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Combination of esomeprazole 
and pirfenidone enhances 
antifibrotic efficacy in vitro 
and in a mouse model 
of TGFβ‑induced lung fibrosis
Afshin Ebrahimpour 1, Manisha Ahir 1, Min Wang 1, Anil G. Jegga 2, Mark D. Bonnen 3, 
N. Tony Eissa 4, Sydney B. Montesi 5, Ganesh Raghu 6 & Yohannes T. Ghebre 1,3,7,8*

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease of unknown etiology. 
Currently, pirfenidone and nintedanib are the only FDA-approved drugs for the treatment of IPF 
and are now the standard of care. This is a significant step in slowing down the progression of the 
disease. However, the drugs are unable to stop or reverse established fibrosis. Several retrospective 
clinical studies indicate that proton pump inhibitors (PPIs; FDA-approved to treat gastroesophageal 
reflux) are associated with favorable outcomes in patients with IPF, and emerging preclinical studies 
report that PPIs possess antifibrotic activity. In this study, we evaluated the antifibrotic efficacy of 
the PPI esomeprazole when combined with pirfenidone in vitro and in vivo. In cell culture studies of 
IPF lung fibroblasts, we assessed the effect of the combination on several fibrosis-related biological 
processes including TGFβ-induced cell proliferation, cell migration, cell contraction, and collagen 
production. In an in vivo study, we used mouse model of TGFβ-induced lung fibrosis to evaluate the 
antifibrotic efficacy of esomeprazole/pirfenidone combination. We also performed computational 
studies to understand the molecular mechanisms by which esomeprazole and/or pirfenidone regulate 
lung fibrosis. We found that esomeprazole significantly enhanced the anti-proliferative effect of 
pirfenidone and favorably modulated TGFβ-induced cell migration and contraction of collagen gels. 
We also found that the combination significantly suppressed collagen production in response to TGFβ 
in comparison to pirfenidone monotherapy. In addition, our animal study demonstrated that the 
combination therapy effectively inhibited the differentiation of lung fibroblasts into alpha smooth 
muscle actin (αSMA)-expressing myofibroblasts to attenuate the progression of lung fibrosis. Finally, 
our bioinformatics study of cells treated with esomeprazole or pirfenidone revealed that the drugs 
target several extracellular matrix (ECM) related pathways with esomeprazole preferentially targeting 
collagen family members while pirfenidone targets the keratins. In conclusion, our cell biological, 
computational, and in vivo studies show that the PPI esomeprazole enhances the antifibrotic efficacy 
of pirfenidone through complementary molecular mechanisms. This data supports the initiation of 
prospective clinical studies aimed at repurposing PPIs for the treatment of IPF and other fibrotic lung 
diseases where pirfenidone is prescribed.
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IPF is a deadly orphan disease of unknown etiology that causes progressive loss of lung function. The lungs of 
IPF patients are characterized by distortion of airway structures including the alveoli, interstitium, airspaces and 
the vasculature resulting in dyspnea and death within an average of 4 years from the time of diagnosis1. Current 
understanding of the disease process indicates that repetitive lung injury in susceptible individuals promotes 
uncontrolled proliferation of fibroblasts and differentiation into collagen-synthesizing myofibroblasts. Histologi-
cally, the areas of injury and active fibrosis are characterized by interstitial scarring, sub-pleural honeycombing 
and fibroblastic foci. In the US, the disease has an incidence of 93.7 cases per 100,000 in these 65 years of age 
and older, and includes over 125,000 cases1.

Following the FDA approval of pirfenidone and nintedanib for the treatment of IPF in late 2014, the two 
drugs have been in clinical use globally and are now considered the standard of care all over the world. Although 
this is an important milestone in the treatment for IPF, these drugs only slow the progression of the disease but 
are unable to stop or reverse established fibrosis2,3. Nonetheless, pirfenidone and nintedanib have profoundly 
impacted the way translational and clinical studies are designed and conducted in IPF. Such emerging studies 
have to account for standard of care treatment with either pirfenidone or nintedanib and need to be designed in 
the context of these antifibrotic therapies. In this regard, it is important to test and develop new compounds that 
mechanistically target signaling pathways that play pathobiologic role in IPF but are not targeted by the current 
drugs. Such compounds have the potential to be combined with the existing antifibrotic drugs for enhanced 
efficacy. According to the studies that our group has conducted, proton pump inhibitors (FDA-approved to treat 
gastroesophageal reflux) might be combined with pirfenidone for enhanced antifibrotic activity.

Since their FDA approval in the late 1980s, PPIs such as omeprazole (Prilosec), lansoprazole (Prevacid), dex-
lansoprazole (Dexilant), rabeprazole (Aciphex), pantoprazole (Protonix) and esomeprazole (Nexium) have been 
widely used in clinical practice to manage patients with gastrointestinal disorders including gastroesophageal 
reflux (GER) disease (GERD), Barrett’s esophagus and Zollinger-Ellison (ZE) Syndrome. The approved oral dose 
of PPI varies from 15 to 60 mg once or twice a day. At these doses, the plasma drug concentration ranges from 10 
to 25 µM4–7. However, significantly higher than the approved doses of PPI (up to 360 mg) have been safely used 
in patients with ZE Syndrome and cancer to achieve close to 100 µM plasma concentrations6,8–10.

Emerging preclinical studies indicate that PPIs modulate several pro-inflammatory cytokines to control tissue 
inflammation11–14. Additional studies indicate that PPIs simultaneously inhibit profibrotic molecules and induce 
antifibrotic mechanisms to control tissue fibrosis15–17. Several retrospective clinical studies or post-hoc analysis of 
data from IPF clinical trials also support the association of PPI use and favorable outcomes in patients with well-
defined IPF. Some of the beneficial outcomes associated with the use of PPIs include stabilized or improved lung 
function, reduced episodes of acute exacerbations, slower loss of lung function, lower IPF-related mortality and 
lower radiologic fibrosis score15,18–22. For example, in the study reported by Kreuter et al., the combination of ant-
acids (with PPIs representing over 90% of the medications compared to other class of antacids) with pirfenidone 
decreased IPF-related mortality, death or 6-min walk distance (6MWD), all-cause mortality, progression-free 
survival, and favored significant preservation of lung function compared to pirfenidone alone in an unadjusted 
analyses in participants enrolled in the CAPACITY or ASCEND trials22. These results combined with our prior 
preclinical data supporting an antifibrotic effect of PPIs encouraged us to evaluate the combination of pirfeni-
done with the PPI esomeprazole in controlling biological processes that drive lung fibrosis. For this, we used cell 
biological, computational and animal models to understand how PPIs may contribute to enhanced antifibrotic 
efficacy in combination with pirfenidone.

Materials and methods
Proliferation of IPF lung fibroblasts treated with esomeprazole/pirfenidone combination.  IPF 
lung fibroblasts were expanded on 75 cm2 (“T75”) flasks and batch-frozen in liquid nitrogen for downstream 
experiments. Subsequently, 3.5 × 103 cells were seeded in a 96-well plate and cultured overnight to allow adher-
ence to the plate. The next day, the cells were synchronized by serum starvation prior to stimulating proliferation 
using recombinant human TGFβ (10 ng/mL; Peprotech; cat # 100-21) for 24 h. Thereafter, the cells were treated 
with vehicle (dH2O), esomeprazole (100 μM), pirfenidone (1 mM), or a combination of esomeprazole (100 μM) 
and pirfenidone (1 mM) for another 24 h prior to adding 5-bromo-2-deoxyuridine (BrdU; 1:500) (Sigma, cat 
# 2750) overnight to monitor cell proliferation under the various treatment conditions. Cell proliferation was 
determined from the incorporation of BrdU into the DNA of the dividing cells by measuring absorbance (OD 
450 nm) spectrophotometrically using Tecan Spark 20 M plate reader. Finally, the proliferation data was com-
pared among the groups to assess the effect of esomeprazole/pirfenidone combination compared to either treat-
ment alone.

Esomeprazole/pirfenidone combination on TGFβ‑induced migration of IPF lung fibro-
blasts.  To assess the effect of esomeprazole and its combination with pirfenidone on the expansion and 
migration of IPF lung fibroblasts in response to TGFβ, the CytoSelect™ 24-Well Wound Healing Assay (Cell 
Biolabs; cat # CBA-120) was used. First, the provided inserts were placed inside the wells and 1 × 106 cells were 
seeded in 250 µL fully-supplemented DMEM. The cells were allowed to form a monolayer around the insert 
for 24 h. The next day, the cells were synchronized by serum starvation prior to removing the inserts to create a 
0.9 mm × 1.8 mm scratch area in each of the wells. The cells were then washed with PBS and imaged for baseline 
scratch area measurement prior to treatment with vehicle, esomeprazole (100 µM), pirfenidone (1 mM) or the 
combination for up to 72 h in the absence or presence of TGFβ (10 ng/mL) in triplicates. Finally, images were 
captured using bright-field microscopy (Leica Microsystems, Germany) to determine the effect of esomeprazole 
and/or pirfenidone on the migration of IPF lung fibroblasts in response to the mitogenic cytokine TGFβ. The 
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remaining scratch area after treatment was measured using a scaled ruler and was converted into percentage of 
scratch closure for comparison.

Esomeprazole/pirfenidone combination on the contractility of IPF lung fibroblasts.  One of 
the characteristics of TGFβ-treated fibroblasts or bona fide myofibroblasts is increased contractility of collagen 
matrices. In vitro, this is assessed by a Cell Contraction Assay. To evaluate the effect of combining the antifibrotic 
drug pirfenidone with esomeprazole on the contractility of TGFβ-treated IPF lung fibroblasts, we used Cell 
Biolabs’ Cell Contraction Assay (cat # CBA-201) and the protocol provided in the kit. First, Collagen Gel Work-
ing Solution was prepared by transferring 9.54 mL of the provided Collagen Solution into a cold sterile tube 
and mixing with 5× DMEM and 340 µL Neutralization Solution. The Solution was mixed well, and the result-
ing Collagen Gel Working Solution was kept on ice for subsequent use. Next, 2 × 106 IPF lung fibroblasts were 
resuspended in DMEM and mixed with the Collagen Gel Working Solution in a 1:4 ratio. Subsequently, 500 µL 
of the cell-collagen mixture was added in each well of a 24-well plate and incubated at 37 °C for 1 h to allow 
polymerization of the collagen. Next, 1 mL of DMEM was added on top of the collagen gel lattice and the plate 
was incubated for 48 h to allow development of cellular stress fibers. Subsequently, the cells were treated with 
vehicle, esomeprazole (100 µM), pirfenidone (1 mM) or the combination thereof for up to 48 h in the absence or 
presence of TGFβ (10 ng/mL). Finally, cell contraction was initiated by releasing the collagen gels from the walls 
of the plate with a sterile spatula, and the change in collagen gel size (i.e., contraction index) was measured with 
a ruler at 24- and 48- hours post-treatment for comparison.

The effect of esomeprazole/pirfenidone combination on collagen production by IPF lung 
fibroblasts.  To evaluate the effect of combining esomeprazole and pirfenidone on the production of col-
lagen by IPF lung fibroblasts, we used the colorimetric Sircol assay kit (BioColor; cat # S1000) and the provided 
experimental protocol. First, collagen was isolated and concentrated by transferring 1 mL of conditioned media 
from vehicle, esomeprazole (100 µM), pirfenidone (1 mM) or the combination of esomeprazole and pirfenidone 
treated IPF lung fibroblasts (with or without TGFβ) into low protein binding 1.5 mL microcentrifuge tubes and 
adding 200 µL of cold Isolation and Concentration Reagent. The tubes were mixed by gentle vortexing and incu-
bated overnight in a container containing ice-water mix. The next day, the tubes were centrifuged at 12,000 rpm 
for 10 min and 1000 µL of supernatant was removed from each tube prior to adding the same volume of Sircol 
Dye Reagent. The samples were placed in a mechanical shaker and incubated for 30 min at room temperature to 
allow the formation of collagen-dye complex. In parallel, fresh DMEM was prepared as a blank control and the 
provided collagen solution was used to prepare standards. Following the incubation, the samples were centri-
fuged at 12,000 rpm for 10 min and the tubes were carefully inverted to drain the contents (i.e., unbound dye) 
and access the firmly packed collagen-dye complex at the bottom of the tubes. Subsequently, 750 µL of ice-cold 
Acid-Salt Wash Reagent was added to each of the sample tubes and centrifuged as above to remove any remain-
ing unbound dye. To release and recover the collagen bound dye, 250 µL of Alkali Reagent was added to the 
blanks, standards and samples. The collagen-bound dye was released into solution by vortexing each of the tubes 
for 5 min. Finally, 200 µL of each sample was transferred to individual wells of a 96-well plate and absorbance, 
proportional to the intensity of collagen, was measured at 555 nm. The concentration of collagen was obtained 
from the standard curve for comparison.

Computational analysis.  Gene expression profiles of A549 human lung epithelial cells treated with thou-
sands of small molecules including FDA-approved drugs such as esomeprazole and pirfenidone is deposited in 
a publicly-accessible database known as the Library of Integrated Network-based Cellular Signatures (LINCS)23. 
We queried IPF lung transcriptome (GSE53845)24 against the gene expression profiles generated from esome-
prazole or pirfenidone treated cells from the LINCS database using the Connectivity Map approach25. Finally, 
genes that were reciprocally regulated (i.e., up in IPF but down in esomeprazole or pirfenidone treatment and 
vice versa) were subjected to functional enrichment analysis using ToppFun26 to identify enriched biological 
processes and pathways. Results from the enrichment analyses were visualized using Cytoscape software27.

Antifibrotic efficacy of esomeprazole/pirfenidone combination in a mouse model of 
TGFβ‑induced lung fibrosis.  We used 18 months old male C57BL/6J mice (n = 10–12/group) to induce 
TGFβ-mediated lung fibrosis and assess the efficacy of esomeprazole/pirfenidone combination in regulating the 
fibrosis. First, hair was removed from the trachea area and total body weight was measured prior to randomiza-
tion of the animals into sham control (group 1; n = 10), vehicle control (group 2; n = 12), esomeprazole (group 
3; n = 12), pirfenidone (group 4; n = 12), or esomeprazole/pirfenidone combination (group 5; n = 12). Next, the 
animals were anesthetized with a combination of ketamine (80 mg/kg) and xylazine (16 mg/kg) intraperito-
neally to achieve a deep plane of anesthesia. Subsequently, adenovirus encoding for TGFβ (6 × 106 pfu; Vector 
Biolabs; cat # ADV-274099) was intratracheally (IT) administered in the animals randomized to groups 2–5. 
For group 1, the animals received adenoviral vector without TGFβ (day 0). Subsequently, all the animals were 
allowed to recover, and starting from day 10, the animals in groups 1 and 2 were treated with vehicle (water). 
The animals in groups 3–5 were treated with esomeprazole (30 mg/kg), pirfenidone (100 mg/kg), and esome-
prazole/pirfenidone combination, respectively. All the treatments were administered daily by oral gavage, and 
for the animals in group 5, the same dose of esomeprazole and pirfenidone used to treat the animals in groups 
3 and 4 was used. Total body weight was monitored every week and all the animals were euthanized according 
to an IACUC-approved “Euthanasia in Rodents” policy with an overdose of ketamine and xylazine followed by 
bilateral opening of the thorax 28 days after the TGFβ challenge. Organ weight (lungs, heart, liver, kidneys) were 
measured to assess gross toxicity, and the left lungs were fixed in 10% paraformaldehyde for histopathological 
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studies including Masson’s trichrome stain for collagen and αSMA immunohistochemistry. The right lungs from 
50% of the animals were homogenized for tissue collagen content using the Sircol assay described above. For 
the histopathological studies, the degree of fibrosis was scored on a scale of 1–4 where 1 = minimal; 2 = mild; 
3 = moderate; and 4 = severe as we described15. The expression of αSMA was graded on a scale of 1+ to 3+ where 
1+ = minimal staining; 2+ = moderate staining; and 3+ = intense staining.

Statistical analysis.  The number of animals per study group needed was calculated using Power and Sam-
ple Size calculation (PS v3.1.2; Vanderbilt University) to at least detect a difference in means (δ) of 0.25 with an 
estimated standard deviation (σ) of 0.2 at significance (α) of 0.05 with 80% power (β). In a previous study of 
esomeprazole monotherapy, the antifibrotic response was normally distributed when a similar statistical test was 
performed15. All in vitro assays were run in triplicates and were repeated at least three times to ensure repro-
ducibility. All the data was analyzed using one-way ANOVA followed by Bonferroni post-hoc test (GraphPad 
prism) and was expressed as mean ± SEM. Differences are considered statistically significant at p value below 
0.05 (p < 0.05).

Animal study approval.  Baylor College of Medicine Animal Care and Use Committee approved the ani-
mal study described in the paper. The study was carried out in compliance with Baylor College of Medicine 
Guidelines, which are based on the National Institutes of Health’s Guide for the Care and Use of Laboratory 
Animals, and with the ARRIVE guidelines. Lung fibroblasts isolated from IPF patients were purchased from a 
commercial source (Lonza; Walkersville, MD).

Results
Esomeprazole enhances the antiproliferative effect of pirfenidone on lung fibroblasts.  Over-
proliferation of lung fibroblasts and differentiation into myofibroblasts are believed to form the fibroblastic foci 
implicated in driving the progression of pulmonary fibrosis28,29. High doses of pirfenidone have been reported 
to modulate the proliferation of human lung fibroblasts in response to TGFβ30. Intriguingly, combination of 
pirfenidone with esomeprazole significantly enhanced the anti-proliferative effect (Fig.  1). More specifically, 
the BrdU assay data shows that TGFβ significantly enhanced the proliferation of IPF lung fibroblasts compared 
to untreated controls. By contrast, esomeprazole significantly inhibited proliferation of the cells in response to 
TGFβ. The anti-proliferative effect was further enhanced when esomeprazole was combined with pirfenidone 
(Fig. 1).

TGFβ‑induced migration of IPF lung fibroblasts is blocked by the combination of esome-
prazole and pirfenidone.  TGFβ is a known mitogen and stimulator of fibroblast migration in scratch 
assays that denude monolayer of cells to study cell migration in response to treatment with various bioactive 
molecules31. In our study, treatment with TGFβ progressively enhanced the migration of IPF lung fibroblasts 
into the denuded area resulting in complete closure of the area within 120 h (Fig. 2). As expected, treatment with 
pirfenidone transiently inhibited the cell migration, showing about 40% inhibition by 72 h. However, this inhibi-
tion was mostly reversed at 96 h post-treatment. By contrast, esomeprazole sustainably inhibited the migration 
of IPF lung fibroblasts in response to TGFβ with the significance of inhibition holding up for at least 120 h after 
treatment. The combination of esomeprazole with pirfenidone was more effective in inhibiting cell migration 
than either treatment alone. The combination treatment inhibited the migration of IPF lung fibroblasts by about 
90% at 48 h post-treatment (Fig. 2).

Figure 1.   Bromodeoxyuridine (BrdU) assay showing anti-proliferative effects of esomeprazole, pirfenidone, 
and the combination of both drugs. Fibroblasts derived from the lungs of IPF patients were stimulated with 
TGFβ (10 ng/mL) for 24 h and treated with vehicle (dH2O), esomeprazole (100 µM), pirfenidone (1 mM) or 
esomeprazole (100 µM) and pirfenidone (1 mM) combination for another 24 h. Cell proliferation, proportional 
to the incorporation of BrdU, was assessed spectrophotometrically by measuring absorbance at 450 nm. Data is 
mean ± SEM from triplicate experiments and represents three independent experiments. *p < 0.05 compared to 
no TGFβ control; #p < 0.05 compared to TGFβ only control.
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The contractility of IPF lung fibroblasts is attenuated by esomeprazole and pirfenidone 
combination.  Contraction of collagen gels in response to TGFβ stimulation is a classic characteristics of 
myofibroblasts32,33. This characteristic is believed to increase contraction forces such as tensile strength to pro-
mote matrix stiffness in vitro and in vivo. As expected, we found that TGFβ treatment of IPF lung fibroblasts 
embedded in collagen gels increased the contractility of the gels in a time-dependent manner (Fig.  3). Not 
surprisingly, treatment with pirfenidone augmented the effect of TGFβ and significantly attenuated the contrac-
tile property of the cells with a peak inhibition at 24 h post-treatment. Similarly, treatment with esomeprazole 
inhibited the contractility of IPF lung fibroblasts stimulated with TGFβ. Combination of esomeprazole and 
pirfenidone efficiently blocked the contractile force exerted against the collagen lattice to negate changes in the 
diameter of the gels for up to 48 h post-treatment (Fig. 3).

The combination of esomeprazole and pirfenidone suppresses TGFβ‑induced collagen produc-
tion by IPF lung fibroblasts.  Overproduction of collagen and other ECM proteins by TGFβ-stimulated 
lung fibroblasts is a hallmark of pulmonary fibrosis including IPF34,35. In this study, we found that stimulation 
of IPF lung fibroblasts with TGFβ significantly enhanced the release of soluble collagen into the conditioned 
media (Fig. 4). By contrast, treatment with esomeprazole alone attenuated collagen production by about 60%. 
Although pirfenidone alone was not effective in reducing collagen levels in TGFβ-treated IPF lung fibroblasts, 
the combination of both esomeprazole and pirfenidone attenuated collagen production by over 60% (Fig. 4).

Esomeprazole and pirfenidone favorably regulate several fibrosis‑related gene networks.  We 
investigated the molecular mechanisms by which pirfenidone and esomeprazole regulate the biological pro-
cesses that are associated with the development and/or progression of lung fibrosis. Querying of the LINCS 
database and comparison of differentially expressed genes (DEGs) from the two compounds revealed that there 
is some overlap, but they mostly regulate different genes or pathways (Fig.  5). Enrichment analysis of genes 
up/down regulated in the settings of esomeprazole or pirfenidone exposure using Kaminski36 and Banovich37 
IPF single-cell atlas indicates that esomeprazole targets stromal cells while pirfenidone targets epithelial cells 
(Supplementary Table S1). Comparison of DEGs from these compounds with DEGs from IPF24 demonstrated 
that pirfenidone mainly targets the keratins while esomeprazole primarily targets collagens (Supplementary 
Table S1). Interestingly, combination of pirfenidone and esomeprazole significantly downregulated the expres-
sion of the profibrotic molecule lumican (Fig. 5 and Supplementary Table S1). Finally, functional enrichment 
analysis of the genes that are reciprocally regulated (i.e., upregulated in IPF but downregulated by pirfenidone 
or esomeprazole and vice versa) showed that several lung development and IPF-related pathways are favorably 
co-regulated by the two compounds (Fig. 5 and Supplementary Table S1).

Figure 2.   Cell migration assay showing the effect of esomeprazole (Eso), pirfenidone (Pir), and the 
combination on cell migration. Monolayers of human IPF lung fibroblasts were denuded to create cell-free 
area prior to stimulation with TGFβ (10 ng/mL) for 48, 72 or 120 h in the absence or presence of esomeprazole 
(100 µM), pirfenidone (1 mM) or esomeprazole (100 µM) and pirfenidone (1 mM) combination. Cell migration 
to close the denuded area, shown as averaged percentage of scratch closure, was quantified for comparison. Data 
represents three independent experiments. *p < 0.05 vs TGFβ only control and +p < 0.05 vs pirfenidone alone 
group.
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Figure 3.   The effect of esomeprazole (Eso), pirfenidone (Pir) or the combination on the contractility of IPF 
lung fibroblasts using cell contraction assay. The cells were treated with TGFβ (10 ng/mL) for 24 or 48 h in the 
absence or presence of esomeprazole (100 µM), pirfenidone (1 mM) or esomeprazole (100 µM) and pirfenidone 
(1 mM) combination. The contractility of cells embedded in collagen gels was followed over time and the area of 
the gel was calculated for comparison. Data represents three independent experiments. *p < 0.05 vs TGFβ only 
control and +p < 0.05 vs pirfenidone alone group.

Figure 4.   Sircol assay data showing the effect of esomeprazole, pirfenidone or the combination on the 
production of soluble collagen. Human IPF lung fibroblasts were treated with TGFβ (10 ng/mL) in the absence 
or presence of esomeprazole (100 µM), pirfenidone (1 mM) or esomeprazole (100 µM) and pirfenidone 
(1 mM) combination for 24 h. The amount of collagen, proportional to the intensity of red color, was assessed 
spectrophotometrically by measuring absorbance at 555 nm. Data is Mean ± SEM from triplicate experiments 
and represents three independent experiments. *p < 0.05 compared to TGFβ only control and +p < 0.05 vs 
pirfenidone alone group.
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In vivo combination of esomeprazole and pirfenidone inhibits lung fibrosis more than either 
treatment alone.  Given the enhanced antifibrotic efficacy observed when pirfenidone was combined with 
esomeprazole in vitro, we evaluated the efficacy of the combination in vivo in a mouse model of TGFβ-induced 
lung fibrosis. We found that the combination drug was well-tolerated without gross toxicity to vital organs such 
as the lungs, heart, kidneys and liver as confirmed by lack of change in the weight of these organs normalized to 
the body weight at the time of euthanasia (Fig. 6). Masson’s trichrome stain showed that esomeprazole or pirfe-
nidone monotherapy is effective in reducing lung fibrosis despite the drugs being administered 10 days after the 
induction of lung injury (Fig. 7). Intriguingly, the combination of esomeprazole and pirfenidone reduced lung 
fibrosis to a greater extent than either treatment alone (Figs. 7, 8). Consistently, the combination of esomeprazole 
and pirfenidone downregulated the expression of the myofibroblast marker αSMA more than monotherapy with 
esomeprazole or pirfenidone (Fig. 9). Notably, αSMA staining was more intense in areas of increased cellularity 
and fibrosis in the TGFβ only control. However, treatment with monotherapy or the combination therapy lim-
ited the staining to focal areas of fibrosis.

Discussion
Esomeprazole favorably regulates biological processes related to lung fibrosis to enhance the 
antifibrotic effect of pirfenidone.  It is reported that 87–94% of IPF patients have abnormal acid gastroe-
sophageal reflux (GER) or GER disease (GERD)38,39. As a result, many of these patients are prescribed antacids 
including PPIs such as esomeprazole to alleviate symptoms of GERD such as chest pain and heartburn. How-
ever, it is not known how the PPIs interact with standard of care drugs for IPF including pirfenidone. Data from 
three large prospective clinical trials (CAPACITY 004, 006 and ASCEND) that primarily evaluated the efficacy 
of pirfenidone in IPF revealed that IPF patients treated with pirfenidone and antacids (of whom ≥ 90% were 
on PPIs) had numerically favorable outcomes in progression-free survival, death or six minute walk distance 
(6MWD) decline by ≥ 10%, IPF-related mortality, and all-cause mortality22. Intriguingly, the study also reported 
that the combination of antacids and pirfenidone significantly slowed the decline in lung function (i.e., FVC 

Figure 5.   Network representation of genes and biological processes and pathways that are dysregulated in 
IPF and are controlled by esomeprazole, pirfenidone, or the combination. Orange-colored rectangles represent 
enriched biological processes, pathways or phenotypes while the purple-colored oval shapes represent genes 
that are up or down regulated by esomeprazole, pirfenidone or the combination but reciprocally regulated in 
IPF. The gene expression data for esomeprazole and pirfenidone treatment is from the Library of Integrated 
Network-based Cellular Signatures (LINCS) database while the IPF dysregulated gene expression data is from 
human patients. Functional enrichment analysis is done using ToppFun application and network generation is 
done using Cytoscape software.
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decline ≥ 10%). Paradoxically, there is no clinical study that prospectively evaluated the combination of antacids 
such as esomeprazole and pirfenidone in patients with IPF.

Pre-clinical studies from our group reported that PPIs possess antifibrotic activities including regulation 
of fibroblast proliferation and suppression of lung fibrosis induced by bleomycin or smoke15,16,40. Recently, we 
reported that esomeprazole favorably regulates a network of genes involved in lung remodeling41. However, it 
is not known whether esomeprazole enhances the antifibrotic efficacy of pirfenidone or whether the two drugs 
overlap in the molecular mechanisms by which they control processes involved in lung fibrosis. Our present study 
demonstrates that the combination of esomeprazole and pirfenidone enhances the regulation of several biologi-
cal processes that drive lung fibrosis including TGFβ-induced proliferation and migration of lung fibroblasts, 
contractility of collagen gels, as well as production of soluble collagen by TGFβ-stimulated IPF lung fibroblasts 
in vitro (Figs. 1, 2, 3, 4). In addition, our in vivo study demonstrated that the combination of esomeprazole 
and pirfenidone is more effective in suppressing lung fibrosis than esomeprazole or pirfenidone monotherapy 
as shown by reduction in fibrosis and αSMA expression (Figs. 7, 8, 9). Notably, treatment with esomeprazole 
alone reduced lung collagen levels by 35% compared to the TGFβ-treated controls. Similarly, treatment with 
pirfenidone alone reduced lung collagen levels by 12% compared to the control group. Strikingly, the combina-
tion of pirfenidone and esomeprazole diminished lung collagen content by 57% compared to the TGFβ-treated 
controls that did not receive any interventional pharmacotherapy (Fig. 8). Importantly, the reduction in the level 
of collagen by the combination therapy is significantly more than the reduction achieved by esomeprazole or 
pirfenidone as monotherapy. Intriguingly, our bioinformatics study indicated that esomeprazole and pirfenidone 
control a number of gene sets that belong to several biological processes that are involved in lung remodeling 
and may have complementary effects (Fig. 5). For example, esomeprazole was shown to upregulate lung develop-
ment related genes while it downregulated extracellular matrix components and several members of the collagen 
family that dictate collagen biosynthesis and fibril organization (Fig. 5 and Supplementary Table S1). A recent 
study also reported that esomeprazole regulates the aryl hydrocarbon receptor (AhR)/Smad2/3 signaling pathway 
to control TGFβ-induced collagen production by dermal fibroblasts and bleomycin-induced dermal and lung 
fibrosis in an animal model of scleroderma42. By contrast to esomeprazole targeted gene networks, we found that 
pirfenidone targets epithelial cell differentiation related genes and several members of the keratin (KRT) family 
including KRT5, KRT6B, KRT14 and KRT17. Although largely non-overlapping, both esomeprazole and pirfe-
nidone co-regulated lumican (shown as LUM in Fig. 5). Lumican is a profibrotic proteoglycan that is reported 
to be elevated in liver, cardiac and lung fibrosis43–45. Taken together, complementary inhibition of profibrotic 
pathways and activation of lung development related gene networks using the combination of esomeprazole and 
pirfenidone is expected to slow or reverse the progression of lung fibrosis. Notably, antifibrotic effect of the com-
bination therapy was observed in aged mice that are reported to closely mimic the disease process in human IPF 
compared to young mice that are known to possess de novo molecular repair mechanisms and naturally reverse 
lung fibrosis46–48. In addition, studies have reported that there are sex-specific differences in the development of 
lung fibrosis with aged male mice showing the most severe form of the disease46. Accordingly, the combination 
of pirfenidone and esomeprazole was demonstrated to slow the progression of lung fibrosis in a model that is 
expected to show the most severe form of the disease. However, future studies should investigate female mice to 
evaluate if there are sex-specific differences in response to the combination therapy.

In conclusion, our in vitro study using IPF lung fibroblasts and the in vivo study in a mouse model of TGFβ-
induced lung fibrosis demonstrate that combining esomeprazole with pirfenidone improves antifibrotic efficacy of 

Figure 6.   Measurement of organ weight in a TGFβ-induced lung fibrosis mouse model. The weight of the 
lungs, heart, liver and kidneys were normalized to the total body weight of the respective animal on the day of 
necropsy and was recorded for comparison. The weight of the kidneys and the lungs represent the total weight 
for the left and right organs. Combination of esomeprazole and pirfenidone did not significantly change the 
weight of any of the organs. Data is mean ± SEM from 10 to 12 animals per group.
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the now standard of care antifibrotic drug pirfenidone. This is an important finding given the modest antifibrotic 
effect of pirfenidone in patients with IPF, and the safe use of PPIs in the IPF patient population. As current FDA-
approved IPF treatments only slow the rate of disease progression, combination therapy with more than one 
agent will likely be needed, and the repurposing of currently available and inexpensive treatments (like PPIs) is 
particularly appealing. By extension, our data support prospective evaluation of pirfenidone and esomeprazole 
combination in a randomized controlled trial in patients with IPF. However, it should be taken into considera-
tion that optimal antifibrotic efficacy of esomeprazole (> 50 µM) is achieved at concentrations that are higher 
than what is achieved in the plasma of patients who take PPIs at doses commonly prescribed for the treatment 
of GERD49. Therefore, future clinical studies should consider adjusting the doses of PPIs such as esomeprazole to 
achieve higher target concentrations when the intention is to control processes that are involved in pathological 
lung remodeling beyond reducing the acidity of the gastric juice and gastric refluxate.
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Figure 7.   (A) Masson’s trichrome stain demonstrating antifibrotic effect of esomeprazole, pirfenidone or 
the combination. C57BL/6J mice were intratracheally challenged with adenoviral vector encoding TGFβ 
(6 × 106 pfu) and orally treated with vehicle (dH2O), esomeprazole (Eso; 30 mg/kg), pirfenidone (Pir; 
100 mg/kg) or esomeprazole (30 mg/kg) and pirfenidone (100 mg/kg) combination (Eso + Pir) starting from 
10 days post-challenge. The animals were treated daily until the day of necropsy (day 28). The combination 
therapy effectively suppressed lung fibrosis (shown as blue stain) compared to esomeprazole or pirfenidone 
monotherapy (arrows). In panel (B), zoomed out images of the tissue included in the analysis are shown. The 
fibrosis scores are shown as a bar graph. Data is from 5 animals/group. *p < 0.05 compared to the vehicle group 
and #p < 0.05 compared to pirfenidone alone.
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Figure 8.   Measurement of collagen in lung homogenates from TGFβ-induced lung fibrosis mouse model. 
The right lungs of vehicle, esomeprazole, pirfenidone, and esomeprazole/pirfenidone combination were 
homogenized and analyzed for tissue collagen content by colorimetric assay. The homogenates from the right 
lungs were pooled together for each group (n = 5 animals/group) and assayed using Sircol assay following the 
manufacturer’s protocol. The amount of collagen was estimated from standard curves (OD = 555 nm) and 
was expressed as µg collagen per mg of wet tissue. Data is mean ± SEM from triplicate experiments. *p < 0.05 
compared to TGFβ only control and +p < 0.05 vs pirfenidone alone group.

A B

Figure 9.   (A) Immunohistochemistry data showing alpha smooth muscle actin (αSMA) expression in a 
mouse model of TGFβ-induced lung fibrosis. The animals were challenged with adenoviral vector encoding 
TGFβ (6 × 106 pfu) and orally treated with vehicle (dH2O), esomeprazole (30 mg/kg), pirfenidone (100 mg/
kg) or esomeprazole (30 mg/kg) and pirfenidone (100 mg/kg) combination as described in the “Materials and 
methods” section. The data shows that the combination therapy inhibits lung tissue muscularization, as shown 
by reduced αSMA expression (brown stain), more effectively that the monotherapy (arrows). In panel (B), 
zoomed out images of the tissue included in the analysis are shown. The semi-quantitative scores are shown in 
the table and the data is representative of 5 animals/group.
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Data availability
All data generated or analyzed during this study are included in this manuscript and its Supplementary Infor-
mation files.
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