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Abstract

Computational modeling of drug delivery is becoming an indispensable tool for advancing drug 

development pipeline, particularly in nanomedicine where a rational design strategy is ultimately 

sought. While numerous in silico models have been developed that can accurately describe 

nanoparticle interactions with the bioenvironment within prescribed length and time scales, 

predictive design of these drug carriers, dosages and treatment schemes will require advanced 

models that can simulate transport processes across multiple length and time scales from genomic 

to population levels. In order to address this problem, multi-scale modeling efforts that integrate 

existing discrete and continuum modeling strategies have recently emerged. These multi-scale 

approaches provide a promising direction for bottom-up in silico pipelines of drug design 

for delivery. However, there are remaining challenges in terms of model parametrization and 

validation in the presence of variability, introduced by multiple levels of heterogeneities in disease 

state. Parametrization based on physiologically relevant in vitro data from microphysiological 

systems as well as widespread adoption of uncertainty quantification and sensitivity analysis will 

help address these challenges.
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Introduction

Computational modeling of drug delivery has significantly advanced in recent years. In 

silico models using discrete or continuum modeling approaches can accurately describe 

drug’s interactions with the bioenvironment during individual stages of its in vivo journey. 

In the meantime, advanced nanomedicine has resulted in numerous nanoparticle (NP) 

formulations offering encapsulation of small molecule drugs and biologics, as well as 

efficient transport, and delivery of these therapeutics to target sites. Use of NPs as drug 

carriers, imaging agents, molecular probes, sensors and thermal therapy agents show great 

potential for therapeutic and diagnostic use with some of these nanomedicines having 

already found clinical use in critical applications such as anticancer therapy and mRNA 

vaccine delivery (1,2)(3,4).

A significant amount of continued research on nanomedicine focuses on physiochemical NP 

characteristics such as particle size, shape, charge and functionalization and efforts to tune 

these characteristics to realize the biological, transport, optic, magnetic and thermal function 

desired (5,6). In the NP design process, there are various considerations that can effectively 

be addressed by computational modeling strategies. These include simulations of NP plasma 

pharmacokinetics and biodistribution (7), scenarios involving passive and active targeting 

strategies (8,9), NP interactions with physiological transport barriers (10), and outcomes of 

therapeutic interventions involving normalization of pathophysiological features of disease 

(11,12).

While progress has been made towards understanding how multifaceted NP characteristics 

affect their transport and delivery, predictive design of nanomedicine, dosage and treatment 

schemes pose challenges for computational models as interactions of NPs with the 

bioenvironment need to be captured across multiple length and time scales from genomic 

to population levels to model the transport processes accurately. Integration of existing 

modeling strategies in a multi-scale modeling setting can enable a bottom-up in silico 

computation pipeline bridging the scales and shows great promise for building predictive in 

silico models of drug delivery and efficacy. However, it is still challenging to integrate these 

multi-scale efforts for broader length and time scales. Another primary challenge remains 

incorporation of uncertainty arising from heterogeneities within the disease, across different 

disease states and different patients into the computational models. Systematic verification 

and validation of computational models based on data from high-fidelity in vitro models 

such as microphysiological systems and development of models based on anatomically 

accurate and patient-specific medical imaging data will help address these challenges.

In this review, we summarize the recent progress in computational modeling of drug 

transport with a focus of nanomedicine, highlight examples of modeling efforts in distinct 

scales and discuss challenges and opportunities for the next level.
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Computational Modeling of Drug Transport Phenomena across Scales

Discrete and Continuum Modeling

Physical phenomena associated with the transport of drugs across the human physiological 

systems take place at multiple length and time scales (Figure 1). Processes such as 

drug release from a nanocarrier or partitioning of the drug in the cell plasma membrane 

typically involve transport over distances on the order of nanometers and times on the 

order of microseconds or less. A discrete representation of the drug and its surroundings 

as an ensemble of individual interacting particles is often employed for investigating 

transport at such a small scale. There are various discrete modeling approaches and the 

selection of a particular method depends on the level of detail required for the problem 

of interest. Among the methods with the finest detail, molecular dynamics (MD) involve 

tracking individual atoms and molecules by the coupled solution of Newton’s second law 

of motion over a time span, starting from the initial coordinates and velocities of the 

particles (13–15). The interaction forces between the particles are modeled as gradients 

of intermolecular potentials. MD techniques are powerful tools that can provide rich 

information on the structure and motion of individual drug particles and help determine 

fundamental characteristics relevant to transport based on first principles. Most recent 

advances in the field enable simulations of time spans on the order of milliseconds, 

sufficient to observe fundamental biological processes such as protein folding, drug binding, 

and membrane transport. Particular applications include nanoparticle interaction with the 

cell membrane (16), aspherical particle modeling (17) and pharmaceutical particle formation 

(18). MD studies also have potential uses in the discovery of novel binding sites and 

structure-based drug design. Additionally, drug-resistant disease models may clarify the 

mechanism of resistance and provide a powerful tool for modifying the drug (19). If 

electronic motions play an essential role, quantum mechanics (QM) provides a finer 

approach than MD simulations. On the other hand, averaging electronic properties and 

assigning partial charges to atoms reduces computational cost compared to QM-based 

approximation (15). For NPs with a size of 20-200nm within mesoscopic-scale, atomistic 

detail is mostly not needed. Therefore, in coarse-grained (CG) simulations a number of 

atoms are grouped into interaction sites called ‘beads’. After coarse-graining the system, 

a similar method with MD is followed in which a sampling algorithm is used to calculate 

thermodynamic and structural properties (15).

Scaling-up of MD simulations to investigate transport phenomena beyond nano/micro-

scales is computationally prohibitive (20) and degree of freedom reduction reduces the 

computational cost. For instance, comparing MARTINI models in the molecular and atomic 

scales the speed up is proportional to n2, i.e. square of the degrees of freedom. It is even 

greater for models treating solvent as a continuum medium such as Brownian dynamics 

(21). Mesoscale models average out unimportant microscopic details while keeping the 

essential ones, resulting in a computationally efficient simulation. Brownian Dynamics 

(BD), Multi-Particle Collision Dynamics (MPCD) and Dissipative Particle Dynamics (DPD) 

are common discrete methods used to model mesoscopic phenomena spanning molecular 

to microstructural processes (14). In general, two classes of mesoscopic methods, namely 

particle-based (DPD, MPCD) and lattice (LB) methods are utilized (22).
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When a small particle is suspended in a fluid, it is subjected to the imbalanced random 

impacts of the fluid molecules that cause the nanoparticles to move on an erratic path, 

known as the Brownian motion. A Gaussian white noise stochastic process can model the 

random impacts of the molecules (23). Particles suspended in a fluid system are subjected 

to the impacts of the randomly fast-moving fluid molecules. For sub-micron particles, 

such instantaneously fluctuating momentum transfer from the solvent molecules spurs the 

particle to yield irregular movements, known as the Brownian motion. The dynamics of such 

Brownian particles can be described via the (overdamped) Langevin equation (LE) (24).

BD replaces the effect of solvent molecules on particles with a random force, so that 

solvent molecules are regarded as a continuum medium. Therefore, BD is used when the 

solvent molecules do not deserve a special interest (25). Being a relatively simpler and 

computationally cheaper method it is popular, but it does not take momentum transport 

through the fluid, i.e. hydrodynamic interactions into account. BD method is used in 

different applications such as the transport of suspended particles within an array of circular 

objects/obstacles (26), intracellular calcium release (27) and biomolecule association in 

solutes (28). In DPD, groups of atoms or volumes of fluids are modeled as beads that 

move according to the Newton’s 2nd law or LE although the functional forms of forces are 

slightly different (22). In the most basic form of DPD, there is a conservative, dissipative and 

random force term between each bead corresponding to soft repulsion, frictional force(drag), 

and random interaction between neighboring beads. Compared to LBM or MPCD, DPD 

is more expensive numerically as it accounts for pairwise interactions (22). DPD has been 

used in nanoparticle targeting kinetics (29), determination of cellular uptake of different 

NP shapes (30) and drug encapsulation efficiency of Pluroronic micelles (31). An improved 

version of DPD, smoothed dissipative particle dynamics (SDPD) has the advantage of 

accounting for fluid compressibility, which might be prominent in specific applications 

like the collective motion of colloids and flow within complex geometries (32). In multi-

particle collision dynamics (MPCD), the solvent molecules are modeled as an ideal gas. 

The update of particle positions and momentum occurs in two successive time intervals, 

namely streaming and collision steps. In the most widely used MPCD algorithm, stochastic 

rotation dynamics (SRD), the coordinates of the particles are updated in the streaming 

step using Newton’s equation of motion, neglecting solvent-solvent interaction. Then, the 

system is divided into cells and the relative velocities of particles in the same cell with 

respect to the center-of-mass are subjected to a random rotation (22,33) in the collision time 

step. Thanks to the rotation of velocities, the total momentum and energy are conserved 

while fluid particles transfer momentum. The method might result in misleading results for 

small temperatures or small collision time steps such that fluid particles remain in the same 

cell for more than one collision time step (34). MPCD method has been applied for uses 

such as semiflexible polymer chain dynamic simulation (35) and single rigid spheres with 

natural buoyancy confined in different geometries under pressure-driven flow (36). Different 

physical phenomena happening in distinct time-length scales might be represented with 

the same physics and coarse-graining scheme if the governing set of key non-dimensional 

numbers is the same (34). Keep in mind that while coarse-graining the molecular system, 

the thermodynamics of the system must be preserved for a good representation, i.e. the 

compressibility and solubility of the components should be preserved. There are studies in 
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literature comparing application of MPCD and DPD (37), BD and MPCD (38). Interested 

reader can refer to reviews and reference texts on the subject for detailed treatment of each 

method (22,39).

When investigating the transport phenomena at larger length scales such as drug distribution 

within and across different tissues, a continuum approach is often adopted where the 

position and motion of the drug particles and the surrounding medium are averaged in 

space and time and the material is assumed to be distributed continuously in the region of 

interest. Finite element method (FEM), finite volume method (FVM) and finite difference 

method (FDM) are numerical techniques that are used to solve differential equations. 

Such differential equations commonly arise in continuum modeling transport processes and 

include Navier-Stokes equations for fluid dynamics, Darcy’s Law for fluid dynamics in 

porous media and species advection diffusion equation for drug transport (40). In FDM, 

terms of the differential equation are directly estimated at nodal points which yield a 

set of equations to be solved. In FEM, problem domain is discretized into small regions 

referred to as finite elements where governing equations are modeled based on variational 

principles. In FVM also involves discretization of the problem domain into small regions 

referred to as cells where conservation laws, typically governing fluid or heat transfer are 

applied over each cell (41,42). Another numerical method for modeling transport problems 

in the continuum regime is the Lattice Boltzmann Method (LBM). In LBM, the distribution 

function is discretized to solve Boltzmann equation, a molecular-scale analogue of the 

Navier-Stokes (NS) equation, such that fluid particles are restricted to move along a lattice 

vector. LBM method is not a coarse-graining scheme of molecular dynamics; rather, it is 

evolved from lattice gas cellular automata (22) from which macroscale NS equations can 

be derived. Although it has streaming and collision time steps similar to MPCD, it cannot 

represent physics in such small scales. Treating fluids with different length scales challenges 

lattice-based methods (34).

Modeling of transport process at system-level such as pharmacokinetics associated with 

drug absorption, distribution, metabolism, and excretion (ADME) are typically done 

by compartmental models where mass transport and biochemical processes across and 

within compartments are modeled by coupled differential equations. Physiologically based 

pharmacokinetic (PBPK) models involve compartments representing individual organs and 

tissues that are connected by blood or lymphatic circulation (43). The process of mass 

transport between compartments might be limited by two main factors; namely, blood 

perfusion and transport across tissue-tissue interfaces, e.g. vascular wall or cell plasma 

membrane that are repsented by flow-limited and interface-limited models (44,45). One 

of the key parameters in these models is the tissue-to-plasma partition coefficient that is 

defined as the ratio of the NP or drug concentration within the tissue to the concentration in 

the vascular compartment. The partition coefficient is a time dependent parameter estimated 

individually for the specific NPs or drugs and the environment. Being challenging to 

measure in vivo, there are in silico approaches developed to predict the partition coefficient 

(46). Some example applications of these in silico approaches include age dependent organ, 

portal and hepatic blood flow data adjustments using adult and pediatric simulations for 

different compounds (47), evaluating the accuracy of different plasma clearance and steady 

state volume distribution prediction methods (48), analysis of NP distribution to different 
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organs depending on particle size (49), intracellular drug concentration optimization for 

temperature sensitive liposomes under hyperthermic conditions (50), PEGylated gold 

nanoparticle internalization modeling (51).

Having a physiologically mechanistic representation of the actual organ level transport, 

pharmacokinetic models can be used to extrapolate results of animal models to humans or 

might be helpful in dose determination of specific groups of the population like pediatrics 

and pregnant women (45). PBPK modeling is indeed widely used in academia and industry 

to predict dynamics of drug ADME characteristics. In addition it is gaining recognition 

by regulatory circles as a valid modeling tool for efficacy and toxicity assessment (52). 

For instance, the effect of focused ultrasound-induced blood-brain/blood-tumor barriers 

disruption on drug delivery was analyzed (53). Integrating the experimental outcome with 

a PBPK model, it was pointed out that the disruption alleviates the vascular barriers and 

enhances interstitial transport. Simulation of population-level variations in pharmacokinetic 

properties involves nonlinear mixed effects that often utilize generic compartmental models 

that do not seek physiological mimicry yet provide sufficient explaining power for 

parameters of interest (54). However, the popularity of PBPK modeling in this area is also 

increasing (55).

Governing equations for the modeling formulations presented above are provided in Table 

1 together with several example applications. It is seen that discrete models are powerful 

tools that can provide rich information on structure and motion of individual drug particles 

and help determine fundamental characteristics relevant to transport based on first principles. 

However, scale-up of discrete methods to investigate transport phenomena beyond nano/

micro-scales is currently computationally prohibitive. In cases where length and time scales 

are sufficiently large, the continuum approach vastly simplifies modeling while maintaining 

accuracy. However, a critical challenge in continuum modeling is parametrization of 

the model involving determination of the transport parameters specific for the drug and 

biological environment considered. These transport parameters include effective diffusivity, 

retardation and hydraulic conductivity that appear in continuum formulations of fluid 

and species transport. Likewise, PBPK models require knowledge of interface transport 

coefficients that themselves arise from parameters defined in smaller scales, e.g. hydraulic 

conductivity and permeability that govern the convective and diffusive drug transport across 

the interface as well as geometric parameters such as interface area per unit volume of 

the compartment. Therefore, transport parameters in continuum models are coarse-grained 

representations of transport processes and interactions that take place in smaller scales. In 

the next section, we review examples of multi-scale modeling efforts that integrate discrete 

and continuum models to address this challenge and build predictive in-silica models of drug 

delivery.

Multi-scale Modeling Approaches

Modeling of Vascular and Interstitial Pore-Scale Transport—As drug particles 

travel through the bloodstream, extravasate and penetrate into a tissue, they are transported 

across a crowded porous microstructure where significant interactions between the drug, 

fluid and microstructure take place. These interactions become particularly important for 
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the transport of larger particles such as nanoparticle formulations and are affected by the 

drug particles’ physiochemical properties, including their size, shape, surface charge, and 

functionalization (5,6).

While the number of atoms, therefore the degrees of freedom to be solved to resolve 

these pore-scale interactions are too high for MD approach, the microscopic details such as 

collisions of particles with the structure and other particles, their hydrodynamic interactions 

with the fluid as well as the Brownian fluctuations remain significant such that sole use 

of continuum models is not adequate. Therefore, a hybrid multi-scale approach combining 

continuum modeling for transport of fluid with discrete modeling for particle trajectory is 

often utilized to investigate pore-scale transport in vascular and interstitial space (14).

Several examples of earlier studies featuring hybrid modeling approaches are illustrated 

in Figure 2. There have been several computational efforts to investigate bloodborne NP 

transport under varying particle and flow conditions such as hematocrit, vessel or NP 

size, and flow velocity. Intravascular NP transport, considering the effects of both NP 

characteristics and complex cellular flow is modelled by Liu and coworkers (56) (Figure 

2(a)). In order to cover the range of length-scales between NP and RBC, a lattice-Boltzmann 

(LB) based multi-scale approach was used. The study illustrates that particle total radial 

diffusivity is the summation of Brownian diffusivity and RBC-enhanced diffusivity. The 

multi-scale model provides radial diffusivity estimates for varying NP sizes and flow 

conditions marked by Peclet (Pe) number. These results are particularly significant for 

blood-borne transport of large NPs. The model recovers Brownian diffusivity if Peclet 

number is small, e.g., diffusing particle has a diameter less than 100nm.

In a similar analysis, dispersion coefficient was investigated using Immersed Finite Element 

Method (IFEM) (57). IFEM features a Lagrangian solid mesh moving with a Eulerian 

fluid mesh. Therefore, both the meshing of the computational domain and interpolation 

of the unknowns are greatly simplified (58). In this manner, IFEM was employed to 

explore the blood flow and particle dispersion characteristics within the microvasculature 

(57). Considering the wide variations of the key flow characterizing parameters, i.e., 

microvascular uncertainty, these simulations were extrapolated using a Bayesian updating 

algorithm and combined with experimental outcomes to acquire computational prediction. 

Expansion of the method by incorporation of electrokinetic and molecular interactions 

was also introduced. This method, designated as Immersed Molecular Electrokinetic Finite 

Element Method (IMEFEM) (59), was used to investigate effect of RBC aggregates on 

blood rheology. Within this context, IMEFEM was utilized to simulate RBC-particle 

interaction using pre-assigned molecular interaction potentials (60). MD or DPD could 

also be employed for these interactions, enabling molecular scale accounting of cell-cell, 

cell-particle and particle-particle interactions. Using IMEFEM, it was shown that different 

hematocrit percentages (0, 15, 30% RBCs) had distinct effects on NP concentration at a 

cross-section of the blood vessel. At 30% NPs concentrated on regions close to the vessel 

wall, and as the NP size increased the concentration on this region got even higher.

Park and colleagues (61) developed an image-guided microstructural model of fluid 

and species transport in fibrous biopolymer networks and applied their model toward 
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estimation of hydraulic conductivity and effective diffusivity of fluorescent tracer molecules 

(hydrodynamic radius of 5.1 nm) within pig skin collagen hydrogels where microstructures 

with different branching characteristics could be obtained by varying collagen monomer/

oligomer content during polymerization (Figure 2(b)). The computational domain involved 

a representative unit cell where the geometry was generated from segmentation of confocal 

reflectance images of the collagen fiber network. Further simulations were performed on 

artificial fiber networks generated by a parameter-based reconstruction technique to match 

branching point density and distances in the imaging data. Their model is based on a 

semi-discrete approach where the flow of physiological fluid is modeled as a continuum 

by Naiver-Stokes Equations while individual particle trajectories were simulated by BD. 

Hydrodynamic forces induced by fluid flow on the particles were incorporated based on 

the empirical Shiller-Nauman Correlation for Stokes drag (62). The model predictions 

were within the same order of magnitude, yet results were underestimated compared to 

experimental data. The source of the discrepancy could be attributed to lack of slip flow, 

particle flexibility and discretization errors in the simulations (61). A similar approach 

involving volume-averaging theory and FEM were also used to characterize hydraulic 

permeability of fibrous extracellular matrix (ECM) (63). In another study, Sykes and 

colleagues (64) investigated whether cancer pathophysiology influences tumor accumulation 

and nanoparticle penetration using MC simulations (Figure 2(c)). Their model involved 

stepwise random walk of gold NP within collagen pores and their elastic collision with 

collagen fibers in 2D and 3D geometries. As illustrated with a bar graph, MC simulations 

showed that AuNP- fiber collusion frequency decreased with increasing AuNP and pore 

size. The study helped elicit the particle size and pore size dependence of interstitial 

diffusion of nanomedicine.

As drug particles penetrate into the tissue they also interact with the cellular compartment. 

Islam and colleagues (65) developed a hybrid multi-scale model that combined continuum 

modeling of fluid flow based on Stokes equations with time-adaptive BD to model 

microscale interactions of particles with cell boundaries in terms of adhesion of particle 

to cell surface or reflection back into fluid (Figure 2(d)). The model was used to 

investigate the significance of the particle size in intra-tissue dispersion and penetration. 

Continuation of this work included consideration of specific and non-specific targeting 

efficiency and suggested that receptor targeting may result in a marginal efficacy gain 

(66). As these examples of hybrid modeling approaches indicate, combination of continuum 

modeling and discrete modeling allows study of drug particle-fluid-structure interactions in 

dynamic vascular and interstitial flow environments and provides a means to predict key 

transport properties such as effective diffusivity and hydraulic conductivity that are used in 

parametrization of continuum-level transport models.

Modeling of Tissue-, Organ- and System-Level Transport—As presented in 

the previous section, hybrid multi-scale modeling can help estimate effective transport 

properties in porous microenvironment by simulating fluid and solute transport in a pore-

scale domain e.g., an interstitial unit cell containing ECM fibers with certain density 

and directionality. Theoretical frameworks such as asymptotic homogenization, volume 

averaging and mixture theory provide alternative means to estimate effective transport 
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properties by recognizing the length-scale separation between the porous microstructure 

and relatively homogeneous tissue or organ-level structures and developing averaged 

interpretations of microscale equations that can later be used in homogenized macroscale 

problems such as simulations over the tissue and organ-scale (Figure 3(a)) (67). As 

examples of multi-scale modeling, incorporating volume averaging theory and asymptotic 

homogenization approach, volume-averaging theory was employed to estimate permeability 

of fiber networks (63). Human stratum corneum, skin’s outermost layer, was modeled 

to calculate effective diffusivity(68,69). Avascular tumor growth and chemotherapeutic 

interaction was studied (70). Similarly, angiogenesis during tumor growth was examined 

using a hybrid approach (71). The role of vascular tortuosity on transport phenomena 

by bridging micro-macro scales with differential problems and double Darcy model was 

investigated (72). Capillary network and Darcy’s law were used to investigate Vinblastine 

and Doxorubicin metabolization within the tumor by Mascheroni and Penta (73). 

These homogenization techniques have inherent limitations particularly due to local cell-

periodicity assumption as mimicking complex-heterogenous ECM or tumor microcapillary 

network is challenging using periodicity. Indeed, deviations from cell-periodicity near 

the macroscopic boundary introduce edge effects that result in loss of solution accuracy 

(73). In addition, direct interactions between the particles, fluid and microstructure due to 

directional forces, e.g., electrostatic interactions and magnetic stimulation, are challenging to 

incorporate using spatial homogenization. On the other hand, volume averaging theory and 

homogenization remain to be useful techniques for estimation of transport properties to be 

used in macro-scale continuum models without resorting to stochastic approaches while still 

incorporating microstructure-level geometric details.

One of the alternative approaches that incorporate the effect of microstructural architecture 

on tissue and organ-level transport was presented in the work of Kojic and coworkers (74–

77). A multi-scale, MD-FE model was used to investigate hierarchical diffusion phenomena 

for a microstructural architecture. Using MD, interaction effects between molecules and 

solid microstructure were taken into consideration by using scaling functions. Scaling 

functions represent the dependence of diffusivity with respect to the bulk diffusivity 

that is applicable when far away from the surface. Diffusion process taking place in 

two domains, namely bulk diffusion and hindered diffusion, was calculated using FEM. 

Following that, a numerical homogenization procedure was utilized in order to make 

microstructural and continuum level mass release curves identical so that continuum level 

constitutive diffusion parameters like diffusivity could be determined. The information 

exchange between continuum FE of tissue, capillary wall and 1D FE of capillaries was 

analyzed using a “fictitious” element that contained nodes from both FEs at the same 

position in space (Figure 3(b)). These fictitious elements can be implemented between 

different elements at lower scales as well, such as between cell cytosol and organelles. The 

mathematical modeling followed the FE formulation and transport properties for the element 

were determined from the element of smaller scale and the membrane separating them, such 

as the cell membrane or the capillary wall. Smeared model was based on transformation of 

1D transport equations governing capillary flow in microscale into Darcy’s and diffusion 

tensors in continuum scale. This smeared FEM formulation, while spatially coarse-grained, 

Akalın et al. Page 9

Pharm Res. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



can capture the dynamics of tissue-level solute transport and has direct implications of 

modeling drug pharmacokinetics (74–77).

PBPK and other compartment-based models that are typically used in evaluation of systemic 

transport of drugs can provide detailed information on dynamics of ADME yet are also 

highly coarse-grained and remain limited in describing the spatial distribution of drug in 

sub-tissue level. Recent multi-scale approaches focus on introducing sub-tissue resolution in 

compartmental models to improve the accuracy of pharmacokinetic and pharmacodynamic 

modeling. Figure 4 illustrates an annular quasi-3D (Q3D) gastrointestinal tract (GIT) model 

that is incorporated into a whole body PBPK model and used to study dissolution, transport, 

adsorption, distribution, metabolism and elimination (DTADME) of orally administered 

drugs (78). In this study, the GIT was spatially resolved by subdivision into individual 

Q3D volumes that were modelled as a connection of 1D tubes. These tubes had multiple 

annular layers which represented the heterogeneous organization of enterocyte and lumen 

tissues both radially and across the GIT. Therefore, spatiotemporal concentration profile for 

ibuprofen in the lumen and enterocyte of GIT at different time steps could be obtained.

In another study, a multi-scale PBPK model for the study of cyto-/cardio-toxicity of 

doxorubicin was introduced (79). The model consisted of a whole body PBPK model 

utilizing 8 tissue compartments as well as veinous and arterial blood which connected the 

tissues. In addition, the study featured a compartmental tissue sub-model where each tissue 

is split into vascular, interstitial, intracellular and nucleus sub-compartments. The model 

successfully predicted concentration profiles in mice and results were adapted to rats and 

humans using a cross-species allometric scaling. This multi-scale model enabled sub-tissue 

resolved pharmacokinetics of doxorubicin in heart and tumor tissue and helped infer about 

cytotoxicity based on nucleus bound concentrations of the drug.

In another study, PBPK and genome-scale metabolic network (GSMN) models were 

combined by utilizing drug transport and reaction rates in the intracellular space obtained 

from the PBPK model to constrain reaction rates in the GSMN model, through which 

drug perturbation was calculated (80). A multi-scale PK/PD model capable of preclinical 

to clinical translation to analyze effectiveness of antibody drug conjugates (ADCs) was 

modeled (81). PK and PD models in cellular and tissue levels were used to obtain 

parameters that affect ADC distribution, and these parameters were used in the multi-scale, 

multicompartmental PK/PD model to predict drug concentration in tumors.

A list of selected studies that feature multiscale modeling for drug transport are provided in 

Table 2.

Software tools for Multi-Scale Modeling—Multi-scale modeling generally requires 

development and interaction of several sub-models specifically developed to simulate 

processes at separate length and time scales. Progress in this field is currently limited by 

expertise and resources of individual research groups or small teams of collaborators in 

developing specific purpose-built models. On the other hand, as outlined above, efforts 

of the computational research community have led to a large collection of purpose-built 

models for diverse physical processes. Multi-scale modeling of drug transport can be further 
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advanced by incorporation and reuse of existing models for new multi-scale simulation 

scenarios. Meta-modeling tools enable coupling of computational models associated with 

different length and time scales. For example, MUSCLE3 (82) can be used to iteratively 

couple individual sub-models by automating simulation and transfer of information between 

models over appropriate solution intervals based on separation of time scales. PK-Sim is an 

open system pharmacology platform for PBPK modeling that is capable of interfacing with 

cellular scale models for PD thereby, enabling a mechanistic multi-scale methodology for 

systems pharmacology (83).

Challenges and Opportunities

Significant advances have been recently made to accurately compute transport of drugs 

and drug delivery systems. However, there are still several technical challenges to achieve 

predictive design of drug and delivery systems computationally. These challenges include 

multiple levels of structural and functional heterogeneity in tissues and organs, capturing the 

variability introduced by the heterogeneity in model parametrization by reliable transport 

properties and emergence of needs for integrating omics data into transport simulation. 

These challenges also pose opportunities for next generation computational models. In this 

section, these challenges and opportunities are discussed.

Multiple Levels of Heterogeneity

Multiple levels of heterogeneity of tissues and organs escalate the difficulties for accurate 

computation. The delivery of NPs to the tumor is limited by various physiological barriers 

alleviating the penetration of the drug and reducing exposure of the tissue to the drug. 

In order to reach the targeted tissue, NPs first need to circulate for a prolonged duration 

within the circulatory system, reach and interact with the tumor vasculature, penetrate 

into the tumor interstitium and get internalized by cancer cells (10). However, features of 

abnormal tumor physiology such as immature and leaky vasculature compressed lymphatics, 

elevated interstitial fluid pressure and dense interstitial matrix and large solid stresses 

together constitute barriers that hinder NP transport. Strategies to overcome these barriers 

by normalization of the tumor microenvironment are being investigated, however are 

not applicable for the whole patient population (11,12,84). Therefore, understanding the 

interactions of NPs with transport barriers at particular stages of delivery continues to be 

important and heterogeneity of tumor and tumor microenvironment illustrate complexity 

and challenge to computationally model drug transport. In the following section, we outline 

features of tumor heterogeneity in some of the prominent types of cancer.

Pancreatic Ductal Adenocarcinoma—Pancreatic ductal adenocarcinoma (PDAC) is 

one of the most-deadly cancers with a dismal 10% five-year survival rate and remains highly 

resistant to current therapeutics due to poor drug delivery to cancer cells. The treatment for 

PDAC is further complicated because of the heterogeneous tumor microenvironment (TME) 

composed of cancer cells, cancer-associated fibroblasts (CAFs), ECM, immune cells and 

chaotic microvasculature. This heterogeneity exists at multiple levels including molecular, 

cellular, tissue and patient levels and also evolves through the course of cancer progression. 
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Thus, incorporating tumor heterogeneity into computational models remains challenging but 

imperative for next-generation modeling.

Molecular and Cellular Development—PDAC results from prolonged accumulation of 

oncogenic mutations that drive various transformations in the TME through acinar-to-ductal 

metaplasia (ADM) leading to various lesions of pancreatic cancer. Most notable oncogenic 

mutation are Kirsten rat sarcoma virus (KRAS), observed in more than 95% of patients, 

and tumor suppressor gene mutations CDKN2A/p16, SMAD4, and TP53, observed in 

50-80% (85–87). Depending on the accumulated genetic mutations, PDAC may develop 

into different subtypes which are classified based on the expression of transcription factors 

and stromal compositions. For instance, PDAC landscape may vary among immune escape, 

rich, and exhausted phenotypes resulting from variations in genetic mutations (88,89).

Spatial distribution of various stromal cells contributes to significant heterogeneity in cancer 

phenotype. CAFs are the most prominent stromal component of PDAC and significantly 

contribute to tumor progression and chemoresistance (90). CAFs have been categorized into 

multiple subtypes based on their functions and locations (91). Inflammatory CAFs are found 

to be distant to tumor cells, show lower αSMA expression and induce immunosuppressive 

and chemo-resistant environment. Myofibroblastic CAFs are adjacent to tumor cells with 

high αSMA level and promote stiff, hypoxic, and avascular tissue microenvironment. 

Additionally, current therapy applies selective efficacy in tumors which leads to formation of 

therapeutically resistant clones and intratumoral heterogeneity. These inter- and intratumoral 

heterogeneity not only leads to diverse cellular response to therapeutic drugs and clinical 

outcomes but also results in diverse TME that could significantly alter the transport 

properties. Moreover, different subtypes of cells within the primary tumor have varying 

abilities to initiate migration, form colonies in the metastatic lesions, and establish a 

unique metastatic microenvironment, further complicating the modeling of drug transport 

in primary and metastatic sites.

Extracellular matrix—PDAC has a characteristic desmoplastic stroma primarily 

secreted by CAFs which consists of structural glycoproteins, adhesive glycoproteins, and 

proteoglycans (92,93). The dense stroma is not only a physical obstacle to many drug 

treatments, but its components are remodeled, and dysregulation triggers biochemical and 

regulatory pathways that can alter the course of the disease. ECM content is also organ-

specific and it is necessary to build distinctive models depending on the tissue type due 

to varying protein concentrations and the resulting differences in cell-matrix interactions 

(94). Specifically in the case of pancreas, several proteins and ECM proteins have been 

recognized to be overexpressed, such as tissue factor, plasminogen, COL1A1,1A2, and 

3A1, and hyaluronic acid (HA) (92,95–97). Likewise, several proteins, like matrisome, 

are upregulated at different stages of pancreatic cancer. ECM proteins are also remodeled 

throughout tumor progression by enzymes matrix metalloproteases, fibroblasts activation 

protein, and lysyl oxidases which upregulation have been correlated with dense stroma (98).

The tissue-dependent and evolving ECM composition greatly alters tissue mechanical and 

transport properties. In this context, studies have shown rearrangement of collagen fibers, 

increase in collagen density and tissue diffusivity through matrix contraction by pancreatic 
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stellate cells (PSCs) and fibroblasts (99,100). Collagen diffusivity especially decreased in 

the vicinity of fibroblasts (101) and it is critical to recognize that biomolecule diffusion 

and uptake may vary due to differential matrix contraction contingent on the cell type. 

Moreover, HA, one of the most overexpressed PDAC ECM protein along with collagen, 

inhibited particle diffusion less than collagen in vitro when prepared at physiologically 

relevant concentrations as in vivo (102). On the other hand, confinement of HA by collagen 

increased total tissue pressure (sum of growth-induced solids stress and interstitial fluid 

pressure), reduced active vasculature, and impeded drug delivery in PDAC (103). Histology 

images have shown this was true only in specific regions where HA was localized within 

collagen and total tissue pressure was further increased with dense collagen content. 

This is due to the intrinsic nature of HA to resist compression by retaining interstitial 

fluid and repulsion of negatively charged monomers and of collagen to confine tumor 

tissue (104,105). These studies highlight that tumor tissue diffusivity is ECM composition 

dependent and it is crucial to consider the cellular and matrix spatial heterogeneity even 

within the same tumor type.

Microvasculature—A significant factor contributing to the highly chemo-resistant nature 

of PDAC is the limited drug delivery to the TME is abnormal tumor tissue vasculature. 

Hyperpermeable vasculature increases the fluid transport into the extravascular space 

thereby increasing the interstitial fluid pressure (IFP). As summarized in Table 3, 

hypovascular PDAC tissue has microvessel density (MVD) of 20 ~ 50 vessels/mm2 (106–

108) which is lower compared with other cancer types (109–112) and is hierarchically 

disorganized, which distinguishes them from normal vasculature system (113,114). Tumor 

vasculatures are formed from two recognized processes from the mother vessels, known as 

angiogenesis and arterio-venogenesis, which are stimulated by growth factors and cytokine, 

secreted by tumor and stromal cells such as VEGF-A signaling driven by transcription factor 

HIF-1 (115). In PDAC, PSCs play a critical role in controlling the vessel density as collagen 

concentrations can impose physical stress and hinder vascular formations. Moreover, tumor 

cells secrete anti-angiogenic signals that exacerbate the vascular damage. Consequently, 

large diameter blood vessels are collapsed, lymphatic vessels are less functional, and blood 

flow is decreased by 60% compared with normal pancreas tissue (116). On the other hand, 

in the normal pancreas adjacent to the tumor, angiogenesis is stimulated by activated stellate 

cells, promoting diverse vascular formations within the same pancreas (107). Drug transport 

in the tumor interstitium can be achieved by diffusion and/or convection. The transport 

from blood vessels to PDAC tissue is typically in the order of 80-220 μm at velocity of 

1 μm/s (117). At the given interstitial velocity, elevated IFP and abnormal vasculature, 

transport of small biomolecules in PDAC becomes largely diffusion dominant. Ultimately, 

the multifarious nature of PDAC molecular, cellular and ECM properties culminates in the 

development of heterogeneous microvasculature density that shapes diverse drug delivery 

patterns.

Recognizing that drug transport into PDAC TME is a significant limitation to therapy, there 

has been several efforts to enhance drug delivery by targeting the stromal components. The 

most notable strategies include targeting CAFs and HA, both of which showed promising 

results in mouse models. However, inhibiting hedgehog signaling to inhibit CAFs led 
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to antagonistic effects which decreased patient survival and clinical trial terminated in 

phase II (118,119). Moreover, clinical trials with HA degradation with enzyme pegylated 

hyaluronidase (PEGPH20) halted in phase III due to failure in increasing overall patient 

survival (120). These studies demonstrated discrepancies between pre-clinical and clinical 

models as well as heavily patient-dependent drug responses resulting from heterogeneous 

PDAC TME. Accurate modeling of the dynamic development and interactions of the cancer 

cells and the stromal components poses a significant knowledge gap in modeling transport in 

tumor tissue.

Other Disease States—In addition to the pancreas, the microenvironment of 

different organs are highly heterogenous including the cellular, extracellular matrix and 

microvasculature components which collectively lead to heterogeneous drug delivery and 

distribution. Both experimental and computational models should specifically be tailored 

to reflect the unique characteristic of the particular organ and the disease. For instance, 

the brain is composed of neurons, astrocytes, oligodendrocytes, and glial cells. In addition, 

macrophages, known as microglia, are the most abundant immune cell type. Recent studies 

have revealed these are phenotypically distinct from macrophages recruited from bone 

marrow under inflammatory conditions (121). The brain ECM is also vastly different 

from other organs and is predominantly composed glycoproteins, proteoglycans, and 

glycosaminoglycans such as hyaluronic acid. Dense deposition of ECM may lead to 

hypoxia and aggressive tumor in the brain (122). Similar to PDAC, the brain vasculature 

is also highly disorganized in diseased states leading to further complications such 

as high interstitial pressure and edema. The distinct brain ECM and vasculature play 

critical roles in maintaining the blood-brain-barrier leading to significant heterogeneity 

in drug delivery. Mathematical model to investigate the role of abnormal vasculature on 

drug delivery to glioblastomas revealed that flow rate, vessel permeability, and tissue 

diffusion coefficient have nonlinear interaction in producing heterogeneous drug delivery 

in brain tissue (123). Computational model of brain capillary blood flow heterogeneity 

demonstrated that perturbations to the capillary network, including to segment diameters 

or to conductance values, decrease average tissue oxygen levels which could have critical 

consequences in neuronal function and thereby worsen neurodegenerative diseases and acute 

ischemic stroke (124). Furthermore, MRI techniques could enhance current computational 

models by providing templates for three-dimensional construction of the heterogeneous 

vasculature. Dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) based 

computational models allowed accurate modeling of drug delivery depending on the 

permeability and porosity of brain vasculature and tissue (125,126). Similarly, dynamic 

contrast enhanced-computerized tomography (DCE-CT) technique allowed measurement 

of tumor interstitial pressure and modeling of intra-tumoral heterogeneity leading to 

computational prediction of liposome nanoparticle distribution (127). Such techniques 

could provide significant benefits in predicting patient specific drug delivery of different 

chemotherapeutic drugs. Additionally, a study combining MRI of human brain and 

computational model demonstrated that a significantly greater degree of uncertainty and 

error is generated by neglecting soft tissue heterogeneity compared with vasculature 

heterogeneity (128). However, models representing brain tissue heterogeneity is lacking, 

rendering it a critical knowledge gap. In addition to spatial considerations, mathematical 
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models to predict temporal heterogeneity in glioblastoma revealed novel opportunities to 

target specific disease states that are patient-specific (129). Temporal variation coming from 

different mRNA expression of clock genes that are expressed at different levels depending 

on the circadian rhythm also leads to daily oscillations in vascular permeability and 

resistance, thrombus formation, and flow conditions that play critical roles in modulating 

vascular function (130–132). Therefore, perturbations in the circadian rhythm could increase 

vasculature and blood-brain-barrier vulnerability, increasing the risk of stroke in the morning 

(133,134). Modelling such temporal heterogeneity in differential gene expression, cellular 

activities, and the blood-brain-barrier is critically important to understand drug delivery in 

many brain diseases. Moreover, future models could significantly improve with enhanced 

understanding of broader patient population brain heterogeneity through disease progression 

modelling and clustering techniques using neuroimaging (135). Likewise, similar challenges 

of cellular, tissue, and vascular heterogeneities exist for other organ diseases, such as the 

lung and the skin, particularly for unique airway architecture of the lung and multiple 

tissue layers of the skin (136–141). Coupling of the spatial and temporal heterogeneity will 

provide next generation models to predict tissue specific drug delivery in different organs 

and present novel therapeutic opportunities.

Uncertainty Quantification and Sensitivity Analysis

Accurate knowledge of model parameters is essential for predictive modeling of drug 

distribution and efficacy in the organism-level. Hierarchical determination of transport 

parameters used in macro-scale models based on micro-scale models is a promising 

approach especially since the expanding landscape of drug design introduces additional 

factors to consider that affect the delivery performance. In the meantime, various sources of 

variation in disease conditions such as tumor heterogeneity, patient age and demographics 

result in significant uncertainty in model parameters including transport properties. 

Predicting pharmacokinetic parameters like of neonates, infants, and pregnant women can 

be a particularly challenging task due to limitations of scaling approaches to translate 

parameters between these interest groups and groups for which data is available (142).

Uncertainty quantification and sensitivity analysis come forward as methodology rapidly 

gaining importance to tackle this challenge. Incorporation of sensitivity analysis when 

reporting PBPK model predictions is becoming a common practice where variability in 

endpoints such as area under curve based on model parameters can be studied (79). A 

meta-analysis of nanoparticle delivery to tumor revealed that delivery efficiency significantly 

depended on external sources of heterogeneity such as tumor site and tumor model studies as 

well as drug design characteristics such as NP hydrodynamic radius, shape, surface charge, 

material (organic/inorganic) (143). PBPK modeling coupled with sensitivity analysis helped 

identify low distribution and permeability coefficients to be the most significant factors 

affecting the delivery efficiency. In addition, in vitro to in vivo extrapolation (IVIVE) to 

estimate parameters in PBPK models based on in vitro and in silico predictions itself is 

subject to significant uncertainty. When sensitivity analysis is incorporated into an IVIVE 

procedure where Rodgers and Rowland model (144) was used to estimate tissue to unbound 

plasma partition coefficient, it was demonstrated that partition coefficient and fraction 

unbound in plasma were the most influential parameters affecting the outcome of IVIVE 

Akalın et al. Page 15

Pharm Res. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



procedure and the process was generally sensitive to tissue composition (145). A promising 

direction in this context is the simplification of PBPK model parametrization problem by 

reduction of model dimensionality focusing only on the most influential parameters.

Uncertainty quantification has also been applied to transport models in context other than 

PBPK modeling. Effect of AIF’s and vascular and tissue transport parameters on interstitial 

fluid and tracer transport using sensitivity analysis was studied in heterogenous tumor tissue 

and vasculature by utilizing DCE-MRI data (146). For all cases considered in the analysis 

IFP was elevated within the tumor and decreased toward tumor boundary, with tumor vessel 

permeability having the most critical impact on IFP values. Interstitial fluid velocity values 

were largest near tumor boundaries in all cases and high tumor vessel permeability and low 

ratio of tumor hydraulic conductivity to normal tissue hydraulic conductivity caused greatest 

deviations from baseline results. Tracer transport was not affected as much with changing 

transport parameters and sensitivity analysis showed good agreement between the patterns of 

simulated and experimental tracer concentrations.

Since UQ and SA mainly involve interrogation of model responses only under changing 

inputs, these analyses can be applied without the knowledge of implementation specifics 

of the model, i.e., the model being treated as a blackbox. Therefore, there have been 

a proliferation of software tools such as DAKOTA (147), UQLab (148), UQ-PyL (149), 

COSSAN (150), and PUQ (151) as frameworks that provide a general interface to 

run specific model simulation software or code and perform uncertainty quantification, 

sensitivity analysis and model parametrization/calibration under uncertainty.

Coupling of PBPK Modeling and Microphysiological Systems

Despite increasing integration of uncertainty quantification using in silico approaches, 

determination of reliable transport properties for successful predictions of clinical outcomes 

by in silico models still requires a significant amount of human physiological data that 

current model system fails to provide. The lack of data is a significant limitation in 

PBPK models for pediatric applications as well as those for adults (152). Systematic 

experimental validation of multi-scale models may benefit from novel in-vitro models such 

as microphysiological systems based on microfluidics (153–157). These include recently 

emerging interstitial permeability and skin permeability models used to study adsorption, 

liver models for metabolism, kidney models for elimination/excretion and multiorgan 

models that provide PK/PD parameters of drugs with higher physiological relevance 

compared to single organ-on-chips (OoCs) (158,159). These multi-organ-on-chips (MOoC) 

simulating aspects of drug ADME on coupled microfluidic compartments offer a promising 

avenue for IVIVE by providing physiologically relevant in-vitro experimental data (160–

165). For instance, a recent series of work by Ingber group involved recapitulation of 

nicotine and cisplatin plasma pharmacokinetics in vivo based on flow and concentration 

data from fluidically coupled microfluidic devices coupled with a PBPK model for IVIVE 

(160–162). Despite the promising first results, a primary challenge remains for IVIVE 

with these MOoC platforms that mirror the discussions on parameter scaling for PBPK 

models. A consensus on a generalized and systematic approach for scaling individual organs 

and organs relative to each other is currently yet to be reached (166). Some approaches 

Akalın et al. Page 16

Pharm Res. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



common in literature are direct scaling, allometric scaling, multifunctional scaling and 

scaling based on organ mass and residence times (167). Direct scaling directly scales down 

all organs and their relevant parameters by a factor. While straightforward, this method 

is not successful at reenacting organ-organ interactions since scaling of individual organs 

should be different (167). Allometric scaling relates physiological parameters with body 

mass, usually using an exponential relationship that relies on the assumption that the 

transport networks within an organism is space-filling and optimized by natural selection, 

while with organ-on-a-chip devices, the formation of cells and transport networks may not 

be subject to such optimization (166). Another important point is that cells often show 

increased metabolism rates on chips compared to their in vivo counterparts due to being 

given excessive nutrients. This point can be complemented by using allometric scaling 

but limiting the nutrients given to the cells to obtain realistic metabolism rates (166). 

Allometric-based scaling methods can be used for extrapolation across age groups, such as 

developing a PBPK model using adult data and scaling the model for pediatrics (168,169). 

Scaling based on organ mass and residence times suggests a linear relation between organ 

mass and physiological parameters, and fluid flow is determined by the in vivo residence 

times of organs. With this method, flow rates are important in that they should not cause 

shear deformations to the cells and the compartments should have similar efficiency to 

the actual organs they are mimicking. Multifunctional scaling aims to replicate a linearly 

scaled-down version of the functional parameters of real organs such as the amount of blood 

pumped by the heart with organ-on-a-chip devices (170). This method is advantageous in 

that parameter measurement and experimental determination of the proper organ-on-a-chip 

size is easy, but the scaling approach may be an oversimplification. Two multi-MPS devices 

(gut-liver and gut-liver-kidney) were constructed using multifunctional, direct and allometric 

scaling approaches and their efficacy were compared by looking at normalized concentration 

profiles with respect to time (171). When compared to in vivo data, multifunctional scaling 

showed about a 2-fold deviation in drug exposure whereas direct and allometric scaling 

showed 50-to-300-fold lower exposure times on average.

Image-Based Modeling

Image-based modeling approaches can be used to obtain patient specific transport properties 

in the diseased regions as well as to identify heterogeneous structures such as the 

tumor vasculature which can be implemented to computational models for more accurate 

representation of the disease. A multi-scale model to estimate drug delivery to solid tumor 

was constructed using 2D image of a dissected and cleared tumor, which was converted 

into a computational field where the tumor was simplified as a circler or elliptical region 

while retaining the heterogenous microvasculature, giving a more realistic representation of 

the region (172). In another work, MR images were utilized to obtain a realistic 3D brain 

tumor model through which drug delivery to brain tumor using a multi-scale mathematical 

model was studied (173). With this model, combination therapy of bevacizumab, an anti-

angiogenetic drug, and a total of 6 cytotoxic drugs was investigated. Results showed that 

inclusion of bevacizumab enhanced the delivery of all cytotoxic drugs albeit at different 

levels, with doxorubicin seeing the most benefit. A 3D voxelated image of tumor tissue 

was constructed using DCE-CT, which was utilized to obtain hemodynamic parameters 

used as inputs in a mathematical model to estimate intra-tumor oxygen concentrations 
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(174). These parameters were checked against values obtained through intravital microscopy 

and photometric techniques and results were close for voxel sizes under 200μm. Another 

voxelated numerical model predicted distribution of contrast agent and drugs in brain tumors 

(126). Data obtained from measurement of the concentration of a contrast agent in a spinal 

cord injury using DCE-MRI were employed for curve fitting in a multi-compartmental PK 

model which would track the distribution of the contrast agent (175). DCE-MRI was utilized 

to obtain permeability and porosity values, and patient specific arterial input function (AIF) 

was utilized to obtain perfusion kinetic parameters. Using these, heterogenous vasculature 

of the tumor and selective leakage of drugs due to the heterogeneity were investigated. 

Results showed that although drug concentration was higher in high permeability areas at 

first, accumulation was greater in high porosity areas later on.

Emerging Areas

Tumor heterogeneity remains to an outstanding challenge for treatment of cancer that will 

ultimately be addressed by advanced personalized medicine. In previous sections, we also 

identified tumor heterogeneity and associated uncertainty in tumor microenvironmental 

parameters as one of the primary challenges for development and validation of predictive 

computational models of drug transport. Joint use of emerging technologies in multiscale 

modeling, microphysiological systems and image-based modeling offer great potential to 

address these challenges as illustrated in Figure 5. We introduced microphysiological 

systems as newly emerging in vitro experimental disease models that can incorporate 

features of the tumor microenvironment including heterogeneity in controlled manner. 

The transparent operation and ease of read out from microphysiological systems render 

them suitable benchmark platforms for in vitro validation of computational models 

while maintaining physiological relevance. In the meantime, further development and 

parametrization of computational models such as PBPK models can facilitate in vitro 

to in vivo extrapolation of microphysiological system predictions. In addition, image-

based models can provide valuable information in terms of either in vivo structure and 

function data or transport characteristics that can be used towards model building of both 

microphysiological systems and computational models. Finally, computational multiscale 

models are uniquely positioned among the three technologies to provide mechanistic insight 

into transport processes observed in vivo and in vitro based on first principles. We anticipate 

that joint use of these three technologies will be pivotal in advancing precision medicine by 

providing patient-specific evaluation of treatments and treatment planning.

Another emerging trend is the support of UQ/SA efforts by artificial intelligence and 

machine learning (AIML). Current discovery and development of drugs rely on hands-on 

traditional in vivo and in vitro experiments which makes the procedure time consuming 

and unpredictable. With the enhanced computing power and stronger algorithms developed 

in the last decade, not only multi-scale models but also predictive algorithms based on 

artificial intelligence are promoted and a new discipline combining these two, computational 

pharmaceutics has emerged (176). Using machine learning (ML), large volumes of data can 

be analyzed systematically to find correlations or quantify agreement of correlations (177). 

ML can also be used in carrying characteristics across the scales, i.e., in the process of 

information homogenization (178).
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There is a growing body of literature adopting data-driven ML approaches for applications 

such as investigating iron oxide NP cytotoxicity (179), achieving predictive analysis of 

silver NP protein corona formation (180) and NP property prediction (43). Development 

of a breast cancer therapy response predictor using a multi-omics model in which the 

tumor therapy response characteristics were obtained using data integration and ML (181) 

and development of a ML model to predict 3D printing formulation and drug dissolution 

properties of FDM printed objects like tablets, films and devices (182) are some other 

examples. The growing interest and merits of ML-based approaches is also recognized in 

regulatory circles. In 2019, FDA published an action plan on medical ML algorithms that 

sets a path for the official approval of such studies. While ML is a powerful tool, caution 

should be practiced as uninformed and brute-force use of ML might result in unphysical 

predictions and ill-posed problems (177). It is anticipated that the greatest benefit will come 

from the combination of ML and multi-scale modeling for an intelligent walk-through drug 

design landscape for delivery as well as to address challenges in model parametrization and 

uncertainty quantification.

Funding Statement

This work was partially supported by grants from the National Institutes of Health (U01 HL143403, R01 
CA254110, R61 HL159948 and P30 CA023168) and National Science Foundation (MCB-2134603) to BH and 
the Scientific and Technological Research Council of Turkey (TÜBİTAK 2232 118C200) to AO.

References

1. Bao G, Mitragotri S, Tong S. Multifunctional Nanoparticles for Drug Delivery and Molecular 
Imaging. Annu Rev Biomed Eng. 2013 Jul 11;15(1):253–82. [PubMed: 23642243] 

2. Gao Q, Zhang J, Gao J, Zhang Z, Zhu H, Wang D. Gold Nanoparticles in Cancer Theranostics. 
Front Bioeng Biotechnol. 2021 Apr 13;9:647905. [PubMed: 33928072] 

3. van der Meel R, Sulheim E, Shi Y, Kiessling F, Mulder WJM, Lammers T. Smart cancer 
nanomedicine. Nat Nanotechnol. 2019 Nov;14(11):1007–17. [PubMed: 31695150] 

4. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines — a new era in vaccinology. Nat Rev 
Drug Discov. 2018 Apr;17(4):261–79. [PubMed: 29326426] 

5. Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on 
biological systems. Annu Rev Biomed Eng. 2012;14:1–16. [PubMed: 22524388] 

6. Ozcelikkale A, Ghosh S, Han B. Multifaceted Transport Characteristics of Nanomedicine: Needs for 
Characterization in Dynamic Environment. Mol Pharm. 2013;10:2111–26. [PubMed: 23517188] 

7. Wolfram J, Ferrari M. Clinical cancer nanomedicine. Nano Today. 2019 Apr;25:85–98. [PubMed: 
31360214] 

8. Sheth V, Wang L, Bhattacharya R, Mukherjee P, Wilhelm S. Strategies for Delivering Nanoparticles 
across Tumor Blood Vessels. Adv Funct Mater. 2021 Feb;31(8):2007363.

9. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and 
opportunities. Nat Rev Cancer. 2017 Jan;17(1):20–37. [PubMed: 27834398] 

10. Ozcelikkale A, ran Moon H, Linnes M, Han B. In vitro microfluidic models of tumor 
microenvironment to screen transport of drugs and nanoparticles. Wiley Interdiscip Rev Nanomed 
Nanobiotechnol. 2017;e1460–n/a.

11. Stylianopoulos T, Munn LL, Jain RK. Reengineering the Physical Microenvironment of Tumors to 
Improve Drug Delivery and Efficacy: From Mathematical Modeling to Bench to Bedside. Trends 
Cancer. 2018 Apr;4(4):292–319. [PubMed: 29606314] 

12. Stylianopoulos T, Jain RK. Combining two strategies to improve perfusion and drug delivery in 
solid tumors. Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):18632–7. [PubMed: 24167277] 

Akalın et al. Page 19

Pharm Res. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



13. Casalini T, Limongelli V, Limongelli V, Schmutz M, Som C, Jordan O, et al. Molecular 
modeling for nanomaterial-biology interactions: Opportunities, challenges, and perspectives. Vol. 
7, Frontiers in Bioengineering and Biotechnology. Frontiers Media SA; 2019. p. 268–268.

14. Radhakrishnan R Multiscale modeling: foundations, historical milestones, 
current status, and future prospects [Internet]. Preprints; 2020 
Jun [cited 2021 Jul 28]. Available from: https://www.authorea.com/users/
331603/articles/458216-multiscale-modeling-foundations-historical-milestones-current-status-and-
future-prospects?commit=ea42454987ac2138e7acfc909f706b49037b9c7c

15. Ramezanpour M, Leung SSW, Delgado-Magnero KH, Bashe BYM, Thewalt J, Tieleman DP. 
Computational and experimental approaches for investigating nanoparticle-based drug delivery 
systems. Biochim Biophys Acta BBA - Biomembr. 2016 Jul;1858(7):1688–709.

16. Yong CW. Study of interactions between polymer nanoparticles and cell membranes at atomistic 
levels. Philos Trans R Soc B Biol Sci. 2015 Feb 5;370(1661):20140036.

17. Nguyen TD, Plimpton SJ. Aspherical particle models for molecular dynamics simulation. Comput 
Phys Commun. 2019 Oct;243:12–24.

18. Römer F, Kraska T. Molecular dynamics simulation of the formation of pharmaceutical particles by 
rapid expansion of a supercritical solution. J Supercrit Fluids. 2010 Dec;55(2):769–77.

19. Dror RO, Dirks RM, Grossman JP, Xu H, Shaw DE. Biomolecular Simulation: A Computational 
Microscope for Molecular Biology. Annu Rev Biophys. 2012 Jun 9;41(1):429–52. [PubMed: 
22577825] 

20. Curtarolo S, Ceder G. Dynamics of an inhomogeneously coarse grained multiscale system. Phys 
Rev Lett [Internet]. 2002; Available from: 10.1103/PhysRevLett.88.255504

21. Ingólfsson H, Lopez C, Uusitalo J, … The power of coarse graining in biomolecular simulations. 
Wiley … [Internet]. 2014; Available from: 10.1002/wcms.1169

22. Schiller UD, Krüger T, Henrich O. Mesoscopic modelling and simulation of soft matter. Soft 
Matter. 2018;14(1):9–26.

23. Abouali O, Nikbakht A, Ahmadi G, Saadabadi S. Three-Dimensional Simulation of Brownian 
Motion of Nano-Particles In Aerodynamic Lenses. Aerosol Sci Technol. 2009 Feb 25;43(3):205–
15.

24. Liu Z, Zhu Y, Clausen JR, Lechman JB, Rao RR, Aidun CK. Multiscale method based on coupled 
lattice-Boltzmann and Langevin-dynamics for direct simulation of nanoscale particle/polymer 
suspensions in complex flows. Int J Numer Methods Fluids. 2019;91(5):228–46.

25. Erban R From molecular dynamics to Brownian dynamics. Proc R Soc Math Phys Eng Sci. 2014 
Jul 8;470(2167):20140036.

26. Ghosh PK, Hänggi P, Marchesoni F, Martens S, Nori F, Schimansky-Geier L, et al. Driven 
Brownian transport through arrays of symmetric obstacles. Phys Rev E. 2012 Jan 3;85(1):011101.

27. Flegg MB, Rüdiger S, Erban R. Diffusive spatio-temporal noise in a first-passage time model for 
intracellular calcium release. J Chem Phys. 2013 Apr 21;138(15):154103. [PubMed: 23614408] 

28. Vanden-Eijnden E, Venturoli M. Markovian milestoning with Voronoi tessellations. J Chem Phys. 
2009 May 21;130(19):194101. [PubMed: 19466815] 

29. Djohari H, Dormidontova EE. Kinetics of Nanoparticle Targeting by Dissipative Particle Dynamics 
Simulations. Biomacromolecules. 2009 Nov 9;10(11):3089–97. [PubMed: 19894765] 

30. Li Y, Kroeger M, Liu WK. Shape effect in cellular uptake of PEGylated nanoparticles: comparison 
between sphere, rod, cube and disk. Nanoscale. 2015;7(40):16631–46. [PubMed: 26204104] 

31. Kacar G Molecular understanding of interactions, structure, and drug encapsulation efficiency 
of Pluronic micelles from dissipative particle dynamics simulations. Colloid Polym Sci. 2019 
Aug;297(7–8):1037–51.

32. Alizadehrad D, Fedosov DA. Static and dynamic properties of smoothed dissipative particle 
dynamics. J Comput Phys. 2018 Mar 1;356:303–18.

33. Gompper G, Ihle T, Kroll DM, Winkler RG. Multi-Particle Collision Dynamics -- a Particle-Based 
Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids. ArXiv08082157 
Cond-Mat. 2009;1–87.

Akalın et al. Page 20

Pharm Res. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.authorea.com/users/331603/articles/458216-multiscale-modeling-foundations-historical-milestones-current-status-and-future-prospects?commit=ea42454987ac2138e7acfc909f706b49037b9c7c
https://www.authorea.com/users/331603/articles/458216-multiscale-modeling-foundations-historical-milestones-current-status-and-future-prospects?commit=ea42454987ac2138e7acfc909f706b49037b9c7c
https://www.authorea.com/users/331603/articles/458216-multiscale-modeling-foundations-historical-milestones-current-status-and-future-prospects?commit=ea42454987ac2138e7acfc909f706b49037b9c7c


34. Padding J, Louis A. Hydrodynamic interactions and Brownian forces in colloidal suspensions: 
Coarse-graining over time and length scales. Phys Rev E [Internet]. 2006; Available from: 
10.1103/PhysRevE.74.031402

35. Chen R, Poling-Skutvik R, P. Howard M, Nikoubashman A, A. Egorov S, C. Conrad J, et al. 
Influence of polymer flexibility on nanoparticle dynamics in semidilute solutions. Soft Matter. 
2019;15(6):1260–8. [PubMed: 30444237] 

36. Nikoubashman A, N. Likos C, Kahl G. Computer simulations of colloidal particles under flow in 
microfluidic channels. Soft Matter. 2013;9(9):2603–13.

37. Bolintineanu DS, Grest GS, Lechman JB, Pierce F, Plimpton SJ, Schunk PR. Particle dynamics 
modeling methods for colloid suspensions. Comput Part Mech. 2014 Sep 1;1(3):321–56.

38. Batôt G, Dahirel V, Mériguet G, Louis AA, Jardat M. Dynamics of solutes with hydrodynamic 
interactions: comparison between Brownian dynamics and stochastic rotation dynamics 
simulations. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Oct;88(4):043304. [PubMed: 
24229301] 

39. Satō A Introduction to practice of molecular simulation: molecular dynamics, Monte Carlo, 
Brownian dynamics, Lattice Boltzmann, dissipative particle dynamics. Amsterdam ; Boston: 
Elsevier; 2011. 322 p. (Elsevier insights).

40. Teeraratkul C, Mukherjee D. Microstructure aware modeling of biochemical transport in arterial 
blood clots. J Biomech. 2021 Oct 11;127:110692. [PubMed: 34479090] 

41. Allaire G Numerical analysis and optimization: an introduction to mathematical modelling and 
numerical simulation. Oxford ; New York: Oxford University Press; 2007. 455 p. (Numerical 
mathematics and scientific computation).

42. Peiró J, Sherwin S. Finite Difference, Finite Element and Finite Volume Methods for Partial 
Differential Equations. In: Yip S, editor. Handbook of Materials Modeling: Methods [Internet]. 
Dordrecht: Springer Netherlands; 2005 [cited 2021 Dec 15]. p. 2415–46. Available from: 
10.1007/978-1-4020-3286-8_127

43. Jones DE, Ghandehari H, Facelli JC. A review of the applications of data mining and machine 
learning for the prediction of biomedical properties of nanoparticles. Comput Methods Programs 
Biomed. 2016 Aug;132:93–103. [PubMed: 27282231] 

44. Li M, Al-Jamal KT, Kostarelos K, Reineke J. Physiologically Based Pharmacokinetic Modeling of 
Nanoparticles. Vol. 4, ACS Nano. American Chemical Society; 2010. p. 6303–17.

45. Jones HM, Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling 
in drug discovery and development. Vol. 2, CPT: Pharmacometrics & Systems Pharmacology. 
Wiley-Blackwell; 2013. p. 1–12.

46. Utsey K, Gastonguay MS, Russell S, Freling R, Riggs MM, Elmokadem A. Quantification of the 
Impact of Partition Coefficient Prediction Methods on Physiologically Based Pharmacokinetic 
Model Output Using a Standardized Tissue Composition. Drug Metab Dispos. 2020 
Oct;48(10):903–16. [PubMed: 32665416] 

47. Edginton AN, Schmitt W, Willmann S. Development and evaluation of a generic physiologically 
based pharmacokinetic model for children. Vol. 45, Clinical Pharmacokinectics. Springer 
International Publishing; 2006. p. 1013–34.

48. Buck SSD, Sinha VK, Fenu LA, Nijsen MJ, Mackie CE, Gilissen RAHJ. Prediction of human 
pharmacokinetics using physiologically based modeling: a retrospective analysis of 26 clinically 
tested drugs. Vol. 35, Drug Metabolism and Disposition. American Society for Pharmacology and 
Experimental Therapeutics; 2007. p. 1766–80.

49. Lankveld DPK, Oomen AG, Krystek P, Neigh A, Jong AT de, Noorlander CW, et al. The kinetics 
of the tissue distribution of silver nanoparticles of different sizes. Vol. 31, Biomaterials. Elsevier; 
2010. p. 8350–61. [PubMed: 20684985] 

50. Liu C, Xu XY. A systematic study of temperature sensitive liposomal delivery of doxorubicin using 
a mathematical model. Comput Biol Med. 2015 May 1;60:107–16. [PubMed: 25817532] 

51. Dubaj T, Kozics K, Sramkova M, Manova A, Bastús NG, Moriones OH, et al. Pharmacokinetics of 
PEGylated Gold Nanoparticles:In Vitro—In Vivo Correlation. 2022;12.

52. Zhang X, Yang Y, Grimstein M, Fan J, Grillo JA, Huang SM, et al. Application of PBPK Modeling 
and Simulation for Regulatory Decision Making and Its Impact on US Prescribing Information: 

Akalın et al. Page 21

Pharm Res. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



An Update on the 2018-2019 Submissions to the US FDA’s Office of Clinical Pharmacology. J 
Clin Pharmacol. 2020;60(S1):S160–78. [PubMed: 33205429] 

53. Arvanitis CD, Askoxylakis V, Guo Y, Datta M, Kloepper J, Ferraro GB, et al. Mechanisms of 
enhanced drug delivery in brain metastases with focused ultrasound-induced blood–tumor barrier 
disruption. Proc Natl Acad Sci [Internet]. 2018 Sep 11 [cited 2022 Mar 22];115(37). Available 
from: 10.1073/pnas.1807105115

54. Mould D, Upton R. Basic Concepts in Population Modeling, Simulation, and Model-Based Drug 
Development-Part 2: Introduction to Pharmacokinetic Modeling Methods. CPT Pharmacomet Syst 
Pharmacol. 2013 Apr;2(4):38.

55. McNally. A computational workflow for probabilistic quantitative in vitro to in vivo extrapolation. 
Front Pharmacol. 2018;

56. Liu Z, Zhu Y, Rao RR, Clausen JR, Aidun CK. Nanoparticle transport in cellular blood flow. 
Comput Fluids. 2018 Aug;172:609–20.

57. Lee TR, Greene MS, Jiang Z, Kopacz AM, Decuzzi P, Chen W, et al. Quantifying uncertainties in 
the microvascular transport of nanoparticles. Biomech Model Mechanobiol. 2014 Jun;13(3):515–
26. [PubMed: 23872851] 

58. Zhang L, Gerstenberger A, Wang X, Liu WK. Immersed finite element method. Comput Methods 
Appl Mech Eng. 2004 May 28;193(21):2051–67.

59. Liu Y, Zhang L, Wang X, Liu WK. Coupling of Navier-Stokes equations with protein molecular 
dynamics and its application to hemodynamics. Int J Numer Methods Fluids. 2004 Dec 
30;46(12):1237–52.

60. Li Y, Stroberg W, Lee TR, Kim HS, Man H, Ho D, et al. Multiscale modeling and uncertainty 
quantification in nanoparticle-mediated drug/gene delivery. Comput Mech. 2014 Mar;53(3):511–
37.

61. Park S, Whittington C, Voytik-Harbin SL, Han B. Microstructural Parameter-Based Modeling for 
Transport Properties of Collagen Matrices. J Biomech Eng. 2015 Jun;137(6):0610031–9.

62. Schiller L, Naumann Z. A drag coefficient correlation. Ztg Ver Dtsch Ing. 1935;77:318–20.

63. Stylianopoulos T, Yeckel A, Derby JJ, Luo XJ, Shephard MS, Sander EA, et al. Permeability 
calculations in three-dimensional isotropic and oriented fiber networks. Phys Fluids. 2008 
Dec;20(12):123601.

64. Sykes EA, Dai Q, Sarsons CD, Chen J, Rocheleau JV, Hwang DM, et al. Tailoring nanoparticle 
designs to target cancer based on tumor pathophysiology. Proc Natl Acad Sci. 2016 Mar 
1;113(9):E1142–51. [PubMed: 26884153] 

65. Islam MA, Barua S, Barua D. A multiscale modeling study of particle size effects on the 
tissue penetration efficacy of drug-delivery nanoparticles. BMC Syst Biol. 2017 Dec;11(1):113. 
[PubMed: 29178887] 

66. Barua D A model-based analysis of tissue targeting efficacy of nanoparticles. J R Soc Interface. 
2018 Mar;15(140):20170787. [PubMed: 29593085] 

67. Davit Y, Bell CG, Byrne HM, Chapman LAC, Kimpton LS, Lang GE, et al. Homogenization via 
formal multiscale asymptotics and volume averaging: How do the two techniques compare? Adv 
Water Resour. 2013 Dec 1;62:178–206.

68. Rim JE, Pinsky PM, Osdol WW van. Using the method of homogenization to calculate the 
effective diffusivity of the stratum corneum with permeable corneocytes. Vol. 41, Journal Of 
Biomechanics. Elsevier Sci Ltd; 2008. p. 788–96. [PubMed: 18093598] 

69. Muha I, Naegel A, Stichel S, Grillo A, Heisig M, Wittum G. Effective diffusivity in membranes 
with tetrakaidekahedral cells and implications for the permeability of human stratum corneum. 
Vol. 368, Journal Of Membrane Science. Elsevier Science Bv; 2011. p. 18–25.

70. Collis J, Hubbard ME, O’Dea RD. A multi-scale analysis of drug transport and response for a 
multiphase tumour model. Vol. 28, European Journal Of Applied Mathematics. Cambridge Univ 
Press; 2017. p. 499–534.

71. Kremheller J, Vuong AT, Schrefler BA, Wall WA. An approach for vascular tumor growth based on 
a hybrid embedded/homogenized treatment of the vasculature within a multiphase porous medium 
model. Int J Numer Methods Biomed Eng. 2019;35(11):e3253.

Akalın et al. Page 22

Pharm Res. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



72. Penta R, Ambrosi D. The role of the microvascular tortuosity in tumor transport phenomena. J 
Theor Biol. 2015 Jan 7;364:80–97. [PubMed: 25218498] 

73. Mascheroni P, Penta R. The role of the microvascular network structure on diffusion and 
consumption of anticancer drugs. Vol. 33, International Journal For Numerical Methods In 
Biomedical Engineering. Wiley; 2017.

74. Kojic M, Milosevic M, Kojic N, Starosolski Z, Ghaghada K, Serda R, et al. A multi-scale FE 
model for convective–diffusive drug transport within tumor and large vascular networks. Comput 
Methods Appl Mech Eng. 2015 Sep;294:100–22.

75. Kojic M, Milosevic M, Simic V, Koay EJ, Fleming JB, Nizzero S, et al. A composite smeared finite 
element for mass transport in capillary systems and biological tissue. Comput Methods Appl Mech 
Eng. 2017 Sep;324:413–37. [PubMed: 29200531] 

76. Kojic M, Milosevic M, Kojic N, Koay EJ, Fleming JB, Ferrari M, et al. Mass release curves as 
the constitutive curves for modeling diffusive transport within biological tissue. Comput Biol Med. 
2018 Jan;92:156–67. [PubMed: 29182964] 

77. Kojic M, Milosevic M, Simic V, Koay EJ, Kojic N, Ziemys A, et al. Multiscale smeared finite 
element model for mass transport in biological tissue: From blood vessels to cells and cellular 
organelles. Comput Biol Med. 2018 Aug;99:7–23. [PubMed: 29807251] 

78. Kannan R, Przekwas A. A multiscale absorption and transit model for oral drug delivery: 
Formulation and applications during fasting conditions. Int J Numer Methods Biomed Eng 
[Internet]. 2020 Mar [cited 2021 Oct 14];36(3). Available from: 10.1002/cnm.3317

79. He H, Liu C, Wu Y, Zhang X, Fan J, Cao Y. A multiscale physiologically-based pharmacokinetic 
model for doxorubicin to explore its mechanisms of cytotoxicity and cardiotoxicity in human 
physiological contexts. Vol. 35, Pharmaceutical Research. Springer/Plenum Publishers; 2018.

80. Cordes H, Thiel C, Baier V, Blank LM, Kuepfer L. Integration of genome-scale metabolic 
networks into whole-body PBPK models shows phenotype-specific cases of drug-induced 
metabolic perturbation. Npj Syst Biol Appl. 2018 Feb 26;4(1):1–11. [PubMed: 29263797] 

81. Shah DK, Haddish-Berhane N, Betts A. Bench to bedside translation of antibody drug 
conjugates using a multiscale mechanistic PK/PD model: a case study with brentuximab-vedotin. J 
Pharmacokinet Pharmacodyn. 2012 Dec;39(6):643–59. [PubMed: 23151991] 

82. Veen LE, Hoekstra AG. Easing Multiscale Model Design and Coupling with MUSCLE 3. In: 
Krzhizhanovskaya VV, Závodszky G, Lees MH, Dongarra JJ, Sloot PMA, Brissos S, et al., editors. 
Computational Science – ICCS 2020. Cham: Springer International Publishing; 2020. p. 425–38. 
(Lecture Notes in Computer Science).

83. Eissing T, Kuepfer L, Becker C, Block M, Coboeken K, Gaub T, et al. A computational systems 
biology software platform for multiscale modeling and simulation: integrating whole-body 
physiology, disease biology, and molecular reaction networks. Front Physiol. 2011;2. [PubMed: 
21423412] 

84. Chauhan VP, Stylianopoulos T, Boucher Y, Jain RK. Delivery of Molecular and Nanoscale 
Medicine to Tumors: Transport Barriers and Strategies. Annu Rev Chem Biomol Eng. 2011 Jul 
15;2(1):281–98. [PubMed: 22432620] 

85. Kleeff J, Korc M, Apte M, La Vecchia C, Johnson CD, Biankin AV, et al. Pancreatic cancer. Nat 
Rev Dis Primer. 2016 Apr 21;2(1):16022.

86. Ottenhof NA, de Wilde RF, Maitra A, Hruban RH, Offerhaus GJ. Molecular characteristics of 
pancreatic ductal adenocarcinoma. Pathol Res Int. 2011/04/23 ed. 2011 Mar 27;2011:620601.

87. Ying H, Dey P, Yao W, Kimmelman AC, Draetta GF, Maitra A, et al. Genetics and biology 
of pancreatic ductal adenocarcinoma. Genes Dev. 2016/02/18 ed. 2016 Feb 15;30(4):355–85. 
[PubMed: 26883357] 

88. Karamitopoulou E Tumour microenvironment of pancreatic cancer: immune landscape is dictated 
by molecular and histopathological features. Br J Cancer. 2019 Jul 1;121(1):5–14. [PubMed: 
31110329] 

89. Wartenberg M, Cibin S, Zlobec I, Vassella E, Eppenberger-Castori S, Terracciano L, et al. 
Integrated Genomic and Immunophenotypic Classification of Pancreatic Cancer Reveals Three 
Distinct Subtypes with Prognostic/Predictive Significance. Clin Cancer Res. 2018/04/18 ed. 2018 
Sep 15;24(18):4444–54. [PubMed: 29661773] 

Akalın et al. Page 23

Pharm Res. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



90. Choi SR, Yang Y, Huang KY, Kong HJ, Flick MJ, Han B. Engineering of biomaterials for tumor 
modeling. Mater Today Adv. 2020 Dec 1;8:100117. [PubMed: 34541484] 

91. Ohlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, et al. Distinct 
populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 
2017/02/25 ed. 2017 Mar 6;214(3):579–96. [PubMed: 28232471] 

92. Tian C, Clauser KR, Ohlund D, Rickelt S, Huang Y, Gupta M, et al. Proteomic analyses of ECM 
during pancreatic ductal adenocarcinoma progression reveal different contributions by tumor and 
stromal cells. Proc Natl Acad Sci U A. 2019/09/06 ed. 2019 Sep 24;116(39):19609–18.

93. Weniger M, Honselmann KC, Liss AS. The Extracellular Matrix and Pancreatic Cancer: A 
Complex Relationship. Cancers Basel [Internet]. 2018/09/12 ed. 2018 Sep 6;10(9). Available from: 
https://www.ncbi.nlm.nih.gov/pubmed/30200666

94. Beachley VZ, Wolf MT, Sadtler K, Manda SS, Jacobs H, Blatchley MR, et al. Tissue matrix arrays 
for high-throughput screening and systems analysis of cell function. Nat Methods. 2015/10/20 ed. 
2015 Dec;12(12):1197–204. [PubMed: 26480475] 

95. Provenzano PP, Hingorani SR. Hyaluronan, fluid pressure, and stromal resistance in pancreas 
cancer. Br J Cancer. 2013/01/10 ed. 2013 Jan 15;108(1):1–8. [PubMed: 23299539] 

96. Sanh N, Fadul H, Hussein N, Lyn-Cook BD, Hammons G, Ramos-Cardona XE, et al. 
Proteomics Profiling of Pancreatic Cancer and Pancreatitis for Biomarkers Discovery. J Cell Sci 
Ther [Internet]. 2018/01/01 ed. 2018;9(4). Available from: https://www.ncbi.nlm.nih.gov/pubmed/
31032145

97. Yang Y, Stang A, Schweickert PG, Lanman NA, Paul EN, Monia BP, et al. Thrombin Signaling 
Promotes Pancreatic Adenocarcinoma through PAR-1-Dependent Immune Evasion. Cancer Res. 
2019/05/03 ed. 2019 Jul 1;79(13):3417–30. [PubMed: 31048498] 

98. Malik R, Lelkes PI, Cukierman E. Biomechanical and biochemical remodeling of stromal 
extracellular matrix in cancer. Trends Biotechnol. 2015/02/25 ed. 2015 Apr;33(4):230–6. 
[PubMed: 25708906] 

99. Robinson BK, Cortes E, Rice AJ, Sarper M, Del Rio Hernandez A. Quantitative analysis of 3D 
extracellular matrix remodelling by pancreatic stellate cells. Biol Open. 2016/05/14 ed. 2016 Jun 
15;5(6):875–82. [PubMed: 27170254] 

100. Rubiano A, Delitto D, Han S, Gerber M, Galitz C, Trevino J, et al. Viscoelastic properties of 
human pancreatic tumors and in vitro constructs to mimic mechanical properties. Acta Biomater. 
2017/12/02 ed. 2018 Feb;67:331–40. [PubMed: 29191507] 

101. Kihara T, Ito J, Miyake J. Measurement of biomolecular diffusion in extracellular matrix 
condensed by fibroblasts using fluorescence correlation spectroscopy. PLoS One. 2013/12/07 
ed. 2013;8(11):e82382. [PubMed: 24312418] 

102. Ramanujan S, Pluen A, McKee TD, Brown EB, Boucher Y, Jain RK. Diffusion and convection 
in collagen gels: implications for transport in the tumor interstitium. Biophys J. 2002/08/31 ed. 
2002 Sep;83(3):1650–60. [PubMed: 12202388] 

103. Nieskoski MD, Marra K, Gunn JR, Hoopes PJ, Doyley MM, Hasan T, et al. Collagen 
Complexity Spatially Defines Microregions of Total Tissue Pressure in Pancreatic Cancer. Sci 
Rep. 2017/09/01 ed. 2017 Aug 30;7(1):10093. [PubMed: 28855644] 

104. Dedic J, Okur HI, Roke S. Hyaluronan orders water molecules in its nanoscale extended 
hydration shells. Sci Adv [Internet]. 2021/03/05 ed. 2021 Mar;7(10). Available from: https://
www.ncbi.nlm.nih.gov/pubmed/33658208

105. Stromnes IM, DelGiorno KE, Greenberg PD, Hingorani SR. Stromal reengineering to treat 
pancreas cancer. Carcinogenesis. 2014/06/09 ed. 2014 Jul;35(7):1451–60. [PubMed: 24908682] 

106. Andersen LMK, Wegner CS, Simonsen TG, Huang R, Gaustad JV, Hauge A, et al. Lymph node 
metastasis and the physicochemical micro-environment of pancreatic ductal adenocarcinoma 
xenografts. Oncotarget. 2017 May 26;8(29):48060–74. [PubMed: 28624797] 

107. Di Maggio F, Arumugam P, Delvecchio FR, Batista S, Lechertier T, Hodivala-Dilke K, et 
al. Pancreatic stellate cells regulate blood vessel density in the stroma of pancreatic ductal 
adenocarcinoma. Pancreatology. 2016 Nov 1;16(6):995–1004. [PubMed: 27288147] 

Akalın et al. Page 24

Pharm Res. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ncbi.nlm.nih.gov/pubmed/30200666
https://www.ncbi.nlm.nih.gov/pubmed/31032145
https://www.ncbi.nlm.nih.gov/pubmed/31032145
https://www.ncbi.nlm.nih.gov/pubmed/33658208
https://www.ncbi.nlm.nih.gov/pubmed/33658208


108. Jureidini R, da Cunha JEM, Takeda F, Namur GN, Ribeiro TC, Patzina R, et al. Evaluation 
of microvessel density and p53 expression in pancreatic adenocarcinoma. Clinics. 2016 
Jun;71(6):315–9. [PubMed: 27438564] 

109. MacLennan GT, Bostwick DG. Microvessel density in renal cell carcinoma: lack of prognostic 
significance. Urology. 1995;46(1):27–30. [PubMed: 7604476] 

110. Wang WQ, Liu L, Xu HX, Luo GP, Chen T, Wu CT, et al. Intratumoral α-SMA Enhances 
the Prognostic Potency of CD34 Associated with Maintenance of Microvessel Integrity in 
Hepatocellular Carcinoma and Pancreatic Cancer. PLOS ONE. 2013 Aug 5;8(8):e71189. 
[PubMed: 23940715] 

111. Weidner N Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol. 
1995;147(1):9. [PubMed: 7541613] 

112. Weidner N Measuring Intratumoral Microvessel Density. In: Methods in Enzymology [Internet]. 
Elsevier; 2008 [cited 2014 May 22]. p. 305–23. Available from: http://linkinghub.elsevier.com/
retrieve/pii/S0076687908028140

113. Gioeli D, Snow CJ, Simmers MB, Hoang SA, Figler RA, Allende JA, et al. Development of a 
multicellular pancreatic tumor microenvironment system using patient-derived tumor cells. Lab 
Chip. 2019/03/07 ed. 2019 Mar 27;19(7):1193–204. [PubMed: 30839006] 

114. Moon H ran, Han B 15 - Engineered tumor models for cancer biology and treatment. In: 
Park K, editor. Biomaterials for Cancer Therapeutics (Second Edition) [Internet]. Woodhead 
Publishing; 2020. p. 423–43. Available from: http://www.sciencedirect.com/science/article/pii/
B9780081029831000156

115. Nagy JA, Dvorak HF. Heterogeneity of the tumor vasculature: the need for new tumor 
blood vessel type-specific targets. Clin Exp Metastasis. 2012/06/14 ed. 2012 Oct;29(7):657–62. 
[PubMed: 22692562] 

116. Li S, Xu HX, Wu CT, Wang WQ, Jin W, Gao HL, et al. Angiogenesis in pancreatic 
cancer: current research status and clinical implications. Angiogenesis. 2018/09/01 ed. 2019 
Feb;22(1):15–36. [PubMed: 30168025] 

117. Dewhirst MW, Secomb TW. Transport of drugs from blood vessels to tumour tissue. Nat Rev 
Cancer. 2017/11/11 ed. 2017 Dec;17(12):738–50. [PubMed: 29123246] 

118. Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, et al. Stromal elements 
act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014/05/27 
ed. 2014 Jun 16;25(6):735–47. [PubMed: 24856585] 

119. Zhang X, Tian Y, Yang Y, Hao J. Development of anticancer agents targeting the Hedgehog 
signaling. Cell Mol Life Sci. 2017/03/21 ed. 2017 Aug;74(15):2773–82. [PubMed: 28314894] 

120. Doherty GJ, Tempero M, Corrie PG. HALO-109-301: a Phase III trial of PEGPH20 (with 
gemcitabine and nab-paclitaxel) in hyaluronic acid-high stage IV pancreatic cancer. Future 
Oncol. 2017/12/14 ed. 2018 Jan;14(1):13–22.

121. Lund H, Pieber M, Parsa R, Han J, Grommisch D, Ewing E, et al. Competitive repopulation of an 
empty microglial niche yields functionally distinct subsets of microglia-like cells. Nat Commun. 
20181119th ed. 2018 Nov 19;9(1):4845. [PubMed: 30451869] 

122. Perus LJM, Walsh LA. Microenvironmental Heterogeneity in Brain Malignancies. Front 
Immunol. 2019;10:2294. [PubMed: 31632393] 

123. Boujelben A, Watson M, McDougall S, Yen YF, Gerstner ER, Catana C, et al. Multimodality 
imaging and mathematical modelling of drug delivery to glioblastomas. Interface Focus. 2016 
Oct 6;6(5):20160039. [PubMed: 27708763] 

124. Terman D, Chen L, Hannawi Y. Mathematical modeling of cerebral capillary blood flow 
heterogeneity and its effect on brain tissue oxygen levels. J Theor Biol. 2021;527:110817. 
[PubMed: 34157352] 

125. Bhandari A, Bansal A, Singh A, Sinha N. Numerical Study of Transport of Anticancer Drugs 
in Heterogeneous Vasculature of Human Brain Tumors Using Dynamic Contrast Enhanced-
Magnetic Resonance Imaging. J Biomech Eng. 2018 May 1;140(5):051010.

126. Bhandari A, Bansal A, Singh A, Gupta RK, Sinha N. Comparison of transport of 
chemotherapeutic drugs in voxelized heterogeneous model of human brain tumor. Microvasc 
Res. 2019 Jul;124:76–90. [PubMed: 30923021] 

Akalın et al. Page 25

Pharm Res. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://linkinghub.elsevier.com/retrieve/pii/S0076687908028140
http://linkinghub.elsevier.com/retrieve/pii/S0076687908028140
http://www.sciencedirect.com/science/article/pii/B9780081029831000156
http://www.sciencedirect.com/science/article/pii/B9780081029831000156


127. Stapleton S, Mirmilshteyn D, Zheng J, Allen C, Jaffray DA. Spatial Measurements of Perfusion, 
Interstitial Fluid Pressure and Liposomes Accumulation in Solid Tumors. J Vis Exp [Internet]. 
20160818th ed. 2016 Aug 18;(114). Available from: https://www.ncbi.nlm.nih.gov/pubmed/
27583578

128. Howell B, McIntyre CC. Role of soft-tissue heterogeneity in computational models of deep brain 
stimulation. Brain Stimulat. 2017;10(1):46–50.

129. Larsson I Modeling glioblastoma heterogeneity as a dynamic network of cell states. Mol Syst 
Biol. 2021;17(9):10105.

130. Carmona P, Mendez N, Ili CG, Brebi P. The Role of Clock Genes in Fibrinolysis Regulation: 
Circadian Disturbance and Its Effect on Fibrinolytic Activity. Front Physiol. 20200313th ed. 
2020;11:129. [PubMed: 32231582] 

131. Hablitz LM, Pla V, Giannetto M, Vinitsky HS, Staeger FF, Metcalfe T, et al. Circadian 
control of brain glymphatic and lymphatic fluid flow. Nat Commun. 20200902nd ed. 2020 Sep 
2;11(1):4411. [PubMed: 32879313] 

132. Zhang SL, Lahens NF, Yue Z, Arnold DM, Pakstis PP, Schwarz JE, et al. A circadian clock 
regulates efflux by the blood-brain barrier in mice and human cells. Nat Commun. 20210127th 
ed. 2021 Jan 27;12(1):617. [PubMed: 33504784] 

133. Elliott WJ. Circadian variation in the timing of stroke onset: a meta-analysis. Stroke J Cereb Circ. 
1998;29(5):992–6.

134. Fodor DM, Marta MM, Perju-Dumbrava L. Implications of circadian rhythm in stroke 
occurrence: Certainties and possibilities. Brain Sci. 2021;11(7).

135. Verdi S, Marquand AF, Schott JM, Cole JH. Beyond the average patient: how neuroimaging 
models can address heterogeneity in dementia. Brain. 2021 Nov 29;144(10):2946–53. [PubMed: 
33892488] 

136. Limbert G. Mathematical and computational modelling of skin biophysics: a review. Proc Math 
Phys Eng Sci. 2017;473(2203):20170257. [PubMed: 28804267] 

137. McLean K, Zhan W. Mathematical modelling of nanoparticle-mediated topical drug delivery to 
skin tissue. Int J Pharm. 2022;611:121322. [PubMed: 34848364] 

138. Poorbahrami K, Mummy DG, Fain SB, Oakes JM. Patient-specific modeling of aerosol delivery 
in healthy and asthmatic adults. J Appl Physiol 1985. 20190912th ed. 2019 Dec 1;127(6):1720–
32. [PubMed: 31513445] 

139. Sharma A, Merritt E, Hu X, Cruz A, Jiang C, Sarkodie H, et al. Non-Genetic Intra-Tumor 
Heterogeneity Is a Major Predictor of Phenotypic Heterogeneity and Ongoing Evolutionary 
Dynamics in Lung Tumors. Cell Rep. 2019 Nov 19;29(8):2164–2174 e5. [PubMed: 31747591] 

140. Tawhai M, Clark A, Donovan G, Burrowes K. Computational modeling of airway and pulmonary 
vascular structure and function: development of a “lung physiome.” Crit Rev Biomed Eng. 
2011;39(4):319–36. [PubMed: 22011236] 

141. Whitfield CA, Horsley A, Jensen OE. Modelling structural determinants of ventilation 
heterogeneity: A perturbative approach. PLoS One. 20181129th ed. 2018;13(11):e0208049. 
[PubMed: 30496317] 

142. Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the Clearance of Eleven Drugs and 
Associated Variability in Neonates, Infants and Children: Clin Pharmacokinet. 2006;45(9):931–
56. [PubMed: 16928154] 

143. Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z. Meta-Analysis of Nanoparticle 
Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation 
Approach. Vol. 14, ACS Nano. ACS Nano; 2020. p. 3075–95. [PubMed: 32078303] 

144. Rowland M, Peck C, Tucker G. Physiologically-based pharmacokinetics in drug development and 
regulatory science. Vol. 51, Annual Review of Pharmacology and Toxicology. Annual Reviews; 
2011. p. 45–73.

145. Yau E, Olivares-Morales A, Gertz M, Parrott N, Darwich AS, Aarons L, et al. Global Sensitivity 
Analysis of the Rodgers and Rowland Model for Prediction of Tissue: Plasma Partitioning 
Coefficients: Assessment of the Key Physiological and Physicochemical Factors That Determine 
Small-Molecule Tissue Distribution. AAPS J. 2020 Feb 3;22(2):41. [PubMed: 32016678] 

Akalın et al. Page 26

Pharm Res. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ncbi.nlm.nih.gov/pubmed/27583578
https://www.ncbi.nlm.nih.gov/pubmed/27583578


146. Pishko GL, Astary GW, Mareci TH, Sarntinoranont M. Sensitivity Analysis of an Image-Based 
Solid Tumor Computational Model with Heterogeneous Vasculature and Porosity. Ann Biomed 
Eng. 2011 Sep;39(9):2360–73. [PubMed: 21751070] 

147. Dalbey K, Eldred MS, Geraci G, Jakeman JD, Maupin KA, Monschke JA, et 
al. Dakota A Multilevel Parallel Object-Oriented Framework for Design Optimization 
Parameter Estimation Uncertainty Quantification and Sensitivity Analysis: Version 
6.12 Theory Manual. [Internet]. Sandia National Lab. (SNL-NM), Albuquerque, NM 
(United States); 2020 May [cited 2021 Sep 30]. Report No.: SAND2020-4987. 
Available from: https://www.osti.gov/biblio/1630693-dakota-multilevel-parallel-
object-oriented-framework-design-optimization-parameter-estimation-uncertainty-quantification-
sensitivity-analysis-version-theory-manual

148. Marelli S, Sudret B. UQLab: A Framework for Uncertainty Quantification in Matlab. 2014 Jul 
7;2554–63.

149. Wang C, Duan Q, Tong CH, Di Z, Gong W. A GUI platform for uncertainty quantification of 
complex dynamical models. Environ Model Softw. 2016 Feb 1;76:1–12.

150. Patelli E COSSAN: A Multidisciplinary Software Suite for Uncertainty Quantification and 
Risk Management. In: Ghanem R, Higdon D, Owhadi H, editors. Handbook of Uncertainty 
Quantification [Internet]. Cham: Springer International Publishing; 2016 [cited 2021 Sep 30]. p. 
1–69. Available from: 10.1007/978-3-319-11259-6_59-1

151. Hunt M, Haley B, McLennan M, Koslowski M, Murthy J, Strachan A. PUQ: A code for 
non-intrusive uncertainty propagation in computer simulations. Comput Phys Commun. 2015 
Sep 1;194:97–107.

152. Verscheijden LFM, Koenderink JB, Johnson TN, Wildt SN de, Russel FGM. Physiologically-
based pharmacokinetic models for children: Starting to reach maturation? Vol. 211, 
Pharmacology & Therapeutics. Pharmacol Ther; 2020. p. 107541. [PubMed: 32246949] 

153. Gampala S, Shah F, Lu X, Moon HR, Babb O, Umesh Ganesh N, et al. Ref-1 redox activity alters 
cancer cell metabolism in pancreatic cancer: exploiting this novel finding as a potential target. J 
Exp Clin Cancer Res CR. 2021 Aug 10;40(1):251. [PubMed: 34376225] 

154. Kwak B, Ozcelikkale A, Shin CS, Park K, Han B. Simulation of Complex Transport of 
Nanoparticles around a Tumor Using Tumor-microenvironment-on-chip. J Controlled Release. 
2014 Nov 28;194:157–67.

155. ran Moon H, Ozcelikkale A, Yang Y, Elzey BD, Konieczny SF, Han B. An engineered pancreatic 
cancer model with intra-tumoral heterogeneity of driver mutations. Lab Chip [Internet]. 2020 
Sep 2 [cited 2020 Oct 6]; Available from: https://pubs.rsc.org/en/content/articlelanding/2020/lc/
d0lc00707b

156. Ozcelikkale A, Shin K, Noe-Kim V, Elzey BD, Dong Z, Zhang JT, et al. Differential response 
to doxorubicin in breast cancer subtypes simulated by a microfluidic tumor model. J Controlled 
Release. 2017 Nov 28;266(Supplement C):129–39.

157. Shin K, Klosterhoff BS, Han B. Characterization of Cell-Type-Specific Drug Transport and 
Resistance of Breast Cancers Using Tumor-Microenvironment-on-Chip. Mol Pharm. 2016 
Jul;13(7):2214–23. [PubMed: 27228477] 

158. Abaci HE, Shuler ML. Human-on-a-chip design strategies and principles for physiologically 
based pharmacokinetics/pharmacodynamics modeling. Vol. 7, Integrative Biology. The Royal 
Society of Chemistry; 2015. p. 383–91. [PubMed: 25739725] 

159. Ramadan Q, Fardous RS, Hazaymeh R, Alshmmari S, Zourob M. Pharmacokinetics-On-
a-Chip: In Vitro Microphysiological Models for Emulating of Drugs ADME. Adv Biol. 
2021;5(9):2100775.

160. Herland A, Maoz BM, Das D, Somayaji MR, Prantil-Baun R, Novak R, et al. Quantitative 
prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized 
organ chips. Nat Biomed Eng. 2020 Apr;4(4):421–36. [PubMed: 31988459] 

161. Novak R, Ingram M, Marquez S, Das D, Delahanty A, Herland A, et al. Robotic fluidic coupling 
and interrogation of multiple vascularized organ chips. Nat Biomed Eng. 2020;4(4):407–20. 
[PubMed: 31988458] 

Akalın et al. Page 27

Pharm Res. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.osti.gov/biblio/1630693-dakota-multilevel-parallel-object-oriented-framework-design-optimization-parameter-estimation-uncertainty-quantification-sensitivity-analysis-version-theory-manual
https://www.osti.gov/biblio/1630693-dakota-multilevel-parallel-object-oriented-framework-design-optimization-parameter-estimation-uncertainty-quantification-sensitivity-analysis-version-theory-manual
https://www.osti.gov/biblio/1630693-dakota-multilevel-parallel-object-oriented-framework-design-optimization-parameter-estimation-uncertainty-quantification-sensitivity-analysis-version-theory-manual
https://pubs.rsc.org/en/content/articlelanding/2020/lc/d0lc00707b
https://pubs.rsc.org/en/content/articlelanding/2020/lc/d0lc00707b


162. Prantil-Baun R, Novak R, Das D, Somayaji MR, Przekwas A, Ingber DE. Physiologically 
Based Pharmacokinetic and Pharmacodynamic Analysis Enabled by Microfluidically Linked 
Organs-on-Chips. Annu Rev Pharmacol Toxicol. 2018 Jan 6;58(1):37–64. [PubMed: 29309256] 

163. Si L, Bai H, Rodas M, Cao W, Oh CY, Jiang A, et al. A human-airway-on-a-chip for the 
rapid identification of candidate antiviral therapeutics and prophylactics. Nat Biomed Eng. 2021 
Aug;5(8):815–29. [PubMed: 33941899] 

164. Sin A, Chin KC, Jamil MF, Kostov Y, Rao G, Shuler ML. The Design and Fabrication of 
Three-Chamber Microscale Cell Culture Analog Devices with Integrated Dissolved Oxygen 
Sensors. Vol. 20, Biotechnology Progress. American Chemical Society (ACS); 2004. p. 338–45.

165. Vernetti L, Gough A, Baetz N, Blutt S, Broughman JR, Brown JA, et al. Functional Coupling 
of Human Microphysiology Systems: Intestine, Liver, Kidney Proximal Tubule, Blood-Brain 
Barrier and Skeletal Muscle. Sci Rep. 2017 Sep 27;7(1):42296. [PubMed: 28176881] 

166. Moraes C, Labuz JM, Leung BM, Inoue M, Chun TH, Takayama S. On being the right size: 
scaling effects in designing a human-on-a-chip. Integr Biol. 2013 Aug 19;5(9):1149–61.

167. Sung JH, Wang Y, Shuler ML. Strategies for using mathematical modeling approaches to 
design and interpret multi-organ microphysiological systems (MPS). APL Bioeng. 2019 Jun 
1;3(2):021501. [PubMed: 31263796] 

168. Adiwidjaja J, Boddy AV, McLachlan AJ. Implementation of a Physiologically Based 
Pharmacokinetic Modeling Approach to Guide Optimal Dosing Regimens for Imatinib and 
Potential Drug Interactions in Paediatrics. Front Pharmacol. 2020 Jan 30;10:1672. [PubMed: 
32082165] 

169. Maharaj AR, Edginton AN. Physiologically Based Pharmacokinetic Modeling and Simulation in 
Pediatric Drug Development. CPT Pharmacomet Syst Pharmacol. 2014 Nov;3(11):1–13.

170. Wikswo J, Curtis E, Eagleton Z, Evans B, Kole A, … Scaling and systems biology for integrating 
multiple organs-on-a-chip [Internet]. Lab on a Chip. pubs.rsc.org; 2013. Available from: https://
pubs.rsc.org/en/content/articlehtml/2013/lc/c3lc50243k

171. Maass C, Stokes CL, Griffith LG, Cirit M. Multi-functional scaling methodology for translational 
pharmacokinetic and pharmacodynamic applications using integrated microphysiological systems 
(MPS). Integr Biol. 2017 Apr 1;9(4):290–302.

172. Moradi Kashkooli F, Soltani M, Momeni MM. Computational modeling of drug delivery to solid 
tumors: A pilot study based on a real image. J Drug Deliv Sci Technol. 2021 Apr;62:102347.

173. Zhan W. Convection enhanced delivery of anti-angiogenic and cytotoxic agents in combination 
therapy against brain tumour. Eur J Pharm Sci. 2020 Jan;141:105094. [PubMed: 31626962] 

174. Lee CW, Stantz KM. Development of a mathematical model to estimate intra-tumor oxygen 
concentrations through multi-parametric imaging. Biomed Eng OnLine. 2016 Dec;15(1):114. 
[PubMed: 27733170] 

175. Bilgen M, Narayana PA. A pharmacokinetic model for quantitative evaluation of spinal cord 
injury with dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Med. 2001 
Dec;46(6):1099–106. [PubMed: 11746575] 

176. Wang W, Ye Z, Gao H, Ouyang D. Computational pharmaceutics - A new paradigm of drug 
delivery. J Controlled Release. 2021 Oct;338:119–36.

177. Alber M, Buganza Tepole A, Cannon WR, De S, Dura-Bernal S, Garikipati K, et al. Integrating 
machine learning and multiscale modeling—perspectives, challenges, and opportunities in the 
biological, biomedical, and behavioral sciences. Npj Digit Med. 2019 Dec;2(1):115. [PubMed: 
31799423] 

178. Peng GCY, Alber M, Buganza Tepole A, Cannon WR, De S, Dura-Bernal S, et al. Multiscale 
Modeling Meets Machine Learning: What Can We Learn? Arch Comput Methods Eng. 2021 
May;28(3):1017–37. [PubMed: 34093005] 

179. Hataminia F, Noroozi Z, Mobaleghol Eslam H. Investigation of iron oxide nanoparticle 
cytotoxicity in relation to kidney cells: A mathematical modeling of data mining. Toxicol In 
Vitro. 2019 Sep;59:197–203. [PubMed: 31028859] 

180. Findlay MR, Freitas DN, Mobed-Miremadi M, Wheeler KE. Machine learning provides 
predictive analysis into silver nanoparticle protein corona formation from physicochemical 
properties. Environ Sci Nano. 2018;5(1):64–71. [PubMed: 29881624] 

Akalın et al. Page 28

Pharm Res. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://pubs.rsc.org
https://pubs.rsc.org/en/content/articlehtml/2013/lc/c3lc50243k
https://pubs.rsc.org/en/content/articlehtml/2013/lc/c3lc50243k


181. Sammut SJ, Crispin-Ortuzar M, Chin SF, Provenzano E, Bardwell HA, Ma W, et al. Multi-omic 
machine learning predictor of breast cancer therapy response. Nature [Internet]. 2021 Dec 7 
[cited 2021 Dec 13]; Available from: https://www.nature.com/articles/s41586-021-04278-5

182. Muñiz Castro B, Elbadawi M, Ong JJ, Pollard T, Song Z, Gaisford S, et al. Machine learning 
predicts 3D printing performance of over 900 drug delivery systems. J Controlled Release. 2021 
Sep;337:530–45.

183. Kojic M, Milosevic M, Kojic N, Kim K, Ferrari M, Ziemys A. A multiscale MD–FE 
model of diffusion in composite media with internal surface interaction based on numerical 
homogenization procedure. Comput Methods Appl Mech Eng. 2014 Feb;269:123–38. [PubMed: 
24578582] 

Akalın et al. Page 29

Pharm Res. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.nature.com/articles/s41586-021-04278-5


Figure 1. 
Computational modeling of drug transport phenomena across scales.
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Figure 2. 
Hybrid discrete and continuum modeling of vascular and interstitial pore-scale transport 

phenomena. a) A multi-scale approach using LB scheme for the fluid phase, a Spectrin-link 

method for RBCs and LD to capture NP suspension. Reproduced from Ref (56) with 

permission from Elsevier. b) Workflow used in a parameter-based 3D microstructural 

collagen matrix reconstruction and transport property estimation study. Reproduced from 

Ref (61) with permission from ASME. c) Modelling of NP accumulation and penetration 

using MC simulations. Reproduced from Ref (64) with permission from PNAS. d) BD 
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simulation of NPs at extracellular space contained with cells. Reproduced from Ref (65) 

with permission from BMC.
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Figure 3. 
Multi-scale modeling approaches for tissue and organ-level transport. a) Asymptotic 

homogenization technique utilized to couple periodic microvascular transport properties 

and macroscale equations. Reproduced from Ref (73) with permission from Wiley. 

b) Microstructural diffusivity analysis extended to the equivalent continuum diffusion 

coefficient using numerical homogenization. Coupling of fluid and solid domains 

accomplished by 1D fictitious elements. Reproduced from Ref (74,77) with permission from 

Elsevier.
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Figure 4. 
A multi-scale PBPK modeling approach for spatially resolved transport of drugs across GI 

tract and system-level ADME characteristics. Reproduced from Ref (78) with permission 

from Wiley.
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Figure 5. 
Potential for joint use of emerging technologies in multiscale modeling, microphysiological 

systems and image-based modeling.
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