methods
Competition design
Overview. The GEAC was a free, online, public data-science competi-
tion held on the DrivenData competition platform11. The competition
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was organised and sponsored by altLabs, Inc in collaboration with
DrivenData, Inc. The competition was open to all individuals over the
age of 18, fromany country, with the exception of (i) officers, directors,
employees and advisory board members of altLabs or DrivenData, (ii)
immediate family members and housemates of those individuals, and
(iii) individuals who are residents of countries designated by the Uni-
ted States Treasury’s Office of Foreign Assets Control.

As discussed in the main text, the competition consisted of two
sequential tracks: the Prediction Track and the Innovation Track, each
of which is described in detail below. The Prediction Track ran from
August 18 to October 19, 2020, while the Innovation Track ran from
October 20 to November 1, 2020. Results for both tracks were
announcedon January26, 2021. Both tracks had a total prize pool ofUS
$30,000; the distribution of prize money among winning teams is
specified in Supplementary Table 1. All prize money was provided by
altLabs, Inc.

The Prediction Track. In the Prediction Track, participants attemp-
ted to guess the lab-of-origin of plasmid sequences from the Alley
et al. dataset (see below). Participants were given access to both
training data and labels from the training set, while labels from the
leaderboard and holdout test sets were withheld. The top-10 accu-
racy of each submission on the leaderboard set was immediately
reported to the submitting team upon submission, and the best top-
10 accuracy scores on this set for each team were continuously
displayed on a public leaderboard during the competition. The top-
10 accuracy of each submission on the holdout test set was not
reported until after the Prediction Track had closed, and was used
to determine the final competition ranking. Prizes were awarded to
the four teams who achieved the highest top-10 accuracy scores on
this private test set.

The Innovation Track. Following closure of the Prediction Track,
teams that achieved a top-10 accuracy of at least 75.6% were invited to
participate in the Innovation Track. This threshold was based on an
earlier estimate of BLAST top-10 accuracy (see below). To compete in
this track, participants were asked to submit short reports (maximum
4 pages, maximum 2 figures), which were then reviewed by a team of
judges (seebelow). describing how their approachwould contribute to
solving real-world attribution problems. Prizes were awarded to teams
who exhibited novel and creative approaches to the problem, or who
demonstrated that their algorithms possessed useful properties other
than raw accuracy. The full text of the Innovation Track problem
description is available in the Supplementary Note.

Submitted reports were assessed by a teamof 12 judges, including
experts in synthetic biology, bioinformatics, biosecurity, and machine
learning. Each judge reviewed a group of six submissions; assignment
of submissions into these groups was performed randomly, with the
constraints that each possiblepair of submissionsmustbe reviewedby
at least two judges and that each individual submission must be
reviewed by the same number of judges.

To avoid issues arising from differences in scoring practices
between judges, each judge was asked to rank the submissions they
received, with a rank of 1 indicating the best submission. Prizes were
awarded to the four teams who achieved the smallest average rank
across judges. In the event of a two-way tie, the process was repeated
using only those judges who reviewed both submissions; this was
sufficient to obtain four unique prizewinners in this case.

Data preparation
Data for the GEAC was provided by Alley et al.2, and comprised all
plasmids deposited in the Addgene repository up to July 27th 2018—a
total of 81,834 entries. For each plasmid, the dataset included a DNA
sequence, along withmetadata on growth strain, growth temperature,
copy number, host species, bacterial resistance markers, and other

selectable markers. Each of these categorical metadata fields was re-
encoded as a series of one-hot feature groups:

• Growth strain: growth_strain_ccdb_survival, growth_-
strain_dh10b, growth_strain_dh5alpha, growth_-
strain_neb_stable, growth_strain_other,
growth_strain_stbl3,growth_strain_top10,
growth_strain_xl1_blue

• Growth temperature: growth_temp_30, growth_temp_37,
growth_temp_other

• Copy number: copy_number_high_copy, copy_-
number_low_copy, copy_number_unknown

• Host species: species_budding_yeast, species_fly, spe-
cies_human, species_mouse,species_mustard_weed,
species_nematode, species_other, species_rat,
species_synthetic,species_zebrafish

• Bacterial resistance: bacterial_resistance_ampicillin,
bacterial_resistance_chloramphenicol, bacter-
ial_resistance_kanamycin, bacterial_resistance_-
other, bacterial_resistance_spectinomycin

• Other selectable markers: selectable_markers_-
blasticidin, selectable_markers_his3, selecta-
ble_markers_hygromycin, selectable_markers_leu2,
selectable_markers_neomycin, selecta-
ble_markers_other,selectable_markers_puromycin,
selectable_markers_trp1, selectable_markers_ura3,
selectable_markers_zeocin

In addition to the sequenceand the abovemetadatafields, the raw
dataset also contained unique sequence IDs, as well as separate IDs
designating the origin lab. For the competition, both sequence and lab
IDs were obfuscated through 1:1 replacement with random alphanu-
meric strings.

The number of plasmids deposited in the dataset by each lab was
highly heterogeneous (Supplementary Fig. 21). Many labs only
deposited oneor a few sequences—too few to adequately train amodel
to uniquely identify that lab. To deal with this problem, Alley et al.
grouped labs with fewer than 10 data points into a single auxiliary
category labelled “Unknown Engineered”. This reduced the number of
categories from 3751 (the number of labs) to 1314 (1313 unique labs +
Unknown Engineered).

In addition to issues with small labs, the dataset also contains
“lineages” of plasmids: sequences that were derived by modifying
other sequences in the dataset. This could potentially bias accuracy
measures by introducing dependencies between entries in the training
and test sets. To deal with this issue, Alley et al. inferred lineage net-
works among plasmids in the dataset, based on information in the
complete Addgene database acknowledging sequence contributions
from other entries. More specifically, lineages were identified by
searching for connected components within the network of entry-to-
entry acknowledgements in the Addgene database (see Alley et al.2 for
more details).

The data were partitioned into train, validation, and test sets, with
the constraints that (i) every category have at least three data points in
the test set, and (ii) all plasmids in a given lineage be assigned to a
single dataset. Following the split, the training set contained 63,017
entries (77.0%); the validation set contained 7466 entries (9.1%); and
the test set contained 11,351 entries (13.9%).

For the GEAC, these three data partitions were reassigned based
on the needs of the competition: the training set was provided to the
participants for model development, including the true (though
obfuscated, see above) lab IDs. The validation and test sets, mean-
while, were repurposed as the leaderboard and holdout test sets of the
competition. One entry with a 1nt sequence was dropped from the
leaderboard set, leaving a total of 7465 entries.

The test and leaderboard sets were shuffled together, and pro-
vided to participants without the accompanying lab IDs; as described
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above, participants’ top-10 accuracy on the validation set was used to
determine their position in the public leaderboard during the com-
petition, while their top-10 accuracy on the test set was used to
determine the final ranking and prizewinners. To avoid overfitting,
participants were not shown their results on the holdout test set until
the end of the competition, at which point participants were ranked
based on the top-10 accuracy of their most recent submission on that
test set.

Data integrity
In order to minimise competitor access to Addgene data during the
GEAC, a number of steps were undertaken during the design and
execution of the competition, including:

• The source of the data was not disclosed to participants;
• Plasmid and lab IDs were obfuscated in the competition dataset,

raising the barrier to potential cheating;
• In order to receive any prize money, high-scoring participants

had to submit their model code to DrivenData for independent
verification—including visual inspection for obvious cheating,
validation of performance on the test dataset, and verification
on a separate dataset of Addgene sequences collected after the
competition.

Computing the BLAST benchmark
Previous implementations of GEA using BLAST36 have reported top-
1 accuracies of just over 65% and top-10 accuracies of roughly 75%2.
During the preparation of this manuscript, we found that a small
modification of this attribution algorithm (specifically, replacing
use of the quicksort algorithm37 with mergesort38) resulted in equal
top-1 accuracy, while substantially increasing top-N accuracy for
N > 1 (Supplementary Fig. 3). We have used the results from this
modified algorithm in the main text, while presenting both sets of
results side-by-side in the supplementary material. Under our
implementation, the procedure followed by both algorithms can be
summarised as follows:

• Sequences from the training setwere extracted into a FASTA file,
then used to generate a BLAST nucleotide database.

• Sequences from the test set were extracted into a FASTA file,
then aligned to the training-set database, with an E-value
threshold of 10.

• Alignments reported by BLAST were sorted in ascending order
of E-value. The original implementation used quicksort for this
sorting step, while our modified algorithm used mergesort. (In
the latter but not the former case, this is equivalent to sorting in
descending order of bit score.)

• The lab IDs corresponding to each training-set sequence were
identified, and the sorting results were filtered to include only
the first result for each lab-ID/test-set-sequence combination.
The remaining hits for each test-set sequence were ranked in
ascending order of occurrence in the dataset.

• Finally, top-N accuracy was calculated as the proportion of test-
set sequences forwhich the IDof the true origin labwas assigned
a rank less than or equal to N.

BLAST version 2.10.1 was used to generate the baseline.
For thepurposeof calculating calibration (SupplementaryFig. 18),

these rankswere reversed (so that thebestmatchhad thehighest rank)
and normalised using softmax.

Other baselines
Predictions on the competition test set for deteRNNt2 and a repro-
duction of the CNN model developed by ref. [5] were provided by ref.
[2]. Top-N accuracy, X-metrics, calibration indices, and other metrics
were re-computed from scratch based on these files.

Post-competition analysis
Demographic information on the competition was collected using
Google Analytics (Universal Analytics). Other data were analysed using
python 3.7 and R version 4.1. Figures were plotted using ggplot2
version 3.3.1.

Each submission to the Prediction Track consisted of a J × K pre-
diction matrix, where J is the number of sequences in the holdout test
set (11,351) andK is the total number of lab classes in that test set (1314).
Each entry in thismatrix ostensibly reflected a predicted probability of
the corresponding lab being the true lab-of-origin for that sequence,
with the entries in each row summing to unity.

To compute accuracy metrics for each team for this analysis, we
first generated a rank matrix from their prediction matrix. In this
matrix, the lab with the highest predicted probability for a given
sequence was assigned rank 1, the second-highest prediction rank 2,
and so on. To prevent teams achieving high scores by giving uniform
predictions for large numbers of labs, tied predictions were assigned
the maximum rank. Given this rank matrix, the top-N accuracy for any
N could thus be computed as the proportionof rows forwhich the true
lab was assigned a rank of N or less.

Given these accuracy scores, the X99 score could be computed as
the minimum positive integer N such that top-N accuracy is at least
99%. This metric can be generalised to other thresholds, where XR is
theminimumpositive integerN such that top-N accuracy is at leastR%.
X95, X90 and X80 scores were all computed in this way.

For the purposes of calculating precision and recall, the number
of true positives, false positives and false negatives were computed
separately for each lab class for each submission. For a given class, the
number of true positives tp was defined as the number of times in the
test set that that class was correctly assigned rank 1 (i.e. assigned rank 1
when it was in fact the true lab-of origin); the number of false positives
f p as the number of times it was incorrectly assigned rank 1; and the
number of false negatives f n as the number of times it was incorrectly
assigned rank >1. Precision and recall for each class were then calcu-
lated as tp=ðtp+ f pÞ and recall as tp=ðtp+ f nÞ, and the F1 score for each
class as the harmonic mean of its precision and recall. The overall
precision and recall for each team were computed as the arithmetic
mean of its class-specific precisions and recalls, respectively, while the
macro-averaged F1 score was computed as the arithmetic mean of its
class-specific F1 scores.

Calibration
Following Guo et al.15 we checked whether predictions had frequentist
calibration of their probabilistic forecasts. To estimate the expected
accuracy from finite samples, we grouped predictions into 15 interval
bins of equal size. We let Bm be the set of indices of samples whose
prediction confidence falls into the intervals ðm�1

M , mM�. The accuracy of
bin Bm is then defined as

acc BM

� �
=

1
∣Bm∣

X
Bm

1ðŷi = yiÞ ð1Þ

where ŷi and yi are the (top-1) predicted and true class labels for
sequence i and ∣Bm∣ is the number of samples in bin Bm. The average
confidence within bin Bm is defined as

conf BM

� �
=

1
∣Bm∣

X
Bm

p̂i ð2Þ

where p̂i is the predicted probability assigned to class ŷi for sequence i.
The expected deviation between confidence and accuracy can then be
estimated using the expected calibration error (ECE):

ECE=
XM

m= 1

∣Bm∣
n

∣acc BM

� �� conf BM

� �
∣ ð3Þ
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wheren is the total number of samples. Themaximumcalibration error
(MCE) estimates the worst-case deviation from the binning procedure
as:

MCE= max
m2f1,...,Mg

∣acc BM

� �� conf BM

� �
∣ ð4Þ

Ensemble
To ensemble the four prizewinning teams from the Prediction Track,
the probability assigned to each lab for each plasmid sequence was
averaged between the top 4 classes, with equal weight given to each
class. That is, the prediction for sequence i to lab j was given by:

pij =
1
4

X4

k = 1
pijk ð5Þ

where k indexes over the methods and pijk is the prediction score
given for sequence i to lab j, by method k.

Amazon web server compute costs
Approximate costing for machine learning methods were calculated
using Amazon EC2 on-demand pricing. We assumed a single GPU
machine with sufficient memory (128GB) costing $1.14 per hour
(g3.8×large). This totals $51.30 for 45 h of GPU time. For the CPUbased
methods, which required 20GB of solid-state drive, an x2gd.medium
instance, costing $0.08 per hour, would be sufficient. This totals $0.05
for the 0.66 CPU hours used.

Robustness analysis
To assess the robustness of the ranking of the winning teams to choice
of validation dataset, the lab-of-origin predictions for the set of
sequences were subsampled so that predictions were only retained for
80% of the sequences. Sampling was performed without replacement
for each subsample. The rankorder of predictionswas re-computedon
this subsampled dataset, and from here we computed metrics of
interest including top-1 accuracy, top-10 accuracy and X99 score.To
generate a distribution of scores, this resampling strategy was per-
formed 1000 times. Distributions were compared using the KS-test; all
pairwise comparisons between teams on all metrics (top-1 accuracy,
top-10 accuracy, and X99) were significantly different at p <0.01.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Summarised competition data, including all data files required to
generate allfigures in this paper, are publicly availableonline at https://
github.com/willbradshaw/geac/39. Due to licensing agreements, com-
petition datasets and prediction data are available on request to the
corresponding author at wjbrad@mit.edu.

Code availability
Code related to this paper is publicly available online at https://github.
com/willbradshaw/geac/39.
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