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Emerging spatial profiling technology has enabled high-plex molecular profiling in biological tissues, preserving the spatial

and morphological context of gene expression. Here, we describe expanding the chemistry for the Digital Spatial Profiling

platform to quantify whole transcriptomes in human and mouse tissues using a wide range of spatial profiling strategies and

sample types. We designed multiplexed in situ hybridization probes targeting the protein-coding genes of the human and

mouse transcriptomes, referred to as the human or mouse Whole Transcriptome Atlas (WTA). Human and mouse WTAs

were validated in cell lines for concordance with orthogonal gene expression profiling methods in regions ranging from

∼10–500 cells. By benchmarking against bulk RNA-seq and fluorescence in situ hybridization, we show robust transcript

detection down to ∼100 transcripts per region. To assess the performance of WTA across tissue and sample types, we ap-

plied WTA to biological questions in cancer, molecular pathology, and developmental biology. Spatial profiling with WTA

detected expected gene expression differences between tumor and tumor microenvironment, identified disease-specific

gene expression heterogeneity in histological structures of the human kidney, and comprehensively mapped transcriptional

programs in anatomical substructures of nine organs in the developing mouse embryo. Digital Spatial Profiling technology

with the WTA assays provides a flexible method for spatial whole transcriptome profiling applicable to diverse tissue types

and biological contexts.

[Supplemental material is available for this article.]

The organization of tissues and organs is complex and spatial rela-
tionships between cells and structures are key to their develop-
ment, homeostasis, and pathophysiology. Recently, several
methods have emerged for multiplexed spatial profiling of RNA
or proteins, leading to discoveries in oncology, infectious disease,
developmental biology, and other fields (Desai et al. 2020; Merritt
et al. 2020; Brady et al. 2021; Butler et al. 2021; Jerby-Arnon et al.
2021; Pelka et al. 2021; Rao et al. 2021; Rendeiro et al. 2021).
Existing spatial gene expression platforms operate at a range of
plex and with diverse profiling strategies. Sequencing-basedmeth-
ods capture transcripts in an unbiased manner and are capable of
whole transcriptome coverage. For example, laser capture micro-
dissection physically separates cells and structures of interest with-
in a tissue, which can then be profiled by a variety of methods
including RNA-seq (Emmert-Buck et al. 1996; Espina et al. 2006).
Other sequencing-based methods such as Slide-Seq and Spatial
Transcriptomics capture polyadenylated mRNAs across prepat-
terned barcoded spot arrays (Ståhl et al. 2016; Vickovic et al.
2019; Stickels et al. 2021). An advantage of these methods is that
they provide unbiased coverage of the transcriptome. However,
one disadvantage is that RNA-seq via poly(A) capture can be dom-
inated by highly expressed genes.

Imaging-based spatial profilingmethods, such asmultiplexed
error-robust fluorescence in situ hybridization (MERFISH), fluores-

cent in situ sequencing (FISSEQ), and sequential barcoded fluores-
cence in situ hybridization (seqFISH) (Chen et al. 2015; Lee et al.
2015; Xia et al. 2019), use rounds of sequential hybridization
and imaging to resolve transcripts at single-cell or subcellular reso-
lution. Some imaging methods have shown detection of up to
10,000 targets, but most experiments have been limited to lower
plex in the hundreds of targets (Eng et al. 2019; Xia et al. 2019).

Digital Spatial Profiling (DSP) is a platform for multiplexed
spatial RNA and protein expression profiling inuser-defined regions
of interest (Merritt et al. 2020). DSP relies on affinity reagents
(probes for RNA and antibodies for protein detection) attached to
indexing oligonucleotide tags with a UV-photocleavable linker.
The affinity reagents are hybridized to a slide-mounted tissue sam-
ple that is also stainedwith fluorescent antibodies or probes to iden-
tify features of interest. The tissue is imaged using fluorescence
microscopy andUV light is projected onto the region to be profiled,
called areas of illumination (AOIs), to release the oligo tags. The lib-
erated tags are collected and counted using the nCounter system or
by high-throughput sequencing. In the first demonstration of the
DSP technology, 44 proteins and 84 transcripts were multiplexed
using nCounter, and 1412 transcripts were profiled by high-
throughput sequencing readout (Merritt et al. 2020).

Here, we report the expansion of the DSP RNA profiling tech-
nology to measure the expression of >99.5% and >98.2% of
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protein-coding genes of the human or mouse transcriptome,
respectively, to create the human and mouse Whole
Transcriptome Atlases (WTAs). In this study, we aim to evaluate
the technical performance of human and mouse WTA across a
range of sample types, region sizes, and profiling strategies, and
show applications in diverse normal and diseased tissue types.

Results

Design of multiplexed probes targeting the human and mouse

whole transcriptomes

WTA consists of species-specific in situ hybridization (ISH) probes
designed to target the protein-coding genes of the human ormouse
transcriptome. Each probe contains three functional regions: an
RNA-targeting region, a UV-photocleavable linker, and an indexing
sequence (Supplemental Fig. S1). The indexing sequence contains a
unique molecular identifier (UMI), a barcode sequence that identi-
fies the probe, and primer-binding sequences for amplification
and subsequent readout by standard Illumina sequencing work-
flows. The probe identification barcodes were designed to have a
minimum Hamming distance of ≥2 between barcodes.

We designed 18,815 human and 20,175mouse probes target-
ing >99.5% of annotated protein-coding genes in human and
>98.2% in mouse (Supplemental Table S1). To reduce sequencing
requirements and optimize readout efficiency, probes targeting
mitochondrially encoded genes and an additional 10 human
and two mouse highly expressed nuclear-encoded genes were re-
moved (see Supplemental Methods). Mouse WTA also includes
probes targeting 17 commonly used transgenes. We additionally
designed 139negative control probes in humanWTA and 210neg-
ative control probes in mouse WTA against synthetic sequences
from the External RNA Controls Consortium (ERCC) set (The
External RNA Controls Consortium 2005). The ERCC sequences
have the same properties as mammalian sequences but without
similarity to any known transcripts.

RNA-targeting regions are 35–50 nucleotides and were select-
ed based on an iterative design process that considers thermody-
namic profile, splice isoform coverage, potential for cross-
hybridization with other transcripts, and potential for intramolec-
ular interactions between probes (see Methods). Probes were syn-
thesized individually and pooled, and the pools were sequenced
to ensure that 100% of designed probes were present and that
the coefficient of variation of probe concentration was <20%.

AsWTA contains a single probe per gene, we assessed the con-
sequences of this design choice by comparing humanWTAwith a
smaller probe pool targeting 1812 human genes with five probes
per target. In matched 200 μmAOIs in formalin-fixed paraffin em-
bedded (FFPE) tonsil tissue, counts from the single WTA probe
were well correlated to the mean count of the five probes for the
same target (median R=0.83), as well as a randomly selected single
probe (median R=0.73) (Supplemental Fig. S2A). These results val-
idate that a single probe is sufficient to accurately quantify gene
expression.

WTA data are reproducible and well correlated with RNA-seq

and RNA FISH in cell lines

We first benchmarked the performance of the human and mouse
WTAs in homogeneous FFPE cell pellet arrays (CPAs) to test repro-
ducibility and compare to orthogonal methods of measuring gene
expression. DSP allows flexible selection of AOIs, and profiled re-

gions can range from less than ten cells to thousands of cells. As
there is a trade-off between the number of cells profiled and signal,
we benchmarked the performance ofWTA in 50–400-μm-diameter
circular AOIs in human and mouse FFPE CPAs (Fig. 1A). In cell
pellets, 50-μm-diameter AOIs contained an average of 12 cells in
human cell lines and 13 cells in mouse cell lines, whereas 400-
μm-diameter AOIs contained an average of 480 cells in human
and 505 cells inmouse. For both human andmouseWTAs, counts
were highly reproducible between two independent experiments
for all cell lines and AOI sizes tested (R =∼0.75 for 50 μm AOIs,
and R=∼0.95 for 400 μm AOIs) (Fig. 1B).

Wenext askedwhetherWTA results are concordant with bulk
RNA-seq of cell lines. Bulk RNA-seq data were either generated for
this study or acquired frompublicly available data from the Cancer
Cell Line Encyclopedia (Ghandi et al. 2019). Using all genes in the
WTA panels, we found that the matched cell line had the highest
correlation coefficient betweenWTA and RNA-seq for all cell lines
and all AOI sizes. Correlation coefficients with the matching cell
line were ∼0.7 in 50-μm-diameter AOIs and increased to >0.8 in
400-μm-diameter AOIs, and were similar for human and mouse
WTAs (Fig. 1C). To test the effect of gene expression level on cor-
relation to RNA-seq, we compared WTA counts to RNA-seq subset
to the lowest and highest quartile of expressed genes (genes > 1
transcript per million [TPM] in the RNA-seq). For the most highly
expressed genes, the matched cell line retained the highest corre-
lation for all but one cell line at all AOI sizes. For the lowest ex-
pressed genes, the matched cell line had the highest correlation
in 200 µm and 400 µmAOIs, but discrimination between cell lines
was reduced in 50 µm AOIs (Supplemental Fig. S2B), suggesting
that very low expressed genes are not as well quantified in very
small AOIs.

We next tested whether WTA could accurately quantitate
gene expression. For these experiments, we used a mixed-propor-
tion FFPE (human) or fixed frozen (mouse) CPA with one cell
line titrated into another in 10% increments.We selected nine hu-
man genes and eightmouse genes that are highly expressed in one
cell line (>100 TPM in bulk RNA-seq) and not expressed in the oth-
er (<1 TPM in bulk RNA-seq) (Supplemental Fig. S3A), which cre-
ates a gradient of gene expression levels from low to high across
the cell pellets. For each gene, WTA signal was compared with
FISH signal using RNAscope probes (Fig. 1D; Wang et al. 2012).
WTA and FISH signals were highly correlated for all genes, with
an average Pearson correlation coefficient of 0.90 for human and
0.93 for mouse (Fig. 1E; Supplemental Fig. S3). These results indi-
cate that WTA can accurately quantify gene expression across
the biological range of gene expression.

Sensitivity, specificity, and limit of detection of WTA

in different sized AOIs

We next investigatedWTA’s sensitivity and specificity in different
sized AOIs using CPAs.We used the distribution of signal from the
negative control probes to determine the background level of non-
specific binding and set a limit of detection (LOD) specific to each
AOI. Counts from individual negative probes aremoderately corre-
lated between replicate experiments, suggesting that the variance
in negative probe signal is caused by both sequence-specific and
nonspecific effects (Supplemental Fig. S4A). Target and negative
probe counts increase with AOI area and scale with each other in
different cell lines (Supplemental Fig. S4B), highlighting the im-
portance of empirically measuring the nonspecific background
for each AOI.
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To determine a cutoff for calling a gene expressed, we calcu-
lated sensitivity and specificity at different LOD thresholds using
genes with RNA-seq TPM>1 as the true set of expressed genes.
Discrimination between true and false positives improves with in-
creasing AOI size for both human and mouse WTA (Fig. 2A). We
found that selecting an LOD threshold of 2 standard deviations
above the geometric mean of negative probes reliably achieves a
specificity of >95% at all ROI sizes in both panels. At this LOD
threshold, sensitivity was 50% in 50-μm-diameter AOIs, 68% in
200 μm AOIs, and 81% in 400 μm AOIs for human WTA, and
48% in 50 μm AOIs, 66% in 200 μm AOIs, and 75% in 400 μm
AOIs formouseWTA.Overall, we detect an average of∼6000 genes

above background per AOI in 50 μmAOIs and ∼9000 genes in 400
μm AOIs (Fig. 2B).

To determine the LOD of WTA relative to absolute transcript
number, we integrated human WTA FFPE CPA data with
RNAscopeexperiments inwhichwequantified thenumberof tran-
scripts per cell for 20 genes in 11 cell lines (Fig. 2C; Supplemental
Fig. S5). These genes spanned a range of expression levels across
different cell lines, from a mean count of 0 to 45 transcripts per
cell (corresponding to 0–1200 TPM in RNA-seq) (Supplemental
Fig. S5). Gene expression levels measured by RNAscope were well
correlated between replicate experiments and well correlated
with RNA-seq for genes above 1 TPM. Below 1 TPM, all genes had

A B
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E

Figure 1. Human andmouseWTA data are reproducible and correlatedwith RNA-seq and RNA FISH. (A) Representative image of the areas of illumination
(AOI)-size titration experiment. Circular AOIs 50 μm, 200 μm, and 400 μm in diameter were placed on each cell line of an 11-core human or mouse for-
malin-fixed paraffin embedded (FFPE) cell pellet array (human shown, stained with antibodies against CD3E, PTPRC, and pan-cytokeratin [PanCK], and
SYTO13 nuclear stain). (B) Reproducibility of WTA counts from two replicate experiments. Left: Scatterplots of log10-transformed raw counts from one rep-
resentative human (HUT78) or mouse (3T3) cell line at each AOI size from each replicate. Negative control probes are shown in blue and target probes in
black. Right: Pearson correlation coefficients of log10-transformed raw counts between replicates for each cell line and AOI size. (C) Left: Scatterplots of WTA
counts versus RNA-seq TPM from the same cell line for one representative human or mouse cell line in a 200 μmAOI. Right: Spearman’s correlation of WTA
counts compared with RNA-seq of each cell line. For each AOI, the matching cell line is shown in blue and all other cell lines in gray. (D) Representative
image of the cell line titration experiment. Cell pellets contained one cell line titrated into the other at a variable ratio. Cells were stained with
RNAscope probes against two genes specifically expressed in one of the two cell lines. Gray circles show profiled AOIs. (E) Left: Representative scatterplot
comparing WTA counts for MS4A1 to RNAscope fluorescence intensity for the same gene across cell pellets. Right: Spearman’s correlation of WTA counts
compared with RNA FISH fluorescence intensity for each gene profiled.
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a mean expression of less than 1 transcript per cell (Supplemental
Fig. S5B).

WTA signal is linearly correlatedwith RNA-seq and RNAscope
above a certain gene expression level, below which WTA does not
detect signal (Fig. 2A; Supplemental Fig. S5). To identify this limit
of quantitation relative to absolute transcript number, we per-
formed breakpoint analysis, which iteratively fits two line seg-
ments to the data and calculates the breakpoint at which the
model best fits the data. In 50-μm-diameter AOIs containing an av-
erage of 13 cells, we found that the breakpoint was ∼2 transcripts
per cell. In larger AOI sizes with >50 cells, the breakpoint was
0.5–0.6 transcripts per cell (Supplemental Fig. S5), representing
the lowest expression level that can be quantified by WTA.

We calculated WTA sensitivity and specificity in terms of
absolute transcript number using genes with RNAscope counts
of ≥1 transcript per cell as the true set of expressed genes.
Specificity was 94%–97% for all AOI sizes (Supplemental Fig. S5).
Highly expressed targets (>10 transcripts per cell) were detected
with a sensitivity of >80% in 50-μm-diameter AOIs and 90%–

100% in larger AOIs. On the other extreme, very lowly expressed
targets (1–2 transcripts per cell) were detected with a sensitivity

of ∼75% in AOIs with >500 cells and progressively less frequently
detected in smaller AOIs (Fig. 2D). By combining the average num-
ber of transcripts per cell with the number of cells present in each
AOI, we calculated sensitivity at different numbers of transcripts
per AOI. At >100 transcripts per AOI, sensitivity was >70% (Fig.
2E). These results indicate thatWTA can detect and quantify genes
present at ∼100 transcripts per AOI in AOIs ranging from 10–500
cells.

WTA is compatible with multiple sample types and mouse strains

The initial demonstration of DSP technology used FFPE samples
(Merritt et al. 2020). To expand the range of sample preparation
types available for DSP, we designed and tested protocols for hu-
man fresh frozen (FF) andmouse fixed frozen (FxF) samples. To as-
sess the performance ofWTA on these additional sample types, we
placed matched 200 μm-diameter circular AOIs on FFPE and FxF
mouse CPAs and FFPE and FF human tonsil tissue. The correlation
of WTA counts was >0.83 comparing FFPE to either FxF or FF, and
the distribution of signal to background ratios across genes was
similar between sample preservation types (Supplemental Fig. S6).

A

C D E

B

Figure 2. WTA has high sensitivity and can detect genes at a range of expression levels depending on areas of illumination (AOI) size. (A) Left: Scatterplots
comparingWTA counts to RNA-seq for one representative cell line at each AOI size, colored bywhether the gene is detected above the expression threshold
in each assay. Dashed lines indicate thresholds for calling a gene “expressed” as 2 standard deviations above the geometric mean of negative probes for
WTA, and TPM>1 for RNA-seq. TP, true positive; FP, false positive; TN, true negative; and FN, false negative. Right: Receiver-operator curves demonstrating
the sensitivity and specificity of WTA at different WTA expression thresholds. (B) Number of genes per AOI above the expression threshold of 2 standard
deviations above the mean negative probe count at each AOI size. (C) Representative images of the experiment to determine the sensitivity of humanWTA
relative to absolute transcript number. Left: RNAscope image of two genes in one cell line of the 20 genes in 11 cell lines quantified in this experiment. Right:
Digital Spatial Profiling (DSP) image of one cell line with an AOI size titration. (D) Sensitivity of WTA at different AOI sizes for genes in different gene ex-
pression bins as measured by RNAscope. Genes≥1 transcript per cell were considered expressed. Intervals are open on the left and closed on the right.
(E) Sensitivity of WTA for genes binned by transcripts per AOI, calculated using transcripts per cell quantified by RNAscope and the number of cells in
each AOI.
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Specifically, for mouse WTA, we asked whether gene expres-
sion can be accurately quantified in mouse strains other than
C57BL/6J, the reference transcriptome to which mouse WTA was
designed. We profiled an FFPE tissue array consisting of seven dif-
ferent organs for each of three commonly used mouse strains
(C57BL/6J, BALB/c, and NOD/ShiLt) (Supplemental Fig. S7).
Although transcriptional differences exist between strains because
of true biological variation, these differences are known to be
minimal (Breschi et al. 2017). We placed 300-μm-diameter circular
AOIs in similar regions of each tissue for each mouse strain and
compared the results from each strain across organs. The trans-
criptomes were well correlated for all organs and pairs of strains
(R =0.7–0.95). Clustering by gene expression showed that organs
clustered together before mouse strains, and gene expression pat-
terns across tissues were similar in all three strains. These results
suggest that mouse WTA can be used to characterize gene expres-
sion in these commonly used mouse strains.

WTA detects expected spatial gene expression differences

between tumor and tumor microenvironment in a

range of AOI sizes

One of the strengths of the DSP system is that users can define and
segment a region of interest into multiple AOIs based on expres-
sion of antibody- or RNA FISH-based markers. This feature enables
the ability to individually profile different tissue compartments
even if they are spatially adjacent, as UV illumination has been op-
timized for minimal cross-talk between AOIs (Merritt et al. 2020).
We used this segmentation strategy to separate tumor and the tu-
mor microenvironment (TME) to test whetherWTA can detect ex-
pected spatial differences in gene expression patterns in tissue.
This experiment was also used as a model to assess the impacts
of technical features, such as AOI size and sequencing depth, on
WTA performance.

Two serial FFPE sections fromhuman colorectal cancer (CRC)
andnon-small cell lung cancer (NSCLC) samples were labeledwith
fluorescent antibodies against PanCK to mark tumor, PTPRC to
mark immune cells, and CD3E to mark T cells. After labeling the
tissuewith thesemorphologymarkers, we selected regions of inter-
est in different pathological areas: tumor and hyperproliferative re-
gions in CRC samples, and tumor and invasive-margin regions in
NSCLC samples. Regions of interest were then segmented into tu-
mor (PanCK+) and TME (PanCK−) AOIs (Fig. 3A).

To assess the effect of AOI size on WTA performance, we se-
lected circular regions on interest of various sizes and binned the
segmented AOIs into four bins by area, a metric that is well corre-
lated with cell count (Fig. 3B). Area bins ranged from “very small”
(<2300 μm2 area, equivalent to a 55-μm-diameter circle with an av-
erage of 20 cells) to “large” (>49,000 μm2 area, equivalent to a 250-
μm-diameter circle with an average of 920 cells). WTA counts were
well correlated between large and smaller AOIs: large AOIs had a
median Pearson’s correlation of 0.94 with each other, and very
small AOIs had a median correlation of 0.71 with large AOIs (Fig.
3F; Supplemental Fig. S8). An increasing number of genes were de-
tected above background in larger AOIs in both tumor and TME,
with ∼6000 genes detected per AOI in very small AOIs and
∼11,000 genes detected in large AOIs (Fig. 3C). Genes detected
in small AOIs were generally a subset of genes detected in large
AOIs with very few genes detected only in small AOIs
(Supplemental Fig. S8). Counts of genes encoding the markers
used for segmentation (CD3E, PTPRC, and keratins) were highly
enriched (≥fivefold) in the expected segment type, and enrich-

ments were similar for all AOI sizes (Supplemental Fig. S8).
Samples clustered by biological annotation (tumor type and tumor
vs TME) regardless of AOI size (Fig. 3D).

Next, we correlated gene expression of each segmentedAOI to
all bulk RNA-seq data sets in The Cancer Genome Atlas (TCGA)
(The Cancer Genome Atlas Research Network et al. 2013). One
hundred percent of tumor segments had the highest correlation
with the expected tumor data sets in TCGA regardless of AOI size
(Fig. 3E). Correlation coefficients with the bestmatching tumor in-
creased with AOI size, from∼0.6 in very small AOIs to∼0.8 in large
AOIs. As expected, TME segments generally did not correlate best
with thematching tumor types in bulk TCGARNA-seq, underscor-
ing the value of segmentation for capturing gene expression pro-
files of less abundant cell types.

We further examined whetherWTA could detect expected bi-
ological differences between tumor and TME in AOIs of different
sizes. Pathway analysis showed that immune-related pathways,
such as interleukin signaling and tumor necrosis factor signaling,
were enriched in TME, whereas pathways related to cell motility,
proliferation, and cancer-associated signaling were enriched in tu-
mors (Supplemental Fig. S8). The results of pathway analysis were
well correlated between AOIs of the same type and between large
and small AOIs (Fig. 3F). We next performed cell type deconvolu-
tion with SpatialDecon, an algorithm for estimating the abun-
dance of cell types defined by single-cell sequencing in spatial
gene expression data (Danaher et al. 2022), using gene expression
profiles of immune and stromal cells to characterize the immune
cell content of tumor and TME segments. As expected, tumor seg-
ments had a very low abundance of immune cells relative to TME
for all AOI sizes (Supplemental Fig. S8). Cell type deconvolution re-
sults were more variable between individual AOIs in all size bins,
but correlation decreasedwith size to a similar degree as othermet-
rics (Fig. 3F). These results show the robustness of WTA for biolog-
ical characterization across a range of AOI sizes.

We also assessed the impact of sequencing depth on WTA
data. All AOIs were deeply sequenced, and reads were subsampled
in silico from a read depth of 5 raw reads/μm2 to 300 raw reads/
μm2. Analysis of five replicates of the subsampling at each read
depth showed that increasing read depth corresponds to a lower
fraction of unique UMIs and more reads per UMI, corresponding
to higher sequencing saturation of the libraries (Supplemental
Fig. S9). Small AOIs reached higher saturation at lower read depths
than large AOIs, consistent with lower molecular complexity in
these samples. For each subsampled data set, we compared the
number of genes detected, correlations of counts, pathway enrich-
ment results, cell type deconvolution results, and differential ex-
pression results to the highest sequencing depth. For most
metrics and AOI sizes, results were well correlated, at all but the
lowest sequencing depths. Correlations generally stabilized by
100 raw reads/μm2, corresponding to a sequencing saturation of
∼50%. The correlation of cell type deconvolution results did con-
tinue to improve with higher read depth, especially in small AOIs,
suggesting that robust deconvolution might benefit from higher
sequencing saturation (Fig. 3G; Supplemental Fig. S9).

Profiling transcriptomes of anatomical structures in normal

kidney and kidney disease

To show the power ofWTA to integrate the transcriptomewith an-
notated histological and pathological features, we asked how the
transcriptome is altered in anatomically distinct regions of the kid-
neywith diabetic kidney disease (DKD). The kidney nephron has a
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complex structure that includes the glomerulus, a cluster of spe-
cialized cells that forms the filtration barrier, and the tubule, which
reabsorbs water and small molecules. The effects of DKD on the
glomeruli have been extensively studied, such as a loss of glomer-
ular filtration, inflammation, and immune cell infiltration (Reidy
et al. 2014; Thomas et al. 2015). DKD also affects other parts of
the kidney; therefore, we used WTA to spatially profile the tran-
scriptomes of three nephron substructures: the glomeruli, the
proximal convoluted tubules, and the distal convoluted tubules.

We profiled three normal and four DKD FFPE human kidney
samples labeled with fluorescent antibodies targeting epithelia
(PanCK), immune cells (PTPRC), and podocytes (WT1) in glomer-
uli. Glomeruli and tubules were identified morphologically and
polygon-shaped AOIs were drawn to capture each structure (Fig.
4A). Tubules were segmented based on the PanCK signal into prox-
imal (PanCK−) and distal tubules/collecting duct (PanCK+).

Within each sample, individual glomeruli were annotated by a pa-
thologist for severity of disease using the fluorescence images and
hematoxylin and eosin (H&E) images of serial sections. Data were
collected from both relatively healthy and abnormal glomeruli in
both normal and DKD samples (Fig. 4B).

Overall, we profiled 231AOIs that passed quality filters, across
which we detected and quantified 16,084 genes. AOIs clustered by
region and by disease status more closely than by patient (Fig. 4C;
Supplemental Fig. S10). In normal kidneys, we identified more
than 6000 significantly differentially expressed genes between glo-
meruli and tubules, and more than 8000 differentially expressed
genes between proximal and distal tubules. There is a strong con-
cordance between genes differentially expressed in our study and
those differentially expressed in kidney single-cell RNA-seq
(Supplemental Fig. S10; Young et al. 2018). Furthermore, we vali-
dated example genes differentially expressed in each structure
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Figure 3. Effect of areas of illumination (AOI) size and sequencing depth on biological conclusions from segmented tumor and tumormicroenvironment.
(A) Left: Representative images of the colorectal cancer (CRC) and non-small cell lung cancer (NSCLC) samples. Tumor, invasive-margin, and hyperproli-
ferative regions are highlighted. Tissues were stained with antibodies against PanCK, CD3E, and PTPRC. Right: Enlarged region of the CRC image to high-
light the size titration and segmentation strategy. Circular regions of interest were automatically segmented into tumor (orange) and immune (blue)
compartments. (B) Scatterplot of AOI area versus number of cells with points colored by area bin: Very small, <2300 μm2; small, 2300–7850 μm2; mid,
7850–49,000 μm2; large, >49,000 μm2. (C) Number of genes detected per AOI for tumor and immune compartments in each AOI size bin, colored as
in B. (D) Principal component analysis of variation between samples using genes detected above background in >20% of AOIs. PC1 versus PC2 is plotted
with points colored by tumor type and shaped by segment type. (E) Spearman’s correlation of WTA counts from each AOI with all RNA-seq data sets in
TCGA. AOIs are ordered by area on the x-axis, and each point is a pairwise comparison with a data set in TCGA. Points are colored by TCGA tumor
type: colon adenocarcinoma (blue), rectal adenocarcinoma (green), lung adenocarcinoma (red), lung squamous cell carcinoma (orange), and other
(gray). AOIs are labeled by area bin, colored as in B. (F ) Correlation of counts, single-sample Gene Set Enrichment Analysis (ssGSEA) enrichment, and
cell type deconvolution between AOIs. For each metric, Spearman’s correlations were calculated between each AOI compared with the largest AOI sizes,
and averagedwithin different AOI size bins. (G) Left: Spearman’s correlation of counts for each subsampled read depth and AOI size relative to counts at 300
reads/μm2. Right: Number of genes detected above background for each read depth and AOI size.
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with publicly available antibody-staining data from the Human
Protein Atlas (Uhlén et al. 2015), and saw excellent concordance
of spatial localization (Fig. 4D).

At the pathway level, differentially expressed pathways be-
tween glomeruli, proximal, and distal tubules recapitulated known
aspects of kidney biology. For example, pathways specifically en-
riched in proximal tubules included anion and amino acid trans-

porters, which are known to be highly expressed in proximal
tubules, although bicarbonate transporters were enriched in
both proximal and distal tubules as expected. Pathways enriched
in glomeruli include nephrin and SEMA3A signaling, which are
key proteins expressed in cells of the glomerular filtration mem-
brane (Supplemental Fig. S10; Reidy and Tufro 2011; Martin and
Jones 2018).
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D
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Figure 4. Spatial heterogeneity in gene expression changes associated with diabetic kidney disease in human kidneys. (A) Left: Representative fluores-
cence images of normal and diabetic human kidneys. Tissues were stained with antibodies against PanCK, WT1, and PTPRC. Right: Example images from a
normal kidney highlighting the AOI strategy. Glomeruli were profiled using polygon-shaped areas of illuminations (AOIs), and tubules were automatically
segmented into proximal tubules (PanCK−) and distal tubules (PanCK+). (B) Individual glomeruli in each kidney sample were annotated by degree of pa-
thology. A representative H&E image (left) and fluorescence image (right) from the same region of a diabetic kidney disease (DKD) specimen are shown.
Glomeruli with a higher degree of abnormality are circled in gray and labeled “A”, whereasmore normal glomeruli are circled in white and labeled “N”. (C)
Principal component analysis of variation between samples using genes detected above background in >1% of AOIs. PC1 versus PC2 is plotted, with sub-
structure indicated by color and disease status indicated by shape. (D) Boxplots of counts in all AOIs of three example genes differentially expressed between
kidney substructures with the corresponding antibody-stained images from the Human Protein Atlas (https://www.proteinatlas.org/) (Uhlén et al. 2015).
(E) Left: Heatmap of differentially expressed genes between normal and DKD in glomeruli, distal tubules, and proximal tubules. All genes are significant at
FDR<0.05 and a fold change of >1.5. Genes are annotated by the structure in which they were significantly differentially expressed, or “multiple” for the
genes significant in more than one structure. Columns and rows are clustered by hierarchical clustering and the data are scaled by row. Right: Boxplot of
normalized counts for two example differentially expressed genes in normal and DKD kidney structures. (F) Left: Results of cell type deconvolution of glo-
meruli using single-cell expression data from Young et al. (2018). Data are displayed as stacked barplots with each bar as a single AOI and the estimated
proportion of each cell type colored, faceted by disease status. Right: Boxplots of proportions of two example differentially abundant cell types in normal
and DKD glomeruli (t-test Bonferroni-corrected P-value < 0.05). MNP, mononuclear phagocytes; DC, dendritic cells. (G) Pie charts overlaid on the fluores-
cence image of a single kidney, showing the proportion of different glomerulus and immune cell types for each glomerulus profiled in a representative
disease sample. Each plot is outlined based on pathological annotation: abnormal glomeruli (blue), healthy glomeruli (red).
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With DKD, we observed 2400 differentially expressed genes
across the different kidney substructures compared with normal
kidney samples. Formost genes dysregulated in disease, expression
changes were correlated across the different anatomical structures,
but genes were altered only in specific structures (Fig. 4E). For ex-
ample, the gene PCOLCE2 is specifically expressed in glomeruli
and substantially down-regulated with DKD. Expression of this
gene has been observed in glomerular podocytes, a specialized
cell that forms the glomerular filtration barrier, and lower expres-
sion of this gene correlates with loss of renal function in patients
with chronic kidney disease (Ju et al. 2013). The aquaporin gene
family (AQP2, AQP3) is strongly down-regulated in the distal tu-
bules with disease. Aquaporins are specifically expressed in tubules
and are necessary for the regulation of urine concentration by the
kidneys (Nielsen et al. 1999). These results indicate that DKD can
cause loss of substructure-specific gene expression critical for nor-
mal kidney function.

Loss of glomerular podocytes and increased immune cell in-
filtration are hallmarks of DKD. We recapitulated this phenotype
using cell type deconvolutionwith the SpatialDecon algorithmus-
ing gene expression signatures from published kidney single-cell
RNA sequencing data (Young et al. 2018). There was a marked
loss of podocytes in glomeruli with DKD, which was heteroge-
neous across individual glomeruli, and an increased abundance
in most immune cell types in all substructures (Fig. 4F;
Supplemental Fig. S10). In both diseased or normal samples, path-
ologically abnormal glomeruli had a more profound loss of podo-
cytes and higher levels of immune infiltration compared with
normal glomeruli. In particular, the increased abundance of B
cells, natural killer cells, andmononuclear phagocytes in DKD kid-
neys was more profound in pathologically abnormal glomeruli
(Fig. 4F; Supplemental Fig. S10). This spatial heterogeneity was ob-
servedwithin individual diseased kidneys (Fig. 4G), indicating that
some glomeruli are more affected by disease despite close physical
proximity. In total, these results demonstrate the feasibility of
whole transcriptome profiling of specific organ substructures to
detect spatially variable disease-related abnormalities.

Identifying organ substructure–specific transcriptomes in the

developing mouse embryo

Another anticipated use of WTA is to catalog spatial gene expres-
sion profiles in histological structures and anatomical regions
across organs. To show theuse ofWTA for building spatial organ at-
lases, we profiled whole transcriptomes of different organs and or-
gan substructures in a developing mouse embryo. A single fixed
frozen E13.5mouse embryowas sectioned along the sagittal plane.
Six sections spanning the embryo were stained with antibodies
against TRP63 (epithelial marker) and TUBB3 (neuronal microtu-
bule marker), and hybridized with mouse WTA probes (Fig. 5A).

AOIs were selected in nine organs across six sections (heart,
lung, metanephros, pancreas, midgut, duodenum, stomach,
esophagus, and trachea). Within each organ, freeform polygon-
shaped AOIs were drawn to capture anatomically distinct substruc-
tures using the fluorescence image and an H&E-stained serial sec-
tion (Fig. 5B; Supplemental Fig. S11). For example, in the
developing heart, we placed AOIs in the ventricle wall, atrium
wall, trabeculae, conductive fibers, and valves. In the stomach,
esophagus,duodenum, andmidgut,we selectedAOIs in theepithe-
lial, neural, and mesenchymal layers.

We profiled the whole transcriptome of 347 AOIs across the
nine organs, with 2–5 substructures per organ. We detected a total

of 17,662 genes expressed above background, indicating that near-
ly the entire transcriptome is detectable across diverse tissues by
WTA. Examining the spatial expression of cell type–specific mark-
er genes showed the expected patterns; for example, the epithelial
marker Epcamwas expressed in epithelial AOIs in all tissues where-
as themesenchymal markerMestwas highly expressed in the mes-
enchyme and heart but not in the epithelial AOIs. We observed
that genes known to be highly expressed in specific tissues were re-
stricted to the expected tissue, with spatial variability within the
tissue. For instance, the lung transcription factor Nkx2-1 was ex-
pressed in the lung and trachea epithelium as previously reported
(Minoo et al. 1999), and the kidney transcription factor Pax2 was
specifically expressed in AOIs in the metanephros cortex (Minoo
et al. 1999; Bouchard et al. 2002). The spatial expression pattern
of tissue-specific or substructure-specific genes identified by
WTA matched the observed expression pattern by colorimetric
RNA ISH of E14.5 mouse embryos (Fig. 5B; Visel et al. 2004;
Diez-Roux et al. 2011).

Clustering AOIs by gene expression reveals that heart AOIs
cluster separately from the other organs, and that for the nonheart
AOIs, similar substructures cluster together first and then byorgan.
Epithelial AOIs form one cluster, as do mesenchymal and neural
AOIs. Within each substructure, both common and tissue-specific
genes were identified. Across the epithelial AOIs, highly expressed
genes include epithelial markers Cdh1 and Krt18 (Fig. 5C). Among
tissue-specific epithelial genes,Trp63was expressed only in the ep-
ithelium of the esophagus and trachea (Fig. 5C), matching the ex-
pression pattern of the TRP63 antibody morphology marker used
in this study.

As most of the organs profiled have an epithelial and mesen-
chymal region, we identified genes differentially expressed be-
tween organs in these two cell types (Fig. 5D). Organ-specific
genes were nearly nonoverlapping between epithelium and mes-
enchyme, highlighting the value of capturing substructure-specif-
ic transcriptomes over bulk organ gene expression profiling. The
top organ-specific genes include key developmental transcription
factors: Nkx6-1, a critical regulator of pancreas β cell development
(Aigha and Abdelalim 2020), was uniquely expressed in the pan-
creas epithelium; Cdx2, an intestine-specific transcription factor
necessary for intestine differentiation (Gao et al. 2009), was ex-
pressed in the duodenum and midgut epithelium; and Barx1,
which is necessary for stomach differentiation (Kim et al. 2005),
was localized to the stomach mesenchyme.

As developmental transcription factors were among the most
differentially expressed genes across organs and organ sub-
structures, we next asked whether our data could recapitulate the
developmental specification of the digestive system in mid-
gestation embryos. Around E13, the transcription factors Sox2,
Gata4, Pdx1, and Cdx2 are localized in an overlapping pattern
from anterior to posterior in the developing esophagus, stomach,
and intestine and are necessary for proper specification of those
tissues (Willet and Mills 2016; Kumar et al. 2019). Our data accu-
rately recapitulated this known pattern of transcription factor ex-
pression across tissues and revealed spatial patterns within each
tissue (Fig. 5E). The four transcription factors were predominantly
located to the epithelium in each tissue, and Pdx1 is more highly
expressed in the liver proximal section of the duodenum than
the distal section. Furthermore, we examined the expression
of pro-intestinal targets of Cdx1 in digestive system AOIs
(Raghoebir et al. 2012). Several canonical Cdx2 targets (e.g.,
Cdh17) were expressed in the same spatial pattern as Cdx1, which
is limited to the intestinal epithelium. However, others were
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Figure 5. Spatial profiling of transcriptional programs during organogenesis in a midgestation mouse embryo. (A) Left: Schematic and representative
image of the fixed frozen E13.5 mouse embryo profiled. Embryos were labeled with antibodies against TRP63 (magenta) and TUBB3 (yellow).
Autofluorescence is shown in green. Right: Example images of each organ profiled showing the areas of illumination (AOI) profiling strategy. Freeform poly-
gon AOIs capture anatomical substructures of each organ. (B) Expression of marker genes for specific organs and cell types in an example section compared
with in situ hybridization (ISH) images of the same genes in E14.5 mouse embryos from the GenePaint database (https://gp3.mpg.de/, Diez-Roux et al.
2011; Visel et al. 2004). Tissue, tissue substructure, or normalized scaled WTA count is plotted over the shape of each AOI. (C) Heatmap showing scaled
expression of the 2000 most variable genes across the data set. Columns and rows are clustered by hierarchical clustering and columns are annotated by
organ and organ substructure. (D) Heatmaps showing scaled expression of the top 50 most differentially expressed genes in epithelium (left) and mesen-
chyme (right). All genes shown are significant at Bonferroni-corrected P-value < 0.01. Columns and rows are clustered by hierarchical clustering and col-
umns are annotated by organ. (E) Left: Schematic of key transcription factor expression in stomach and gut development (adapted from Willet and Mills
2016). Right: Expression of the same transcription factors plotted on example AOIs from a representative section. (F) Heatmap showing scaled expression of
Cdx2 and Cdx2-target genes from Gao et al. (2009) in esophagus, stomach, duodenum, and midgut AOIs. Columns and rows are clustered by hierarchical
clustering and columns are annotated by organ and organ substructure.
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expressed more broadly or narrowly. For example, Hnf1a and
Hnf4a were also expressed in stomach epithelium, and Heph was
also expressed in the intestinal mesenchyme, suggesting more
complex regulation governing the expression of these genes (Fig.
5F). Overall, these results show the ability of WTA to reveal the
complex spatial gene expression patterns governing key cell fate
decisions during embryonic development.

Discussion

TheWhole TranscriptomeAtlas is a high-plex in situ hybridization
method for spatial transcriptomeprofiling using theDigital Spatial
Profiling platform. Here, we describe the design, performance, and
applications of the human and mouse WTAs, which comprise
>18,000 multiplexed probes targeting the protein-coding genes
of the human or mouse transcriptome. We show that WTA
data are reproducible and concordant with orthogonal gene ex-
pression profiling methods and can quantify genes with low, me-
dium, and high expression levels depending on the size of the
profiled region. Furthermore, the applications of WTA to human
disease biology and mouse developmental biology show that
whole transcriptome data enable comprehensive pathway-level
spatial analyses.

DSP technology allows flexible and customizable region se-
lection that can trace the boundaries of anatomical or biolog-
ical structures or groups of specific cells. As a result, a wide range
of AOI sizes and types are possible, from a minimum region size
of 5 µm×5 µm to a maximum of 660 µm×785 µm (Bergholtz
et al. 2021). Smaller regions have the advantage of less heterogene-
ity and higher spatial resolution, with the trade-off of fewer genes
detected. To define these trade-offs, we benchmarked the sensitiv-
ity ofWTA in various AOI sizes in homogeneous cell pellets, which
are not confounded by spatial variation such that data can be
directly compared with bulk RNA-seq. We find that in AOIs with
∼100 cells, we detect ∼70% of the genes observed in bulk RNA-
seq, a high sensitivity given that the RNA-seq data are based on
tens to hundreds of thousands of cells as input. Using RNAscope,
we show that WTA sensitivity is equivalent to <1 transcript/cell
in AOIs of at least 100 cells, with ∼100 transcripts required per
AOI for robust detection. In tumor tissue, this sensitivity corre-
sponds to detecting ∼6000 genes in small AOIs with <20 cells,
and >10,000 genes in large AOIs with hundreds of cells. As expect-
ed, there is a trade-off between WTA signal and AOI size: more
genes detected above background, better coverage of low-express-
ing genes, and higher reproducibility in larger AOIs. However, we
show thatWTA counts from small AOIs still correlate well with or-
thogonal gene expression methods, and that the results of down-
stream analyses such as clustering, differential expression, and
pathway enrichment are relatively robust to AOI size. These find-
ings will enable researchers to devise a profiling strategy that is
suited to address their specific experimental question.

One feature of WTA is the inclusion of negative probes de-
signed against synthetic sequences from the ERCC to measure
the level of background probe binding in each AOI. This method
has the advantage that the level of nonspecific binding and a limit
of detection can be empirically defined for every AOI, with the ca-
veat that there may be sequence-specific effects that differentially
affect individual probes in specific cell types. As a partial mitiga-
tion, we removed genes that were above LOD in only a small frac-
tion of AOIs before performing downstream analyses such as
differential expression.Weanticipate that futureworkwill develop
and benchmark improvedmethods tomodel background formore

accurate gene detection calls, normalization, and differential ex-
pression analyses.

Transcriptome-scale spatial data enable a wide range of path-
way-level downstream analyses. With WTA, we detect expected
pathways enrichment in the glomeruli and tubules of human kid-
neys, and also show robust detection and spatial localization of the
key transcription factors and their target genes in mouse organo-
genesis. Furthermore, methods such as cell type deconvolution al-
low the integration of gene expression signatures from single-cell
RNA-seq data with spatial data, enabling the localization of specif-
ic cell types in space (Danaher et al. 2022). In this work, we show
heterogeneity in cell type loss in diabetic kidney disease that can
be linked to the pathological annotation of the tissue. The integra-
tion of scRNA-seq and WTA spatial analysis has been shown in
other contexts as well, including in pancreatic ductal adenocarci-
noma to reveal that a malignant cell type identified by scRNA-
seq was spatially associated with higher immune infiltrations
(Hwang et al. 2022).

The development of a whole transcriptome panel for both
human and mouse enables a wide range of translational, clinical,
and basic biology research. For example, researchers have used
WTA to identify focal changes in gene expression in kidney allo-
graft rejection (Salem et al. 2022), determine cell types affected
by SARS-CoV-2 infection in the olfactory epithelium (Khan et al.
2021), characterize functional gene expression differences across a
heterogenous central nervous system tumor (Dottermusch et al.
2022), and assess structure-specific responses to treatment in pros-
tate hyperplasia (Joseph et al. 2022). To promote these broad re-
search applications, we have shown that WTA is compatible with
a variety of tissue types and sample preservation methods (FFPE,
fresh frozen, and fixed frozen). Moreover, we show successful
WTA experiments in diverse normal and diseased human tissue,
and in a wide range of tissues in adult and developing mice. One
limitation of an ISH-based technology is that new probes must
be designed to target each transcriptome of interest. However,
we show that mouse WTA is compatible with commonly used
mouse strains despite small differences in transcript sequence. In
addition,WTA can be supplementedwith custom-designed probes
targeting additional transcripts of interest. For example, WTA plus
26 probes designed against SARS-CoV-2 transcripts was used to cre-
ate a spatial atlas of gene expression at different levels of virus in-
fection inCOVID-19 infected lungs (Delorey et al. 2021). Similarly,
custom probes can be added toWTA to quantitate additional tran-
script isoforms and noncoding RNAs, as WTA does not require
polyadenylated transcript capture.

Spatial gene and protein expression profiling with DSP has
enabled discoveries in many research fields including oncology,
immunology, neuroscience, and infectious disease. WTA expands
the capabilities of DSP RNAprofiling from1400 genes to thewhole
transcriptome level and enables high-plex spatial profiling of both
human and mouse tissues. Future research will combine spatial
whole transcriptome profiling with complex annotations and
with sample time-points to provide high-dimensional profiles of
development, disease progression, and other biological processes.

Methods

Design of the Whole Transcriptome Atlas probes

The NCBI RefSeq reference transcriptomes for human
(GRCh38.p13) and mouse (GRCm38.p6, C57BL/6J) were used
for design of human and mouse WTA, respectively. The genes
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targeted included all protein-coding genes with a few exceptions
(see Supplemental Methods).

In the probe design process, all possible contiguous 35–50 nu-
cleotide sequence windows for each mRNA target were evaluated.
The pool of candidates was first filtered for intrinsic characteristics
including melting temperature, GC content, secondary structure,
and runs of polynucleotides. Probes satisfying these parameters
were further screened for homology with the full transcriptome
of the parent organism using the Basic Local Alignment Search
Tool (BLAST). Preference was given to probes with absence of ho-
mologywith off-target genes, probes covering known protein-cod-
ing transcripts, and maximizing the coverage of the isoform
repertoire. Targeting of a transcript was judged based on ≥95% se-
quence identity to the probe target. Previous work has found that
selecting probes that are 95%–100% identical to the intended tar-
get and filtering out probes that are ≥75%–85% in homology and
that possess ≥15–17 Maximum Contiguous Bases (MCB) confer
excellent specificity to the intended target (Kane 2000; Rimour
et al. 2005;Militon et al. 2007). Final panel candidates were further
screened for intermolecular interactions with other probes in the
candidate pool including potential probe–probe hybridization as
well as minimizing common sequences between probes.

For both human and mouse WTA, negative control probes
were designed against synthetic sequences from the External
RNA Controls Consortium (ERCC) set (The External RNA
Controls Consortium 2005). Lack of similarity to any known tran-
scripts was confirmed by BLAST comparison to each transcriptome
for all selected negative sequences. Negative control probes were
designed to have similar GC and Tm properties as target probes
and are subject to the same intermolecular interaction screening.

Probes containan indexing sequence separated fromtheRNA-
targeting region by a UV-photocleavable linker (Supplemental Fig.
S1). The indexing sequence contains a 12-nucleotide barcode iden-
tifying the RNA-targeting sequence, a 14-nucleotide randomUMI,
and primer binding sites for the amplification of tags and addition
of P5 and P7 adaptors for Illumina sequencing.

For the RNA FISH comparison experiments and the CRC and
NSCLC experiments, an early version of the human WTA probe
pool was used that differed slightly from the final commercially
available version used for all other experiments. For these experi-
ments, probes were filtered to only those in the final pool before
any analyses were performed.

Sample preparation for DSP

Sample preparation was performed as described in the NanoString
GeoMxRNA-NGS slide preparationmanuals on a Leica BondRXor
RXm automated stainer (Leica Biosystems) or manually.
Maximum sample size for imaging on the DSP instrument is
36.2 mm long by 14.6 mm wide (Bergholtz et al. 2021).

For FFPE samples, 5 µm sections were mounted on positively
charged slides, baked, deparaffinized, washed in ethanol, and
washed in PBS or Leica BondWash Solution. Targets were retrieved
in Tris-EDTA pH 9.0 in a pressure cooker (manual protocol) or
Leica BOND Epitope Retrieval Solution (automated protocol) for
10 min at 85°C (cell pellets), 10 min at 100°C (tonsil), or 20 min
at 100°C (humanCRC, humanNSCLC, humankidney, andmouse
tissue arrays), and washed in PBS or BondWash Solution. Samples
were digested with 0.1 mg/mL Proteinase K for 5 min (cell pellets)
or 1 µg/mL for 15 min (tissues) at 37°C and washed with PBS. For
fresh frozen human tonsil samples, 5 µm sections were mounted
on positively charged slides and fixed overnight in 10% NBF.
Antigen retrieval, digestion, and washes were performed as de-
scribed for FFPE except that the Proteinase K digestion was at
room temperature. Fixed frozen mouse cell pellets (Acepix

Biosciences) were fixed in 4% PFA overnight at 4°C, embedded
in OCT, and snap frozen. Fixed frozen mouse embryos (Acepix
Biosciences) were fixed in 10% NBF overnight at room tempera-
ture, embedded in OCT, and snap frozen. For both cell pellets
and embryos, 10 µm OCT embedded sections were washed in
PBS, washed in ethanol, and antigen retrieval was performed for
15 min at 85°C (embryo) or 10 min at 85°C (cell pellets).
Digestion and washes were performed as for FFPE.

All samples were incubated overnight at 37°C with human or
mouse WTA following the NanoString GeoMx RNA-NGS slide
preparation manual at a probe concentration of 4 nM per probe
in 2× SSCwith 2.5% dextran sulfate, 0.2% BSA, 100 μg/mL salmon
sperm DNA, and 40% formamide. During incubation, slides were
covered with HybriSlip Hybridization Covers (Grace BioLabs).
After incubation, coverslips were removed by soaking in 2× SSC
+0.1% Tween-20. Two 25-min stringent washes were performed
in 50% formamide in 2× SSC at 37°C to remove unbound probes,
and samples were washed in 2× SSC. For antibody morphology
marker staining, samples were incubated in blocking buffer for
30 min at room temperature in a humidity chamber, and then in-
cubated with 500 nm SYTO13 and the relevant fluorescently con-
jugated antibodies (Supplemental Table S2) for 1–2 h. Samples
were washed in 2× SSC and loaded on the GeoMxDSP instrument.

In situ hybridization (ISH) with RNAscope

ISH was performed using the RNAscope LS Multiplex Fluorescent
Reagent kit (ACD) using a Leica Bond RX or RXm automated
stainer according to the manufacturer’s instructions. Antigen re-
trieval was performed for 15 min at 88°C, and digestions were per-
formedwith ACD protease for 15min at 40°C. A list of probes used
is in Supplemental Table S2. Probes were visualized with TSA plus
Cy3, Cy5, or Opal620.

RNAscope spot counting was performed as previously de-
scribed (Merritt et al. 2020). Briefly, slides were imaged using the
Nikon Eclipse TE2000-E microscope at 40× magnification. Images
were captured with Nikon Elements commercial software. For im-
aging, z stacks at 0.5 µm steps were taken from the top to bottom
focal planes of each cell pellet. Exposure time was set manually
to have maximal signal for the lowest expressing cell line while
remaining nonsaturated for the highest expressing cell line.
Maximum z-projection images were created with Nikon Elements
software across all channels. QuPath software (https://qupath
.github.io/) was used to quantify the number of RNAscope spots
and cells imaged per field of view using themethod and scripts de-
scribed in Merritt et al. (2020).

For the comparison of total RNAscope fluorescence intensity
with WTA counts, the mean pixel intensity of each AOI for each
relevant channel in the DSP 20× scan image was extracted and
multiplied by total AOI area to get total fluorescence intensity.

DSP experiments

DSP experiments were performed according to the NanoString
GeoMx-NGS DSP Instrument manual and as previously described
(Merritt et al. 2020; Bergholtz et al. 2021). Briefly, slides were im-
aged in four fluorescence channels (FITC/525 nm, Cy3/568 nm,
Texas Red/615 nm, Cy5/666 nm) to visualize morphology mark-
ers, and regions of interest were selected for collection. For the
CRC/NSCLC and the kidney experiment, regions of interest were
segmented based on the expression of morphology markers using
the DSP auto-segmentation tool with manually tuned settings.
AOIs were illuminated and released tags were collected into 96-
well plates as previously described.
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Sequencing and sequencing data processing

Library preparation was performed according to the NanoString
GeoMx-NGS Readout Library Prep manual. Briefly, the DSP aspi-
rate was dried and resuspended in 10 µL DEPC-treated water,
and 4 µL was used in a PCR reaction. NanoString SeqCode primers
were used to amplify the tags and add Illumina adaptor sequences
and sample demultiplexing barcodes. PCR products were pooled
either in equal volumes or in proportion relative to AOI size, de-
pending on the experiment, and purified with two rounds of
AMPure XP beads (Beckman Coulter). Libraries were sequenced
on an Illumina NextSeq 550, NextSeq 2000, or NovaSeq 6000 ac-
cording to the manufacturer’s instructions, with at least 27 ×27
paired end reads.

FASTQ files were processed using theNanoStringGeoMxNGS
Pipeline v2.0 or v2.2. Briefly, reads were trimmed to remove low
quality bases and adapter sequences. Paired end reads were
stitched and aligned, and the barcode and UMI sequences were ex-
tracted. Barcodes were matched to known probe barcodes with
maximum one mismatch allowed. Reads matching the same bar-
code were deduplicated by UMI. The number of raw reads was
highly linearly correlated with the number of unique UMIs at all
AOI sizes, suggesting largely uniform library amplification
(Supplemental Fig. S9). However, to correct for any PCR amplifica-
tion bias, all analyses in this study use UMI deduplicated counts.

RNA-seq experiments

For the comparison to cell line RNA-seq, in-house RNA-seq data
were generated for all of the mouse cell lines used in the compari-
son and five of 11 human cell lines (Daudi, H596, HEL, HUT78,
and HS578T). Purified total RNA for each cell line was purchased
from Acepix Biosciences. RNA-seq libraries were prepared using
the TruSeq Stranded mRNA Library Prep kit (Illumina) following
the manufacturer’s instructions and using 100–125 ng of RNA
per cell line as input. Libraries were sequenced on an Illumina
NextSeq 550 with 75×75 paired end reads.

Sequencing reads were mapped to the human RefSeq tran-
scriptome GRCh38.p13 or the mouse reference transcriptome
GRCm38.p6 using Salmon v1.3.0 with default parameters (Patro
et al. 2017). Transcript-level counts were collapsed to gene-level
counts using tximport v3.13 (Soneson et al. 2015).

Comparison of in-house human cell line RNA-seq data to
publicly available RNA-seq data from the Cancer Cell Line
Encyclopedia (CCLE) (Ghandi et al. 2019) showed that our data
were highly correlated with the CCLE data, and that WTA correla-
tions and sensitivity were very similar using our data and the CCLE
data. As there were CCLE RNA-seq data available for all human
cell lines profiled by WTA, the CCLE data were used for the com-
parisons to human WTA shown in Figure 1 and Supplemental
Figure S2.

Data analysis and visualization

Count data were processed and normalized using either the
NanoString DSPDA software v2.2 or v2.3, or the GeoMxTools
R package v1.0 (https://bioconductor.org/packages/release/bioc/
html/GeomxTools.html) or an equivalent development version.
AOIs with fewer than 5000 raw reads or a sequencing saturation
<45% (mouse embryo experiment) or <50% (all other experi-
ments) were filtered out of the analysis. For the negative probes,
we performed outlier testing and removed outlier probes from
the analysis before collapsing counts. All other targets have just
one probe per target and therefore were not filtered for outliers
or collapsed. A negative probe was called an outlier if it met one
of two criteria. First, if the average count of a probe across all seg-

ments was <10% of the average count of all negative probes, the
probe was removed from all segments. Second, if the probe was
called an outlier by the Grubb’s test with alpha=0.01, it was re-
moved from that segment. If the probe was an outlier by the
Grubb’s test in ≥20% of segments, it was removed from all seg-
ments. The geometric mean of the remaining probes was calculat-
ed to collapse the negative probes to a single count value.

For the analyses of the kidney andmouse embryo data, genes
were filtered to only those above LOD in >1% of AOIs and counts
were normalized by Q3 normalization after removal of genes con-
sistently below LOD. For the CRC/NSCLC differential expression,
ssGSEA, and cell type deconvolution analyses, genes were filtered
to only those above LOD in >15%of AOIs and countswere normal-
ized by Q3 normalization after removal of genes. For all other data
sets and analyses, genes were not filtered and raw deduplicated
counts were used.

For the CRC/NSCLC sequencing subsampling analysis, raw
FASTQ fileswere subsampled to the desired readdepths using seqtk
(https://github.com/lh3/seqtk). Five replicates of the subsampling
were performed at each read depth level and all subsamples were
run through the sequencing data processing pipeline indepen-
dently. For analyses in which sequencing read depth was com-
pared, AOIs were not filtered for sequencing saturation. For
analyses in which only one read depth is presented, the 150
reads/μm2 level was used and AOIs with <50% sequencing satura-
tion were removed from the analysis.

All statistical analyses and data visualizations were performed
in R (R Core Team 2021) or using the DSPDA software v2.3.
Differential expression was performed using a linear mixed effect
model with slide and DSP instrument as random effect variables,
and P-values were corrected for multiple hypothesis testing.
ssGSEA was performed using the GSVA R package (Hänzelmann
et al. 2013). Cell type deconvolution was performed using the
SpatialDecon R package (Danaher et al. 2022).

Data access

All raw and processed data generated in this study have been sub-
mitted to the NCBI Gene Expression Omnibus (GEO; https://www
.ncbi.nlm.nih.gov/geo/) under accession number GSE190089.
Data and code for reproducing the comparisons to RNA-seq and
RNAscope data are available at GitHub (https://github.com/
Nanostring-Biostats/SpatialResolution) and as Supplemental Code.
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