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Mutation density patterns reveal unique biological properties of specific genomic regions and shed light on the mechanisms

of carcinogenesis. Although previous studies reported insightful mutation density patterns associated with certain genomic

regions such as transcription start sites and DNA replication origins, a tool that can systematically investigate mutational

spatial patterns is still lacking. Thus, we developed MutDens, a bioinformatic tool for comprehensive analysis of mutation

density patterns around genomic features, namely, genomic positions, in humans and model species. By scanning the bidir-

ectional vicinity regions of given positions, MutDens systematically characterizes the mutation density for single-base sub-

stitution mutational classes after adjusting for total mutation burden and local nucleotide proportion. Analysis results using

MutDens not only verified the previously reported transcriptional strand bias around transcription start sites and replicative

strand bias around DNA replication origins, but also identified novel mutation density patterns around other genomics

features, such as enhancers and retrotransposon insertion polymorphism sites. To our knowledge, MutDens is the first

tool that systematically calculates, examines, and compares mutation density patterns, thus providing a valuable avenue

for investigating the mutational landscapes associated with important genomic features.

[Supplemental material is available for this article.]

High-throughput sequencing (HTS) technology has enabled the
low-cost identification of numerous genomic variants in personal
genomes. Identification and analysis of somaticmutations are crit-
ically important in cancer research. In recent years, mutational
strand bias in transcribed genes has arisen as an informative and
guiding signal that reveals profound cancer mutagenesis mecha-
nisms (Haradhvala et al. 2016). Transcriptional strand bias in
somatic mutations is such a phenomenon: A form of single-base
substitution (e.g., C >T) significantly outnumbers its complemen-
tary mutation form (e.g., G>A) on the transcribed strand or the
nontranscribed strand, but the two mutually complementary mu-
tation forms balance out if ignoring the transcription stranded-
ness. Transcriptional strand bias is caused by either stronger
transcription-coupled repair on the transcribed strand, stronger
transcription-coupled damage to the nontranscribed strand, or
both mechanisms combined. As a most representative example
of the transcriptional strand bias, skin cancer often has elevated
C>T mutations on the nontranscribed strand relative to the tran-
scribed strand (Alexandrov et al. 2013). Moreover, liver cancer dis-
plays even more marked divergence, with greater A>G mutations
on the nontranscribed strand (Letouzé et al. 2017). Lung cancer
also shows transcriptional strand bias by presenting more G>T
mutations on the nontranscribed strand (Kucab et al. 2019).

Mutational strand bias associated with DNA replication,
termed replicative strand bias, is another intriguing genomic sig-
nal that warrants in-depth investigation. Taking in a primitive lo-
cation data set of DNA replication origins, a study (Haradhvala
et al. 2016) revealed global replicative strand bias patterns for 14
tumor types, with specific mutational spectra more prevalent on
DNA lagging strand than the leading strand. The data further sug-
gested that the increased APOBEC enzymatic activity and proof-

reading-compromised POLE were two major mechanisms driving
the observed replicative strand bias. This groundbreaking study
has inspired successive works on deciphering replicative strand
bias, including one from the perspective of mutational signatures
(Tomkova et al. 2018). Although they recognized mutational
strand bias as a prominent feature in the cancer genome, the pre-
vious works did not tackle potential strand bias patterns in local-
ized genomic regions, and in many cases, the studies only
reported a global statistic of mutation density ratio between the
strands. Without a proper companion statistic test, the severity of
the mutational strand bias was not precisely assessed. Furthermore,
the replication origin locationsmapped in 2016were far from accu-
rate. Recently, the novel HTS technology SNS-seq was leveraged to
map human DNA replication origins (Akerman et al. 2020). This
new set of high-resolution location datamay propel new replicative
strand bias studies in the near future.

Several statistical methods have been applied in recent years
to evaluate mutational strand bias in the cancer genome. The ma-
jority of them are based on Pearson’s Chi-squared test (Jelaković
et al. 2015; Lee et al. 2018; Kucab et al. 2019). Although these
methods improved the analysis of cancer mutations, several draw-
backs have limited their usage in the cancer biology community.
First, these approaches were bound with a global analysis strategy
that sets the coding regions of all genes as the analysis scope,
which cannot be easily adapted to accommodate a localized per-
spective into limited genomic regions. For example, transcription-
al strand bias attenuates as the transcriptional machinery moves
far away from transcription start sites (TSSs) (Polak and Arndt
2008), and thus, a proper analytical approach should ideally be
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built upon the close proximity of the central TSS feature. Second,
these approaches summarized widespread mutations in the whole
genome but did not account for the varied nucleotide constitution
in the local context of each mutation. Last, these studies did
not compare mutation asymmetries of different samples and
thus did not perform a normalization against the genome-wide
mutation abundance (mutation burden). Generally, in-house-de-
veloped scripts were used to fulfill research needs. A fully function-
al, reusable, flexible application to specifically address mutation
density patterns (including strand bias and related questions) is
still lacking.

Here, we describe an R application (R Core Team 2022),
MutDens, that examines, quantifies, and compares mutation den-
sity patterns around any genomic features. MutDens analyzes how
somatic mutations spatially distribute in the flanking regions of a
concerned genomic feature (e.g., TSSs and replication origins),
calibrating local nucleotide composition and global mutation bur-
den in the quantification of mutation density. In comparison
to related methods such as AsymTools (Haradhvala et al. 2016),
Asymmetron (Georgakopoulos-Soares et al. 2021), and Mutalisk
(Lee et al. 2018), MutDens allows flexibility in the proximal vicin-
ity of the focal feature, addresses both transcriptional and replica-
tive strand bias analyses, detects mutation density spatial patterns,
and compares between samples or features with proper normaliza-
tion methods.

Results

MutDens development and availability

MutDens surveys mutation density spatial trends in specific geno-
mic regions, examining three aspects ofmutation data:mutational
class distribution, mutation density pattern, and difference inmu-
tation density (Fig. 1A). Extending bidirectionally from the given
feature positions, we define immediate flanks as the vicinity and
farther flanks as the background and exert statistical models to
detect nontrivial mutation density spatial patterns in the vicinity
(Fig. 1B).When twopatient cohorts or two genomic features are in-
volved, MutDens addresses the problem in comparisonmodalities
(Fig. 1C,D). MutDens presets default values for parameters, includ-
ing vicinity span limit (2 kb), boundaries of background regions
(2 kb and 7 kb), and bin size (100 bp), but these parameters
can be changed by the user. Theoretically, any nucleotide substitu-
tion can be categorized into six major mutation classes or 96 sub-
classes of varied trinucleotide contexts (Bergstrom et al. 2019).
Mutationalmechanisms, such as transcriptional/replicative strand
biases, are usually associated with specific mutational classes for
different cancers. MutDens can handle multiple mutational clas-
ses in parallel and can optionally offer close-up perusal in trinucle-
otide subclasses. MutDens supports the human genome with the
richest built-in genomic features (of defined chromosome coordi-
nates), and it is applicable to eight other model organisms as well,
including rhesus, dog, mouse, rat, chicken, zebrafish, fruit fly, and
yeast.

Built-in regulatory genomic features: TSSs, replication origins,

and enhancers

Transcriptional strand bias of mutation density has been reported
for select cancers. Therefore, we includedTSSs for human reference
genomes GRCh38 and GRCh37 as built-in focal genomic features.
Of note, TSSs have variable strand values in accordance with the
strandedness of the associated genes, whereas in general, the focal

positions are automatically labeled with the forward strand (“+”).
Therefore, the spatial mutation density curves derived for TSSs
shouldnot be interpreted as left/right flanks on the forward strand;
rather, the ostensible left and half sections designate the upstream
and downstream regions relative to the TSS, respectively.

Similar to transcriptional strand bias, replicative strand bias
also sheds light on cancer mechanisms. Location of replication or-
igins (abbreviated as Origins hereafter) is key to the analysis of rep-
licative strand bias, but unfortunately, origin locations are not as
clear as the annotated TSSs. We noted two major data sources of
Origin sites in the field: One was wrapped in the MATLAB applica-
tion AsymTools in 2016 (Haradhvala et al. 2016), and the other
was generated with SNS-seq in 2020 (Akerman et al. 2020). The
2016 location data were based on replication timing transition re-
gions, and it contained 661 rather long Origin segments (median
length, 500 kb). The 2020 location data contained 320,748 shorter
Origin segments with a median length of 243 bp (Fig. 2B).
Landscape views of Origin distribution across 24 human chromo-
somes weremade for both data sets (Fig. 2A; Supplemental Fig. S1),
and both landscapes consistently indicate broad barren territories
on Chr 13, Chr 14, Chr 15, Chr 21, and Chr 22 p-arm ends and
near the centers of Chr 1, Chr 9, and Chr 16 chromosomes.
These large blank spots aremostly located in centromeres and telo-
meres and represent Origin-poor genomic regions. There are two
potential reasons leading to sparse Origins in centromeres and
telomeres. First, these two types of regions have highly condensed
heterochromatin and are associated with late DNA replication.
Therefore, they have fewer active Origins than other euchromatin
regions. Second, centromeres and telomeres have highly repetitive
DNA sequences, which are conceivably difficult for sequencing us-
ing SNS-seq. Excluding these long barren gaps, we found the inter-
vals between consecutive Origins had a median length of 13.4 kb
in the 2020 data set (Fig. 2C). According to the Origin location of
the 2020 data set, G or C content in the 2-kb flanking regions is
higher than the genome-wide level of 20% (Piovesan et al.
2019), and it reaches the maximum of 25% at the midpoints of
Origins (Fig. 2D). Similarly, G or C content increases toward
TSSs, peaking at the center at 31% (Fig. 2E). Such base content
trend lines were rather flat with the 2016 Origin data set, where
no increasing trend toward Origin center was discernable
(Supplemental Fig. S2). Considering data quantity, location resolu-
tion, and base content patterns, we adopted the more recent SNS-
seq-based Origin data source and took the Origin midpoints as fo-
cal positions. Origin locations in both GRCh38 and GRCh37 were
included in the MutDens bundle.

In recent years, great research attention was directed to en-
hancers, a type of cis-elements that is able to affect transcriptional
regulation of proximal or distal genes. HACER (Wang et al. 2019) is
an online human enhancer portal integrating FANTOM5 CAGE
data (Noguchi et al. 2017) and nascent RNA sequencing data. On
July 12, 2022, we downloaded the whole data set from HACER
and reserved 107,153 enhancers that were supported by
ENCODE as well as one of the two projects: Ensembl (Zerbino
et al. 2015) and VISTA (Visel et al. 2007). Additionally, we com-
piled retrotransposon insertion polymorphism (RIP) sites for the
human genome. An RIP is a genomic location where the presence
or absence of a retrotransposon insertion is observed in the popu-
lation. Our RIP sites were combined from two sources (Mir et al.
2015; Yu et al. 2017). Enhancer vicinity regions display base con-
tent dynamics similar to that of Origin, whereas RIP vicinity re-
gions show a flat trend across the left and right 2-kb flanks (Fig.
2F,G).
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Because of the remarkable nucleotide content dynamics in
the vicinity of multiple genomic features (Fig. 2D–G), MutDens
by default normalizes the mutation density into mutations per
megabase (MPM) values accommodating the proportion of specif-
ic nucleotide type in each successive 100-bp vicinity bin. The bin-
wise base content proportion values for the curated genomic fea-
tures have been precalculated and can be loaded in session for swift
normalization. With the user-supplied custom focal positions,
MutDens can calculate the base composition on the fly, as long
as the species is among our supported reference genomes.
Alternatively, users can use genome-wide base proportion statistics
for a global (nonlocal) MPM normalization. In this context, the
human genome will use static proportion values of 0.30, 0.30,
0.20, and 0.20, for nucleotide types A, T, G, and C, respectively
(Piovesan et al. 2019).

Mutation density patterns in cancers

We tested MutDens on individual mutation files of aggregated
somatic mutations for 81 International Cancer Genome
Consortium (ICGC) cancer cohorts, against whole-genome TSSs

and Origin sites, respectively. We generated both the mutation
density difference test results and the peak/dip test results for
each cohort and each mutational class and showed the P-values
in a clustered heatmap (Fig. 3). In the heatmap, 372 and 274 out
of the total 2916 tests showed significant results for TSS and
Origin, respectively (P<0.01 for left/right-flank density difference
tests and P<1× 10−5 for peak/dip tests). A large number of cancer
types, including lung cancers (LUSC-US, LUAD-US, and LUSC-KR)
and skin cancers (SKCA-BR and SKCM-US), were clustered togeth-
er, showing extremely low P-values, indicating TSS-coincidentmu-
tational peaks for almost all six mutational classes. Many cancers
in this cluster also show a mutational peak at Origin, especially
for the C>Tmutational class. The Australianmelanoma cancer co-
hort (MELA-AU) was isolated from the other skin cancers, possibly
because it showed a TSSmutational spike for C>Tmutations only.
MELA-AU was clustered along with several neighbors (ESAD-UK,
LIRI-JP, and PBCA-US), and they all characteristically manifested
mutation density dips at Origin sites, especially for the T>A, T>
C, and T>G classes. A lung cancer cohort, LUSC-CN, had an over-
all low mutation density level and did not display apparent peak/
dip patterns. LUSC-CN was clustered with other cancers such as

B
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D

Figure 1. Schema of MutDens. (A) The primary analysis modality entails input of one mutation file and one focal position set. Mutation counts are sum-
marized within close proximity of focal positions (foreground) and over farther flanking regions (background). The foregroundmutational counts are con-
verted into two paired spatial mutation density series. MutDens returns three major outputs, elucidating mutational class balance, mutation spatial trend,
and mutation density difference. (B) Core modules of MutDens to compare mutation density levels and to detect mutation density spatial patterns. The
immediate flanking regions (defaulted to 2 kb in either direction) are sliced into continuous bins (default size, 100 bp); bin-wise mutation counts are con-
verted tomutation density values. A trend test is conducted to detect the existence of a nonrandom spatial trend in themutation density series. To compare
the mutation density levels, a Wilcoxon test is performed between the two complementary mutational forms, in the left, right, and whole flanking region.
To detect prominent mutation density spatial patterns, a null Poisson or negative binomial distribution of mutational count per bin is established based on
bin-wise mutation counts from background regions (default distal/proximate boundaries, 7 kb and 2 kb). (C) MutDens can compare two sample cohorts
on one set of focal positions. (D) MutDens can compare two sets of focal positions for one sample cohort.
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ALL-US andNBL-US and placed at the bottomof the heatmap. The
cancers arranged at the bottom of the heatmap generally lack no-
table mutational spatial patterns near TSS or Origin.

Examples of mutational strand bias and mutational

spatial patterns

For a specific mutational class, an apparent divergence in the two
coupledmutation density curvesmay indicate transcriptional/rep-
licative strand bias. In the downstream from TSS, if the mutation
density curve for the coding strand is higher than the other curve
for the template strand, transcriptional strand bias may be postu-
lated. In the left and right flanks of the Origin vicinity, if the mu-
tation density advantage flips from one mutational form to the
other, replicative strand bias may be postulated. Our scan of 81
ICGC cancer cohorts for all six mutational classes indeed revealed
mutational strand bias in many cases. MELA-AU had the greatest
mutation burden among all ICGC cohorts, and it showed remark-
able transcriptional (Fig. 4A) and replicative (Fig. 4B) strand biases
within the C>T mutational class, as supported by Wilcoxon
signed-rank test P-values of 0.0039 for TSS downstream and 3×
10−6 and 3×10−4 for Origin’s left/right vicinities. For a negative
control, we sampled random genomic positions and excluded
those that were within 4-kb proximity of any Origin, thus yielding
a set of 67,324 random genomic positions. MELA-AU C>T muta-
tions did not display a strand bias around these random positions
(Fig. 4C).

Similar to TSS-coincident mutational spikes (Fig. 4A), an
Origin-coincident mutational peak was commonly seen. The
UCEC-US cohort showed an Origin-coincident mutational peak
in the C>A class (Fig. 4D). Occasionally, off-center mutational
peaks were detected, and representative examples were found in
the THCA-CN cohort concerning the C>T class (Fig. 4E). At times,
we observed enhancer-coincident mutational dips, such as the
one found for C>T in the MELA-AU cohort (Fig. 4F;
Supplemental Fig. S3).

Comparison modalities of MutDens

MutDens can be used to compare two mutation cohorts at the
same set of genomic positions (Fig. 1C). In such a context, because
two sample cohorts are directly compared, the overall mutation
burden per cohort should be considered, otherwise the statistical
test result may reflect the difference in genome-wide mutation
burden, not necessarily the situation within the vicinity of focal
positions. Hence, the mutation density is assessed with the metric
of “mutations per kilo total mutations per megabase” (MPKM),
rather than MPM. The MPKM denotation is coined as an analogy
to the well-known RPKM measure in RNA-seq analyses (Li et al.
2015).

To show the between-cohort comparison function, we com-
pared two liver cancer cohorts, LICA-CN and LICA-FR, on TSSs
and Origins, respectively. Certain patients displayed exceedingly
great mutation burdens (Supplemental Fig. S4; Supplemental
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Figure 2. Description of built-in genomic features: replication origins and others. (A) Landscape view of replication origins on human chromosomes. (B)
Distribution of width/length of replication origins. (C) Distribution of inter-origin distance. Long, barren intervals appear as outliers in the whole-data set
view (All). Thus, we excluded the outliers and showed the distance boxplot for the mass component (Mass). (D) Nucleotide base content in (−2 k, 2 k)
flanking regions of replication origins. (E) Nucleotide base content in (−2 k, 2 k) flanking regions of transcription start sites (TSSs). (F ) Nucleotide base con-
tent in (−2 k, 2 k) flanking regions of enhancers. (G) Nucleotide base content in (−2 k, 2 k) flanking regions of retrotransposon insertion polymorphism (RIP)
sites.
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Table S1), and thus, the top 10% of patients (40 for LICA-CN and
25 for LICA-FR) were considered hypermutated outliers and were
excluded from the analysis. The comparison was set on the C>A
mutation class, the predominant class in the LICA-CN cohort
(Fig. 4K). The aligned mutation density curves clearly showed
that LICA-CN had a higher mutation density around TSSs than
LICA-FR, and that LICA-CN showed amoremarked TSS-coincident
mutational spike than LICA-FR (Fig. 4G). For Origins, we observed
that LICA-CNhad a comparablemutation density to LICA-FR for C
>A mutational form, but the mutation density of the G>T form
was drastically different between LICA-CN and LICA-FR (Fig.
4H). The more abundant G>T mutations in LICA-CN over LICA-
FR can be attributed to the imbalance between C>A andG>Tmu-
tational forms in the whole genome of LICA-CN (Fig. 4L).
However, because the MPKM metric had already accounted for
the total mutation burden, the imbalance between C>A and G>
T forms in the vicinity of Origin must be even more severe than
the genome-wide average situation, thus resulting in the evident
elevationof LICA-CNG>Tmutationdensity curves above the oth-
er three curves (LICA-CNC>A, LICA-FR C>A, and LICA-FR G>T).
This assumption was validated by symmetry analysis of the whole
genome and focal regions (Supplemental Fig. S5).

MutDens can also be used to compare mutational spatial pat-
terns for two sets of genomic positions (Fig. 1D). To show this, we
compared Origins with RIPs using MELA-AU C>T mutations.
Mutation density around RIPs was significantly higher than that
around Origins in melanoma (Wilcoxon signed-rank test P=1×
10−7) (Fig. 4I). A likely mechanism is that repair of UV damage is
less efficient in transposons owing to the heterochromatin envi-
ronment (Rebollo et al. 2011). In contrast, active replication ori-
gins are frequently located in open chromatin regions (Audit
et al. 2009), where repair of UV damage is generally more efficient
(Adar et al. 2016). Excessive C>T mutations in RIP over Origin
were also observed in soft-tissue cancer (Supplemental Fig. S6).
For the sake of technical analysis, we rendered mutation density
curves for Origin in two different ways: with local (Fig. 4I) or global
(Fig. 4J) base content normalization. Compared with the local nor-
malization (Fig. 4I), the static, global normalization caused occur-
rence of central dips and central peaks for RIP and Origin (Fig. 4J),
respectively, leading to amisconception that the two genomic fea-
tures display comparable mutation density levels at their exact
sites. This was mainly because the Origin centers harbor a greater
portion of G/C bases than the surrounding regions (Fig. 2D), and
when we normalized the mutated G/C bases with a greater

Figure 3. Overview of MutDens bulk analyses across all ICGC cohorts and all six mutational classes. Rows designate 81 ICGC cancer cohorts, and col-
umns designate a total of 72 tests within each cancer cohort, concerning TSS and replication origin. The 72 tests per cohort differed by focal genomic
feature (Feature), mutational class, and specific test objective (Test). Intensity in the heatmap is proportional to the inverse P-value (−log10(P)). All insig-
nificant P-values (P>0.01 for density difference tests and P>1×10−5 for peak/dip tests) were treated as P=1 and hence shown in the dimmest color.
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Figure 4. Representative plots generated byMutDens in case studies of ICGCmutation data sets. (A–C ) Mutation density curves of C> Tmutations in the
MELA-AU cohort, analyzed against three different genomic position sets: TSSs (A), replication origins (B), and random sites (C). (D–F) Distinct mutation
density patterns were identified and marked in gray rectangles, including central peak of origins (D), off-center peaks of origins (E), and central dip of en-
hancers (F). (G–J) Four mutation density curves were aligned side by side as a result of comparing two cohorts (G,H) or comparing two position sets (I,J).
When TSSs were in focus, LICA-CN displayed evidently greater C >A mutation density than LICA-FR, for both the coding strands and the template strands
(G). When replication origins were in focus, LICA-CN outnumbered LICA-FR only in terms of the G>Tmutations but not the C>Amutations (H). Speaking
of MELA-AU C>T mutations, mutation density levels around replication origins were lower than those around RIP sites (I). If the background base content
near Origins and RIP sites had not been taken into account, two near-center peaks would have shown up for Origin mutation density curves (J). (K )
Mutational class distribution in the LICA-CN cohort. (L) Mutations in LICA-CN’s each mutational class were divided into two complementary forms, where
asymmetry between the C>A and G>T form pairs was prominent.
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proportion of constituent G/C bases, the ostensible Origin-center
mutational peaks vanished. The local base content normalization
also diminished the prominence of the central dip of RIP, although
the changewas barely noticeable owing to the overall flat base con-
tent curves around RIP (Fig. 2G). In this example, with the dissim-
ilar results out of distinct normalization operations, we proved it is
a rational and necessary operation to account for constituent base
content in local vicinity bins, especially for genomic features like
Origin and TSS that display a dynamic base content profile in
the flanking regions.

Technical property analyses

All above case studies made use of all unique mutations identified
in a cancer cohort, which typically consisted of tens or even hun-
dreds of subjects. We investigated how sample size and mutation
burden impactedMutDens’ performance.MELA-AUhad the great-
est number of combinedmutations (17million) from199 subjects,
which was a good source for downsizing patient samples and de-
creasing mutation burden. We randomly selected 50, 10, and one
subject(s) from the cohort and combined mutations from only

the selected subjects; the random subject selection and follow-up
TSS vicinity analysis was repeated five times. The results showed
that 10 subjects collectively were enough to manifest
a transcriptional strand bias pattern for C>T mutations
(Supplemental Fig. S7), and a prominent TSS-coincident peak of
C>T mutations was seen in two of five single samples
(Supplemental Fig. S8). MELA-AU subjects varied greatly in their
mutationburdenquantities, ranging froma fewthousand tonearly
amillion.We identified 10 subjects of evenly distributed quantiles
(0.1, 0.2, …, 1) in the mutation burden distribution and executed
MutDens on the mutations from each individual. Putting the 10
sets of results together,we found that results’ statistical significance
increasedwithmutationburdenper subject (Fig. 5A).At the0.7 and
0.8 quantiles (corresponding to approximately 104,000 and
154,000 total C>T mutations), the Poisson test for central peak
and the right-flankWilcoxon test exceeded the permissive thresh-
old of P=0.05. Thismeant that 20%–30%of subjects in theMELA-
AU cohort could individually elucidate transcriptional strand bias
with their C>T mutations, and an example was shown (Fig. 5C).

On another dimension, we studied if alternate subsets of focal
positions would lead to different analysis results. In the original

data source (Akerman et al. 2020), the
320,748 Origins were categorized into
10 quantiles (Q1–Q10) based on the nor-
malized SNS-seq score (activity score),
with each quantile containing around
32,000 Origins. We executed MutDens
on all MELA-AU mutations against each
of the 10 Origin subsets and recorded
the Wilcoxon test P-values for the left
flank and the right flank. As expected,
the quantiles of higher normalized SNS-
seq scores showed greater statistical sig-
nificance, with Q1 and Q2Origins show-
ing P-values lower than 1×10−4 (Fig. 5B).
Although each quantile had nearly the
same number of Origins, their harbored
mutations clearly increased with the
quantile number, meaning that less ac-
tive Origins were prone to more muta-
tions. In the paired mutation density
curves for MELA-AU C>T mutations us-
ingQ1Origins only (Fig. 5D), the replica-
tive strand bias pattern was more
pronounced than using the whole set of
Origins, with Wilcoxon test P-values of
1 ×10−6 (left) and 1×10−5 (right). This
experiment with quantile subsets of
Origins indicated that including more
relevant or more accurate genomic
positions help to sharpen the potential
mutation density pattern.

Comparison to similar tools

Currently, there is no dedicated appli-
cation to explore mutation density spa-
tial trends with complete flexibility on
genomic features. Three other tools
have partially similar features (Table 1).
Asymmetron (Georgakopoulos-Soares
et al. 2021) can identify strand

BA

C D

Figure 5. Technical properties of MutDens. (A) Analysis results for C > T mutations from 10 individual
MELA-AU samples of increasing mutation burdens. Because the vicinity of TSS was examined, we visual-
ized the transformed P-values out of right-flank Wilcoxon test (p.right) and the Poisson distribution test
for central peak (p.peak). (MPKM) Mutations per kilo total mutations per megabase. (B) Analysis results
for MELA-AU C>T mutations against 10 equal-sized Origin subsets (Q1–Q10) of decreasing SNS-seq
scores. Because replication origins were examined, we visualized the transformed P-values out of both
left-flank and right-flank Wilcoxon tests (p.left and p.right). (C) C> T mutations from a single sample
in MELA-AU (EXTERN-MELA-20140526-101) led to mutation density curves that clearly reflected tran-
scriptional strand bias. (D) Restricting Origins to the top 10% of highest SNS-seq scores (Q1), the flip
of predominant mutational form at Origin center became more apparent, clearly hinting at a replicative
strand bias.
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asymmetry patterns in biological sequences. However, Asymme-
tron analyzes the arrangement asymmetry of stranded genomic
features; it does not analyze single-base substitutions and does
not inspect strand bias of mutations. MATLAB package AsymTools
(Haradhvala et al. 2016) is limited to visualizing the strand bias
with barplots without providing qualitative judgment on strand
bias. The commercial environment of MATLAB and the special in-
put mutation annotation format have impeded the accessibility of
AsymTools. Other studies (Tomkova et al. 2018; Degtyareva et al.
2019; Rodin et al. 2021) leveraged only the built-in replication di-
rection data in AsymTools rather than its analysis utility. On the
contrary, MutDens is implemented in the more popular open-
source platform of R, and it accepts the more widely adopted var-
iant call format (VCF) as input. The web toolkit Mutalisk (Lee
et al. 2018) contained a module for transcriptional strand bias,
which adopted the general strategy of summarizing and compar-
ing all mutations in transcribed/untranscribed regions. The two
tools AsymTools and Mutalisk enrolled the fixed total coding re-
gions in the genome to interrogate mutational strand bias, and
they are limited to TSSs and replication origins only. In contrast,
MutDens enables mutation density investigation in flexible vicin-
ity regions of any genomic feature. Compared with the few exist-
ing related tools, our new application MutDens stresses the close
proximity of focal features, empowers both transcriptional and
replicative strand bias analyses, and implements proper normaliza-
tion methods and statistical tests to detect both quantity differ-
ence and prominent spatial patterns of mutation density curves.

Runtime analysis

Finally, we recorded computational time usage on a range of mu-
tation burdens and a range of genomic position quantities.
Using the UCEC-US cohort, which reported a total of 880,000mu-
tations, we executed MutDens on 10 gradually enlarged Origin
subsets of 31,000–316,000 positions. On a Linux Ubuntu worksta-
tion with Intel Xeon CUP E5-2650 V4 at 2.20-GHz and 32-GB
memory, the running time for single-cohort analysis (Fig. 1A)
went up roughly linearly from 73 sec to 280 sec (Supplemental
Fig. S9). Using theQ1Origin subset, which consisted of 31,000 po-
sitions, we executed MutDens on 10 gradually enlarged mutation
subsets of 100,000–17,000,000 mutations from the MELA-AU co-
hort. The running time went up roughly linearly from 52 sec to
1076 sec (Supplemental Fig. S9). We anticipate that users’ muta-
tion quantity normally will not exceed the ICGCMELA-AU cohort

and that the focal positions will typically not outnumber the
whole Origin set we tested; therefore, a typical MutDens session
in a real application should complete in a few minutes.

Discussion

Somatic mutation is a major factor for tumorigenesis. Instead of
studying individual mutations, examining mutations as a whole
offers a unique perspective into the tumorigenesis mechanism
and history. Methods such as mutation burden (Ping et al. 2020)
andmutational signature (Alexandrov et al. 2013) combine allmu-
tations in one subject to describe the overall mutational character-
istics. Mutational strand bias represents another holistic
perspective on genome-wide mutations, which appeared as a
promising approach to tumorigenesis mechanisms. Analyses in
this line of research contrast themultitudes of single-base substitu-
tions between the two complementary DNA strands. Insights into
mutagenesis mechanisms are revealed by examining themutation
form and quantity only, sparing the step of mutation annotation
that is commonly practiced in other research workflows.
Currently, the general strategy is to aggregate widespread muta-
tions into summary statistics for the two complementary strands.
Such an aggregate strategy cannot emphasize focal genomic re-
gions of the most striking attribute, and it is difficult to accommo-
date varied nucleotide constitutions in each mutation’s local
context. The lack of a systematic and quantifiable approach
prompted us to develop the novel R application MutDens, which
addresses the topic of mutational strand bias by analyzing muta-
tion density spatial trends relative to user-designated focal geno-
mic positions. Although existing approaches typically obtain the
total number of mutations present in genomic regions of interest,
MutDens delineates the running mutation density curves in the
flanking regions of focal genomic positions. Thus, MutDens is
able to detect, quantify, and compare special patterns in mutation
density spatial trends, including peaks, dips, and density diver-
gence between the complementary mutational forms.

We executedMutDens on somaticmutations of 81 ICGC can-
cer cohorts spanning 57 cancer types, examining mutation strand
bias and mutation density trend around TSSs and replication ori-
gins. MutDens successfully revealed well-known transcriptional/
replicative strand biases. We recovered evident C>T and G>T
transcriptional strand bias patterns from skin cancer cohorts
(MELA-AU, SKCA-BR, and SKCM-US) and a lung cancer cohort
(LUSC-KR), respectively. In one liver cancer cohort (LICA-FR), we

Table 1. Properties of four tools aimed at genomic strand bias/asymmetry

AsymTools Asymmetron Mutalisk MutDens

Platform MATLAB Python Web service R
Genomic feature TSS, replication

origin
Any genomic feature TSS Any genomic feature

Analyzing mutation strand bias Yes No Yes Yes
Detecting mutation density

spatial trend
No No No Yes

Input MAF BED VCF VCF, custom tab-delimited file
Output Figures for

visualization
Figures and statistics

result
Figures and statistics

result
HTML report

Quantifiable statistical test No Yes Yes Yes
Genomic region size Fixed Flexible Fixed Flexible
Normalization No No No Normalized to mutation burden and local

base content

(TSS) Transcription start site, (MAF) mutation annotation format, (BED) browser extensible data, and (VCF) variant call format.

Mutation density survey

Genome Research 1937
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276770.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276770.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276770.122/-/DC1


revealed strong transcriptional strand bias for C>A mutations;
compared with the more widely known T>C transcriptional
strand bias, C>A bias was only occasionally reported before
(Brunner et al. 2019). In terms of mutation spatial trend, we found
that many cancers show a TSS-coincident mutational peak for
multiple mutational classes. The same set of cancers tends to
show an Origin-coincident mutational peak for cytosine/gua-
nine-involved substitutions, especially C>T. A small group of can-
cers including MELA-AU showed Origin-coincident mutational
dips for thymine/adenine-involved substitutions. In addition to
comprehensively surveying around TSSs and replication origins,
we also examined enhancers and RIPs in several cancer types. In
a skin cancer cohort (MELA-AU), we observed enhancer-coinci-
dent mutational dips for the C>T class; in a liver cancer cohort
(LICA-CN), there was a statistically significant predominance of
C>A mutations over the complement, G>T; and in skin cancer
and soft tissue cancer, RIP displayed higher mutation density
than replication origins. These observations show the capability
of MutDens to quickly protrude noteworthy mutation patterns
or phenomena that are associated with specific cancer cohorts.
However, it remains a challenging task to definitively correlatemu-
tational patterns with tumorigenesis, given that the etiologies for
many cancers are still elusive. Mechanistic interpretation of the
prominent mutation patterns demands domain knowledge on tu-
morigenesis in specific contexts. Although MutDens may help re-
searchers identify mutational patterns in cancer types of their
interest and infer potential risk factors, the hypotheses conceived
to explain prominent mutation patterns need to be validated in
carefully designed follow-up experiments.

Recently, liver cancers were associated with SBS4 and SBS5
mutation signatures, which featured C>A and C>T as the pre-
dominant class, respectively (Degasperi et al. 2022; https
://signal.mutationalsignatures.com/explore/studyTissueType/6-
11). Our comparison analysis between LICA-CN and LICA-FR
found dissimilar mutation density spatial patterns. This differ-
ence could be attributed to the batch effect of the technical issue
of the HTS analysis pipeline, but it may also reflect the existence
of fundamental differences (e.g., genetics, habit, diet, etc.) be-
tween the two races, suggesting that disparate mutational signa-
tures likely dictate the two different cancer cohorts from China
and France. We observed that LICA-CN and LICA-FR presented
distinct predominant mutation classes, namely, C>A and C>T,
respectively. Moreover, LICA-CN showed a drastic genome-wide
imbalance between the C>A and the G>T mutation forms,
and such inter-form imbalances were appreciable in local regions
(e.g., TSSs, Origins, and enhancers); this remarkable imbalance
was not seen with LICA-FR. The remarkable imbalance between
the two complementary mutation forms is not an artifact. First,
the asymmetry was revealed in the whole genome, taking full
lengths of forward/reverse chromosome strands into account.
According to Chargaff’s rules, complementary nucleotides (such
as cytosine/C and guanine/G) have equivalent amounts in the
whole genome. Thus, a genome-wide asymmetry between C>A
and G>T must be owing to mutagenesis not to base content dis-
proportionality. Second, such a drastic mutation form asymmetry
was only seen in LICA-CN not in patient cohorts of other can-
cers. Finally, the MPKM metric by design normalizes off uneven
base content among the four nucleotide types (A, T, G, and C), as
well as variant mutation burdens of each mutation form.
Mutation density disparity retained in MPKM curves of focal fea-
tures thus suggests higher-than-average asymmetry in local re-
gions relative to the global situation.

Although most illustrative analyses in this work used cohort-
level mutation files, we showed that one hypermutated individual
or a small cohort (n≥10) would generate sufficientmutations for a
MutDens analysis. In another perspective, hypermutated patients
may represent distinct tumorigenesis mechanisms and are some-
times excluded from the analysis of the majority data-points. As
long as the data set shows acceptable mutation burden statistics,
it is recommended to look into themajority cohort and the hyper-
mutated outliers separately.

We have strived to incorporate a spectrum of built-in geno-
mic features for users to embark on mutation density analysis in
varied tumor cohorts/individuals and even have extended the util-
ity from humans to commonmodel organisms. With novel geno-
mic features, MutDens can calculate the local base content to
realize a reasonable mutation density local normalization. With
more and more human whole-genome sequencing projects being
conducted in research and clinical settings, MutDens can be lever-
aged to statistically test for transcriptional/replicative strand bias
inherent in the mutation data, and moreover, it can reveal poten-
tial mutation density spatial patterns around various genomic fea-
tures for specific patient cohorts.

Methods

MutDens requires two major inputs: a list of somatic mutations
and a list of focal genomic positions corresponding to a genomic
feature (Fig. 1A). When provided with two mutational files or
two position sets, MutDens compares the mutational class distri-
bution and mutation density levels between two sample cohorts
or two genomic region sets (Fig. 1C,D). We tested MutDens thor-
oughly on somatic mutation files for 81 cohorts of 57 cancer types
downloaded from the International Cancer Genome Consortium
(ICGC; https://dcc.icgc.org/releases/release_28/Summary/).

Mutational class distribution and forward/reverse strand balance

In this work, somatic mutations are limited to single-base substitu-
tions. A total of 12 possible single-nucleotide substitutions exists
among four nucleotides (A, T, G, and C). Because of the comple-
mentary property of DNA, six mutational classes can be summa-
rized: C>A (C>A & G>T), C>G (C>G & G>C), C>T (C>T &
G>A), T >A (T>A & A>T), T >C (T>C & A>G), and T>G (T>G
& A>C). MutDens manages each mutational class separately and
processes all six possible mutational classes in a single session.
Based on the complementarity nature of DNA double-strand struc-
ture, it is generally assumed that the two complementary forms of
a mutational class should be balanced across the whole genome.
The foremost output ofMutDens includes a composition overview
of the six mutational classes (Fig. 4K) and the balancing situation
between the paired forms within each class (Fig. 4L). Such an over-
view is provided for both the whole genome and within the vicin-
ity (defined below) of focal positions.

Sometimes, it is worthwhile to further distinguish the 5′- and
3′- neighbor base context of the central substitution, as a specific
mutational signaturemay display characteristic peaks for select tri-
nucleotide subclasses only (Alexandrov et al. 2020). Underneath
the major six-class classification, MutDens allows for a 16-subclass
categorization: A∗A, A∗C, A∗G, A∗T, C∗A, C∗C,C∗G,C∗T, G∗A,G∗C,
G∗G,G∗T, T∗A, T∗C, T∗G, and T∗T, where the asterisk symbol (∗) de-
notes the central single-base substitution. When the option of tri-
nucleotide context is turned on, each mutation class will be
expanded into the 16 foresaid context-specific subclasses. The en-
suing analyses (see below), including manifestation of mutation
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density series, statistical comparisons, and spatial pattern detec-
tion, will be conducted within the scope of each subclass.

Spatial mutation density curves in the vicinity of focal features

MutDens aims to analyze the spatial pattern of mutation density
in the vicinity of focal genomic features. To this end, MutDens
counts mutations in immediate flanking regions (i.e., signal) and
more distant regions (i.e., background) and contrasts the signal
mutational counts against background mutational counts (Fig.
1B).

The vicinity of a focal position is by default confined to 2 kb
in each direction but can be adjusted by the user. Given the set of
focal genomic positions, wederive two 2-kb flanking regions in the
left and right directions. By default, the total 4-kb vicinity region is
dissected into 40 continuous bins, each spanning 100 bp.With as-
sistance fromRpackageGenomicRanges (Lawrence et al. 2013), we
count the total number of mutations in each 100-bp bin of each
focal position. Merging across all positions, we obtain 40 summed
mutational counts for the focal genomic feature. These summed
mutational counts are divided by the total number of base pairs
of a given type (A/T or G/C) to generate the MPM value, standing
for the number ofmutations permegabase. The 40MPMvalues are
connected in order and are visualized as a spatial mutation density
curve centered on the genomic feature of interest. Because onemu-
tational class contains two mutually complementary forms, we
plot two spatial mutation density curves for the two mutational
forms, respectively.

Detecting mutation density peaks and dips in the vicinity of focal

features

We generated a statistical protocol for detecting mutation density
peaks/dips by following the similar operation in the ChIP-seq soft-
ware MACS (Zhang et al. 2008). Briefly, we count mutations in
each 100-bp bins of the background regions. The background
100-bp bins for all focal positions are aggregated in the same way
as we treat foreground bins. With the default inner and outer
boundary parameters of 2 kb and 7 kb, we obtain 100 (50 left
and 50 right) mutational count numbers, which are used to fit a
background count discrete distribution, either negative binomial
(default) or Poisson. Because the negative binomial distribution
is a generalization of the Poisson distribution, the negative bino-
mial distribution is used as default. The Poisson distribution can
be usedwhenwe have strong evidence that themean and variance
of the mutational count data are equal. Each of the 40 mutational
count numbers summarized from the foreground bins, as ex-
pounded above, is tested against the fitted background distribu-
tion. If the foreground count number is extremely large, it hints
at a mutational peak; if it is extremely small, it hints at amutation-
al dip (Fig. 1B). We calculated the probability of observing as ex-
treme or more extreme count numbers based on the fitted
background distribution, in the left-tail and right-tail directions,
respectively. A probability less than 1×10−5 was considered statis-
tically significant (Zhang et al. 2008). In our exploration of dozens
of cancer cohorts from the ICGC project, we noted that the most
striking peaks/dips usually fall upon the exact centers of Origins,
and occasionally, we observed two peaks apart from the center.
Therefore, as a conservative strategy, MutDens reports at most
one qualified dip, which must span the central position. As for
peaks, MutDens preferentially seeks a potential central peak;
only when a central peak is not statistically affirmed does
MutDens further evaluate the most prominent peak in the left/
right flanks. In other words, MutDens may commonly assert no

peaks or dips at all, and the assertion of a central peak suppresses
assertion of noncentral peaks.

In addition, MutDens leverages the local regression-based
WAVK test (Wang et al. 2008) via R package funtimes (https
://cran.r-project.org/web/packages/funtimes/) to detect the exis-
tence of a nonrandom spatial trend in the mutation density series.

Comparing two mutation density series

Because we always summarize the mutational count/density val-
ues for the two forms of a mutational class in a paired manner,
we use a Wilcoxon signed-rank test to compare the two mutation
density series (Fig. 1B). If the test results are both statistically signif-
icant in the left and right flanks but are associated with opposite
signs of the mean difference values, it suggests the predominance
of one mutational form flips to the other mutational form upon
crossing the central genomic feature. Previously, such flips of mu-
tational form predominance have signified replicative strand bias
in certain cancer cohorts (Haradhvala et al. 2016).

Software availability

The analysis presented here uses publicly available data sources as
outlined in the Methods. The R code scripts are contained in
Supplemental Code S1–S5. These five R code scripts require simple
input configuration files as exemplified in Supplemental Code S6–
S8. All R scripts, example input files, and a software manual, are
available at our GitHub repository (https://github.com/hui-
sheen/MutDens).
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