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Abstract
This paper proposes a new network framework, which leverages EfficientNetB4, attention gate, and residual learning tech-
niques to achieve automatic and accurate liver segmentation. First, we use EfficientNetB4 as the encoder to extract more fea-
ture information during the encoding stage. Then, an attention gate is introduced in the skip connection to eliminate irrelevant 
regions and highlight features of a specific segmentation task. Finally, to alleviate the problem of gradient vanishment, we 
replace the traditional convolution of the decoder with a residual block to improve the segmentation accuracy. We verified 
the proposed method on the LiTS17 and SLiver07 datasets and compared it with classical networks such as FCN, U-Net, 
attention U-Net, and attention Res-U-Net. In the Sliver07 evaluation, the proposed method achieved the best segmentation 
performance on all five standard metrics. Meanwhile, in the LiTS17 assessment, the best performance is obtained except for 
a slight inferior on RVD. The proposed method’s qualitative and quantitative results demonstrated its applicability in liver 
segmentation and proved its good prospect in computer-assisted liver segmentation.

Keywords  Liver segmentation · EfficientNet · Residual · Attention · U-Net

Introduction

According to Cancer Analysis 2020 [1], the malignant liver 
tumor is the sixth most common cancer and the second lead-
ing cause of cancer deaths. To help the physicians make 
accurate assessment and treatment at an early stage, the com-
puted tomography (CT)-based segmentation is widely used in 
the screening, diagnosis, and tumor measurement. However, 
the liver and liver tumors show a high degree of variability in 
shape, appearance, and location and vary from person to per-
son (as shown in Fig. 1), resulting in the manual segmentation 
of the liver being labor-intensive and error-prone. Therefore,  

how to segment the liver automatically and accurately has 
become a challenging and valuable task.

In recent years, many automatic liver segmentation 
approaches have emerged because of their ability to elimi-
nate subjective factors and improve the accuracy and effi-
ciency of diagnosis. These methods can be divided into two 
categories: (1) handcraft feature-based methods and (2) deep 
learning-based methods.

The handcraft feature-based methods mainly include 
region growth [2], thresholding [3], model-based methods 
[4], and machine learning-based methods [5]. These meth-
ods manually extract features from the input image, such 
as intensity, shape, edge, texture, or some transformation 
coefficients, and then generate the contour or region of the 
liver according to the local feature differences. Le et al. [6] 
proposed a 3D fast marching algorithm and single hidden 
layer feedforward neural network. First, the 3D fast march-
ing algorithm is used to create the initial marker region. 
Then the single hidden layer feedforward neural network 
(SLFN) is employed to classify the unlabeled voxels, and 
finally, the liver tumor boundary was extracted and refined 
by post-processing. Singh et al.’s improved k-means clus-
tering method [7] refines the clustering through ant colony 
optimization. Their accuracy and segmentation time of liver 
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segmentation is superior to those of previous technologies. 
Although these methods achieved good accuracy in limited 
sample space, most are semi-automatic approaches with 
poor stability, require artificial feature engineering, and have 
limited representation capabilities.

Deep learning-based methods have been popular in the 
computer vision community in recent years. Specifically, 
CNN has developed rapidly from classification network 
AIexNet [8] to ResNet [9]. However, unlike classification 
tasks, liver segmentation is pixel-driven classification, which 
makes the segmentation task more complicated than classifi-
cation. The most popular deep learning-based segmentation 
methods include full convolutional neural network (FCN) 

[10], U-Net [11] and its variants [12], and auto encoder-
decoder neural networks (AED) [13].

Long et al. [10] suggested the novel FCN by replacing the 
fully connected layer with a convolutional layer and restor-
ing the image through de-convolution. Their pixel-level 
prediction is then widely used in semantic segmentation for 
its end-to-end framework. Ben-Cohen et al. [14] employed 
FCN for liver segmentation and lesions detection for the first 
time. Sun et al. [15] designed a multi-channel FCN to seg-
ment liver tumors from multi-phase contrast-enhanced CT 
(CECT) images. In the high-level layer after feature extrac-
tion, feature fusion is performed on multi-phase CECT to  
improve the segmentation accuracy. Zhang et al. [16] designed  

Fig. 1   Figure 1 Liver CT with 
significant variations. a liver 
consists of discontinuous 
regions, b liver with an adjacent 
organ of low contrast, c liver 
with the tumor

Fig. 2   The architecture of the proposed EAR-U-Net
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a cascaded FCN for rough segmentation of the liver. For  
post-processing, they used different classic segmentation 
models, such as level set, graph cut, and the conditional 
random field (CRF). Such a segmentation approach that  
combines deep learning with machine learning has been 
effectively applied in many fields.

Based on FCN, Ronneberger et al. [11] proposed U-Net 
in the same year. Compared with FCN, U-Net designed an 
elaborate skip connection, perfect decoding structure, and 
higher segmentation accuracy. Jin et al. [17] proposed a 
hybrid deep attention-aware network (RA-U-Net) to extract 
liver and tumor. It is the first work that employs a residual 
attention mechanism to process medical volumetric images. 
Wardhana et al. [18] proposed a 2.5D model to segment 
liver and tumor. This model allows the network to equip a 
deeper and wider network while containing 3D information. 
Furthermore, Li et al. [19] propose a novel hybrid densely 
connected U-Net (H-DenseUNet), which combines 2D and 
3D networks to fully integrate the information within and 
between the slices to achieve higher segmentation accuracy.

The automatic encoder-decoder neural network has also 
received significant attention in the field of liver segmenta-
tion. Lei et al. [20] propose a deformable encoder-decoder 
network (DefED-Net) for liver and liver tumor segmentation. 
First, they used deformable convolution to enhance the fea-
ture representation ability of the DefED network. Then they 
designed a trapezoidal atrous pyramid pool (ASPP) module 
based on a multi-scale expansion rate and achieved a Dice 
of 0.963 on the LiTS17-training dataset. Tummala et al. [21] 
developed a multi-scale residual dilated encoder-decoder 
network to segment liver tumors. First, the proposed network 
segments the liver and then extracts tumors from the liver 
ROIs. Next, they reduce the image to different resolutions 
at each scale and apply regular convolution, dilation, and 
residual connections to capture a wide range of conceptual 
information.

However, most deep learning-based networks are not sen-
sitive to the details of liver images, and the feature results 
obtained by de-convolution are relatively smooth. Although 
the U-Net model can enhance the decoder’s feature learning 

through skip connections and performs well in medical 
image segmentation, U-Net’s segmentation of image details 
is still not satisfactory. Besides, the number of layers and 
parameters is small. Therefore, it is easy to result in over-
fitting problems. Moreover, U-Net uses a pooling layer in the 
process of down-sampling, which may lose many image fea-
tures. In addition, the learned shallow information is limited, 
and it is prone to result in over-/under-segmentation error 
after connecting with the in-depth information. Finally, as 
the depth of the network increases, the problem of gradients 
vanishment may occur. Also, most automatic encoding and 
decoding neural networks are variants of FCN and U-Net, 
which could have similar disadvantages.

To alleviate the problems mentioned above, this paper 
proposes a novel end-to-end U-Net-based framework, called 
EAR-U-Net,1 leveraging EfficientNetB4, attention gate, and 
residual learning techniques for automatic and accurate liver 
segmentation.

The main contributions of this paper are as follows:

•	 Use a modified EfficientNet-B4 as the encoder to extract 
more feature information in the encoder stage.

•	 Add an attention gate to the original skip connection to 
eliminate irrelevant regions and focus on the liver area 
to be segmented.

•	 Employ the residual structure to replace the convolu-
tional layer in the U-Net decoder and add a batch nor-
malization layer to eliminate the gradient vanishment 
problem, accelerate the convergence speed, and achieve 
higher accuracy.

The structure of the paper is as follows: In the “Method” 
section, we describe the proposed EAR-U-Net framework 
in detail. Then, “Experiments” section provides the experi-
mental results and discussion, and in the final “Conclusion” 
section, we summarize the whole work and give a future 
outlook.

Fig. 3   MBConv block

1  The code is publicly available at https://​github.​com/​Zhang​XY-​123/​
EAR-​Unet
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Method

This section introduces the architecture of the proposed 
EAR-U-Net in detail. The proposed network EAR-U-Net 
consists of an encoder and decoder (Fig.  2). Considering 
the limitation of computing resources, we employ the modi-
fied EfficientNetB4 as the encoder. The encoder consists of 
nine stages, including a 3 × 3 convolutional layer, 32 mobile 
reversed bottleneck convolutional (MBConv) structures, 
and a 1 × 1 convolutional layer. The decoder is composed 
of five up-sampling and a series of convolution operations. 
The features extracted by the encoder are restored to the 
original image size, and then the segmentation results are 
obtained. To reduce the noise response and focus on specific 
features, we add an attention gate to the skip connection 
to make the segmented liver more accurate. The addition 
of the residual structure can increase the depth of the net-
work. In the residual block, batch normalization (BN) and 
ReLU activation are performed after each convolution. The 
introduction of batch normalization can eliminate gradient 
diffusion and vanishment and accelerate the convergence 
of the network. Then we use ReLU to perform non-linear 
processing to improve the non-linear expression ability of 
the network.

The MBConv structure comprises a 1 × 1 convolution, 
a Depthwise convolution, a sequence-and-exception (SE) 
module, a 1 × 1 convolution for dimension reduction, and 
the dropout layer (Fig. 3). After the first 1 × 1 convolution 
and Depthwise Conv convolution, BN and Swish activation 

operations are conducted, and the second 1 × 1 convolution 
only performs BN operations. To fuse more feature informa-
tion, we add a shortcut connection. The shortcut connection 
only exists when the shape of the feature matrix of the input 
MBConv structure is the same as that of the output feature 
matrix.

The SE module has dramatically improved the accu-
racy in image classification, target detection, and image 
segmentation. The SE module used in this paper (Fig. 4) 
consists of a global average pooling, two fully connected 
layers, and a Sigmoid activation function. In addition, the 
Swish activation function is added between the two full 
connection layers. Assuming input an image H × W × C, 
first, stretch it into 1 × 1 × C through the global pooling 
and fully connected layers, and then multiply it with the 
original image to give weight to each channel. In this way, 
the SE module enables the network to learn more liver-
related feature information.

Attention gate is a kind of attention mechanism that 
could automatically focus on the target area, suppress the 
response of irrelevant regions, and highlight the feature 
information crucial to a specific task, whose structure 
is shown in Fig. 5. First, g and x go through the 1 × 1  
convolution operation in parallel and sum them up then 
perform the ReLU activation, 1 × 1 Conv and Sigmoid 
function operations sequentially, and resample to get the 
attention coefficient α. Finally, the attention coefficient α 
is multiplied by the input coding matrix x to obtain the 
final output.

Fig. 4   Squeeze and excitation block

Fig. 5   Schematic of the attention gate (g is the decoding matrix, and x is the encoding matrix)

1482 Journal of Digital Imaging (2022) 35:1479–1493



1 3

Experiments

This section first describes the datasets used in the paper, 
the image pre-processing, the dataset augmentation, and the 
implementation details. Then we provide the loss function 
and evaluation metrics of the evaluation. Finally, the experi-
mental results are shown and analyzed, and the method’s 
limitation is discussed as well.

Experimental Setup

Image Dataset

In this experiment, we used the labeled training sets of the 
LiTS172 and SLiver073 datasets for testing. The LiTS17-
training dataset consists of 131 abdominal CT scans, with a 
large varying in-plane resolution from 0.55 to 1.0 mm and 
the inter-slice spacing from 0.45 to 6.0 mm. The number 
of slices ranges from 75 to 987. The size of each slice is 
512 × 512. The SLiver07 training dataset consists of 20 CT 
scans, with in-plane resolution from 0.55 to 0.8 mm and 
inter-slice spacing from 1.0 to 3.0 mm. The number of slices 
ranges from 64 to 394, and each slice’s size is 512 × 512.

Image Preprocessing

We first set the Hounsfield intensity to (− 200, 200) to 
exclude irrelevant details and employ histogram equaliza-
tion to enhance the contrast of the image. Then the CT image 

is down-sampled and resampled on the cross-section. Next, 
the spacings of the z-axis of all scans are adjusted to 1 mm to 
make the data more balanced. After that, we locate the slices 
with the liver and expand 20 slices outward to the edge slices 
at both ends. Finally, to save training time and reduce the 
memory requirements, we set each image’s size to 256 × 256.

Dataset Augmentation

Considering the SLiver07-training dataset has a small 
amount of data, we enhanced the image data to improve 
the model’s generalization ability and prevent the overfit-
ting problem. Meanwhile, we zoom the data with mirror 
flip, rigid and elastic deformations. Figure 6 illustrates some 
cases using different enhancement strategies.

Implementation Details

We run all the experiments on a workstation with Ubuntu 
18.04 operating system, graphics card RTX2080Ti, RAM 
32G, single CPU Intel Xeon Silver 4110, and using the 
Pytorch1.8 deep learning framework for implementation. 
In the network training, we set the batch size to 16, set the 
epoch to 60, chose Adam as the optimizer, and set the learn-
ing rate to 0.001.

Loss Function Definition

The loss function makes an essential impact on the per-
formance of CNN. In medical image segmentation, since 
ROI only covers a small area, and thus it is prone to lead 
to a sharp decline of the loss function to the local mini-
mum during training, which may result in a significant seg-
mentation deviation. However, cross-entropy [22] is able to 
measure the difference between two different probability 

Fig. 6   Data augmentation. a 
Original CT with grid, b zoom, 
c mirror flip, d elastic deforma-
tion, e zoom and mirror flip, f 
zoom and elastic deformation, g 
mirror flip and elastic deforma-
tion, and h zoom, mirror flip, 
and elastic deformation

2  The dataset is publicly available at https://​compe​titio​ns.​codal​ab.​
org/​compe​titio​ns/​17094#​resul​ts
3  The dataset is publicly available at https://​slive​r07.​grand-​chall​enge.​
org/
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distributions in the same random variable. The smaller the 
value of cross-entropy, the more accurate the prediction of 
the model. Therefore, cross-entropy can achieve good results 
in the segmentation network of pixel-level classification. The 
binary cross-entropy is defined in Eq. (1).

where y represents the actual value and ŷ represents the pre-
dicted result. Dice coefficient is one of the standard metrics 
to evaluate the segmentation effect. It can also be used to 
measure the distance between the segmentation result and 
the label [23]. As a loss function, Dice loss (DL) performs 
well in processing unbalanced datasets and can effectively 
reduce segmentation deviation caused by unbalanced ROI 
area and background. The DL used in this paper is defined 
in Eq. (2).

where value 1 is added in numerator and denominator to 
ensure that the function is not undefined in edge case sce-
narios such as when y = p̂ = 0.

Evaluation Metrics

In this paper, we choose five commonly used metrics for 
evaluation, including Dice, volume overlap error (VOE), 
relative volume error (RVD), average symmetrical surface 
distance (ASSD), and maximum surface distance (MSD) 
[24].

Test on LiTS17‑Training Dataset

In this section, we conducted experiments on the LiTS17-
training dataset. We randomly selected 121 sets of scans 
as the training and validation sets, while the remaining ten 
sets as the test set. To verify EAR-U-Net’s performance, we 
first used the most commonly used DL as the loss function. 
Next, we performed comparative experiments and ablation 
experiments, respectively. Finally, to evaluate the effective-
ness of DL + binary cross-entropy loss (BL), we select the 
combination of DL: BL = 1:1 as the loss function and take 

(1)LBCE
(

y, ŷ
)

= −(y log
(

ŷ
)

+ (1 − y) log(1 − ŷ))

(2)DL
(

y, p̂
)

= 1 −
2yp̂ + 1

y + p̂ + 1

the classical models FCN [10], U-Net [11], attention U-Net 
[25], attention Res-U-Net, and EAR-U-Net for comparison.

Comparison with Classical Methods

First, we use DL as the loss function and compare the clas-
sic network FCN,4 U-Net,5 attention U-Net,6 and attention 
Res-U-Net.7 From Table 1, we can see that FCN results in 
the worst performance on Dice and VOE compared to the 
other four networks. On the other hand, compared with FCN, 
U-Net, attention U-Net, and attention Res-U-Net, the pro-
posed EAR-U-Net model achieved the best performances 
on the four metrics (Dice, VOE, ASSD, and MSD) except 
for RVD. Specifically, its superiority on MSD is the most 
significant.

Therefore, EAR-U-Net enabled an improvement in the 
accuracy and stability of the segmentation. Besides, in terms 
of training time, EAR-U-Net is far less than U-Net, atten-
tion U-Net, and attention Res-U-Net, only more than FCN. 
However, in terms of test time, the EAR-U-Net is higher 
than other networks.

To demonstrate the robustness of the proposed EAR-U-
Net more intuitively, we depict the boxplot on the five met-
rics. From Fig. 7, we can see that the proposed EAR-U-Net 
exhibits strong stability on all five metrics. Specifically, for 
Dice (Fig. 7a), the median of EAR-U-Net achieved the high-
est without outlier compared with the other four networks.

For VOE (Fig. 7b), the median of EAR-U-Net is the low-
est, with the highest stability. Besides, the median on RVD 
(Fig. 7c) is closer to 0, but there are two outliers. Moreo-
ver, it shows extreme stability on ASSD (Fig. 7d), and the 
median of MSD (Fig. 7e) is far less than that of the other 
four networks.

Table 1   Quantitative results among the five methods on 10 LiTS17-training datasets

For each metric, bold value indicate the best result in that column

Method Dice (%) VOE (%) RVD (%) ASSD (mm) MSD (mm) Training time Testing time

FCN 92.46 ± 3.52 13.83 ± 5.83 −1.65 ± 8.74 2.86 ± 1.24 81.94 ± 28.95 4 h 31 min 13 s 33 s
U-Net 94.08 ± 2.06 11.12 ± 3.65 −0.48 ± 5.58 3.07 ± 2.08 66.03 ± 27.91 7 h 49 min 13 s 36.4 s
Attention U-Net 94.37 ± 2.27 10.58 ± 4.04 0.37 ± 6.91 2.91 ± 1.57 82.03 ± 31.43 8 h 56 min 35 s 36.8 s
Attention Res-U-Net 94.93 ± 1.63 9.61 ± 2.97 2.23 ± 4.12 2.77 ± 1.69 62.69 ± 19.71 9 h 48 min 56 s 37.1 s
EAR-U-Net 95.95 ± 0.76 7.77 ± 1.42 0.50 ± 2.36 1.29 ± 0.35 35.96 ± 20.62 6 h 45 min 54 s 41.2 s

4  The code is available at https://​github.​com/​shelh​amer/​fcn.​berke​leyvi​sion.​
org
5  The code is available at https://​github.​com/​Javis​Peng/u_​net_​liver/​
blob/​master/​unet.​py
6  The code is available at https://​github.​com/​Andy-​zhuju​nwen/​
UNET-​ZOO/​blob/​master/​atten​tion_​unet.​py
7  The code is available at https://​github.​com/​Zhang​XY-​123/​Model/​
blob/​master/​Res_​Att_​Unet.​py
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Figure 8 shows the loss curves of training and testing. From 
the figures, we can see that the loss value of the EAR-U-Net 
network is smoother and converges faster than other models.

Figure  9 shows some visualizations of challenging 
cases. The first and the second row are discontinuous liver 
regions. (i) In the first row, FCN, U-Net, and the attention 
U-Net incorrectly segmented the gallbladder adjacent to the 
liver. Meanwhile, the attention Res-U-Net showed a little 
under-segmentation error. On the contrary, the proposed 
EAR-U-Net segmented the liver almost perfectly. (ii) In 

the second row, FCN showed obvious over-segmentation 
error, while other models performed well. (iii) The third 
row illustrates the segmentation of the liver with interlo-
bar fissure. FCN and U-Net showed under-segmentation 
errors, but U-Net, attention Res-U-Net, and our proposed 
methods showed slight errors. (iv) The fourth row provided 
the liver area containing the portal vein. Again, we can 
see that FCN, U-Net, and attention U-Net have mistakenly 
under-segmented the portal artery. Nevertheless, the effect 
of attention Res-U-Net and our model is much superior to 

Fig. 7   Comparative analysis on five metrics. a Dice, b VOE, c RVD, d ASSD, and e MSD

Fig. 8   Loss curves of different models on LiTS17 datasets. a The training set and b the validation set
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the other three models. (v) The fifth row shows the liver 
region containing the inferior vena cava. It can be seen that, 
except for the complete liver segmentation by the proposed 
network, the other four networks all mistakenly segment 
the inferior vena cava as the liver. The above demonstrates 
that our proposed network has advantages in the discon-
tinuous liver region, the liver region with adjacent organs, 
and portal veins.

Ablation Analysis on LiTS17‑Training Datasets

To verify the optimality of the proposed network, we per-
formed four comparative ablation experiments based on the 

efficient module (E-U-Net), efficient residual structures (ER-
U-Net), and efficient attention gate (EA-U-Net). Specifically, 
we use the DL loss function for training, with the test results 
shown in Table 2.

Table 2 shows that EAR-U-Net has achieved the best 
results on the five standard metrics except for RVD. The 
employment of residual structures enables a significant 
improvement on the Dice and ASSD. Furthermore, while 
the residual block and attention gate are both integrated 
into E-U-Net, the performances on all metrics improved 
significantly.

From the boxplot in Fig. 10, we can see that the method’s 
stability gradually improves with the superposition of the 

Fig. 9   Visualization of chal-
lenging cases. a FCN, b U-Net, 
c attention U-Net, d attention 
Res-U-Net, and e EAR-U-Net 
(the green line represents the 
ground truth, and the purple 
line represents the segmenta-
tion result of the corresponding 
method)

Table 2   Quantitative analysis results of ablation experiments

For each metric, bold value indicate the best result in that column

Method Dice (%) VOE (%) RVD (%) ASSD (mm) MSD (mm) Training time Testing time

E-U-Net 95.23 ± 1.44 9.07 ± 2.62 0.10 ± 3.3 2.14 ± 1.21 80.34 ± 23.51 5 h 48 min 45 s 40.2 s
EA-U-Net 95.28 ± 1.37 8.99 ± 2.49 0.56 ± 2.94 2.11 ± 1.07 75.46 ± 21.71 6 h 27 min 27 s 40.9 s
ER-U-Net 95.62 ± 1.17 8.37 ± 2.15 0.78 ± 2.66 1.64 ± 0.49 68.41 ± 23.79 6 h 4 min 40 s 40.6 s
EAR-U-Net 95.95 ± 0.76 7.77 ± 1.42 0.50 ± 2.36 1.29 ± 0.35 35.96 ± 20.62 6 h 45 min 54 s 41.2 s
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model. Compared with the other three networks, the pro-
posed EAR-U-Net has improved on Dice, VOE, and ASSD 
(Fig. 10a, b, and d), and the performance improvement of 
MSD is the most significant (Fig. 10e). However, multiple 
outliers caused the proposed EAR-U-Net not to achieve the 
best performance in RVD. (Fig. 10c).

As for the running time, the network model’s training 
time and testing time increase with the overlay of modules. 
Nevertheless, such a trade-off way for segmentation accu-
racy is necessary for clinical application. Figure 11 shows 

the loss curves of different models. In the training and verifi-
cation figures, with the superposition of modules, there is no 
significant difference between training and verification loss 
after stabilization, especially the training loss curve almost 
overlaps.

Evaluation of Different Loss Functions

The loss function is crucial for the training of the model. 
Both DL and BL perform well in segmentation. In this paper, 

Fig. 10   Comparative analysis on evaluation metrics. a Dice, b VOE, c RVD, d ASSD, and e MSD

Fig. 11   Loss curves of different models in LiTS17 datasets. a The training set and b the validation set

1487Journal of Digital Imaging (2022) 35:1479–1493



1 3

we assigned DL and BL different weights to train the models 
in LiTS17-training datasets. The experimental results listed 
in Table 3 show that the use of DL performs well on MSD, 
and the use of BL achieves the best results on RVD. However, 
given DL and BL a ratio of 1:1, the results show the best per-
formance on Dice, VOE, and ASSD. In terms of training and 
test time, the impact of loss functions with different weights 
is slight and negligible. The result analysis of loss functions 
with different weights is shown in Fig. 12.

To verify the segmentation effect of the loss function 
combined with DL and BL in liver segmentation, we used 
the weight of DL: BL = 1:1 to test FCN, U-Net, attention 
U-Net, and attention Res-U-Net, respectively, and compared 
them with DL.

Table 4 lists the quantitative analysis results of the five 
models using DL + BL and DL. It can be seen that, com-
pared with the single DL, using DL + BL has improved sig-
nificantly on Dice, VOE, and ASSD. Specifically, the Dice 
scores of FCN, U-Net, atention U-Net, attention Res-U-Net, 
and our EAR-U-Net increased by 1.83%, 1.63%, 1.47%, 
1.11%, and 0.68%, respectively.

In addition, compared with single DL, using DL: BL = 1:1 
enables the standard deviation of all the compared methods 

on the five evaluation metrics to become smaller. Thus, it 
proves that the DL + BL loss function could improve the 
segmentation stability. As for training and testing time, the 
use of different loss functions did not produce significant 
differences.

Figure 13 shows the loss in the train and validation using 
DL: BL = 1:1 for several classic models. The proposed EAR-
U-Net converges the fastest for training loss (Fig. 13a), while 
FCN converges the slowest. For verification loss (Fig. 13b), 
both FCN and U-Net have relatively large volatility in the 
first few epochs. In contrast, EAR-U-Net has relatively tiny 
fluctuations, and the loss value is also minimized.

Figure 14 shows the visualization of partial segmen-
tation results of FCN, U-Net, attention U-Net, attention 
Res-U-Net, and EAR-U-Net with DL and DL: BL = 1:1 
as the loss function, respectively. Figure 14a shows the 
discontinuous liver region. When DL is used as the loss 
function, all methods showed over-/under-segmentation 
errors. In contrast, the errors by all methods are signifi-
cantly alleviated when DL: BL = 1:1 is used as the loss 
function. Figure 14b demonstrates a case of a liver region 
with adjacent organs of low contrast. We found that the 
approach using DL as the loss function makes incorrect 

Table 3   Result analysis of different weight loss functions using the EAR-U-Net model

For each metric, bold value indicate the best result in that column

Loss Ratio Dice (%) VOE (%) RVD (%) ASSD (mm) MSD (mm) Training time Test time

BL 1 96.07 ± 1.06 7.55 ± 1.96 0.44 ± 2.14 1.47 ± 0.67 48.28 ± 27.72 6 h 42 min 48 s 41.8 s
DL 1 95.95 ± 0.76 7.77 ± 1.42 0.5 ± 2.36 1.35 ± 0.82 35.96 ± 20.62 6 h 45 min 54 s 41.2 s
BL:DL 0.2:0.8 95.84 ± 1.10 7.96 ± 2.03 1.66 ± 3.08 1.67 ± 1.00 38.32 ± 14.86 6 h 51 min 7 s 44.2 s
BL:DL 0.5:0.5 96.13 ± 0.95 7.43 ± 1.75 1.29 ± 1.98 1.67 ± 0.86 43.84 ± 25.54 6 h 48 min 6 s 43.7 s
BL:DL 0.8:0.2 96.43 ± 0.90 6.88 ± 1.69 1.93 ± 2.42 1.42 ± 0.72 58.03 ± 33.99 6 h 52 min 45 s 43.6 s
BL:DL 1:1 96.63 ± 0.82 6.50 ± 1.52 1.18 ± 2.27 1.29 ± 0.35 36.79 ± 13.24 6 h 49 min 55 s 42.3 s

Fig. 12   Loss curves of different loss functions on LiTS17 datasets. a Training set and b validation set
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segmentation at several non-liver organs nearby. However, 
taking DL: BL = 1:1 as the loss function, only FCN results 
in noticeable under-segmentation, but the declinations of 
other models are all greatly improved. Specifically, our 
proposed EAR-U-Net almost entirely segmented the liver 
region. Figure 14c shows a typical case of a small liver 
region. When taking DL as the loss function, the five 
methods all showed under-segmentation errors, but the 
five models almost entirely segment the liver when taking 
DL: BL = 1:1 as the loss function.

Comparisons of Different Segmentation Methods on LiTS17 
Test Dataset

To further evaluate the performance of the proposed 
method, we participated in the MICCIA-LiTS17 challenge 
and compared it with some state-of-the-art methods. The 
challenge result is shown in Table 5 (our team’s name is 
hrbustWH402).

As can be seen from Table 5, in the MICCIA-LiTS17 
challenge, our proposed method scored 0.952 (ranking 17) 
and 0.956 (ranking 15) on the two main evaluation metrics 
of Dice per case (DC) and Dice global (DG), respectively, 
which is superior to all the listed 2D-based networks. 
However, our performance is slightly inferior to 2.5D/3D-
based networks since our proposed method does not use 
the 3D inter-slice information.

Test on SLiver07‑Training Dataset

To verify the generalization capability of the proposed 
method, we used the weight of DL: BL = 1:1 as the loss 
function and conducted training and testing on the SLiver07-
training dataset. We also compared it with the four classic 
networks of FCN, U-Net, attention U-Net, and attention Res-
U-Net. As a result, the proposed EAR-U-Net achieved the best 
segmentation results in Dice, VOE, RVD, ASSD, and MSD. 
Specifically, the Dice reached 96.23% (as shown in Table 6).

Table 4   Comparative results of different loss functions with four state-of-the-art methods on 10 LiTS17-training datasets

For each metric, bold value indicate the best result in that column

Methods Loss Dice (%) VOE (%) RVD (%) ASSD (mm) MSD (mm) Training time Test time

FCN DL 92.46 ± 3.52 13.83 ± 5.83 −1.65 ± 8.74 2.86 ± 1.24 81.94 ± 28.95 4 h 31 min 13 s 33 s
DL + BL 94.29 ± 1.9 10.75 ± 3.36 2.24 ± 5.02 2.69 ± 1.16 66.36 ± 33.46 4 h 36 min 22 s 33.4 s

U-Net DL 94.08 ± 2.06 11.12 ± 3.65 −0.48 ± 5.58 3.07 ± 2.08 66.03 ± 27.91 7 h 49 min 13 s 36.4 s
DL + BL 95.71 ± 2.10 8.16 ± 3.76 3.35 ± 4.22 2.06 ± 1.41 57.88 ± 29.03 7 h 50 min 27 s 36.9 s

Attention U-Net DL 94.37 ± 2.27 10.58 ± 4.04 0.37 ± 6.91 2.91 ± 1.57 82.03 ± 31.43 8 h 56 min 35 s 36.8 s
DL + BL 95.84 ± 1.29 7.96 ± 2.38 2.45 ± 2.81 2.03 ± 1.07 71.54 ± 34.06 8 h 58 min 15 s 36.8 s

Attention Res-U-Net DL 94.93 ± 1.63 9.61 ± 2.97 2.23 ± 4.12 2.77 ± 1.69 62.69 ± 19.71 9 h 48 min 56 s 37.1 s
DL + BL 96.04 ± 1.03 7.60 ± 1.90 0.86 ± 3.27 1.43 ± 0.47 56.99 ± 20.01 9 h 33 min 7 s 37.7 s

EAR-U-Net DL 95.95 ± 0.76 7.77 ± 1.42 0.50 ± 2.36 1.35 ± 0.82 35.96 ± 20.62 6 h 45 min 54 s 41.2 s
DL + BL 96.63 ± 0.82 6.50 ± 1.52 1.18 ± 2.27 1.29 ± 0.35 36.79 ± 13.24 6 h 49 min 55 s 42.3 s

Fig. 13   Loss curves of two-loss functions on LiTS17 datasets. a Loss in training set and b loss in the validation set
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In addition, we also draw a box plot of all the evaluations 
in Fig. 15, which provides the Dice, VOE, RVD, ASSD, 
and MSD, respectively. The boxplot shows that EAR-U-
Net results in the highest median on Dice, and the differ-
ence between the upper quartile and the lower quartile is 
the smallest. For the VOE, we can see that the median of 
EAR-U-Net is the smallest, while the median of FCN is the 
largest. For the RVD index, the median of EAR-U-Net is 
closer to 0. In terms of ASSD and MSD, the lowest median 
is also obtained by the proposed EAR-U-Net.

Moreover, the proposed EAR-U-NET also shows advan-
tages in network training time. The training time is only 4 h 
33 min 2 s, less than that of U-Net, attention U-Net, and 
attention Res-U-Net, but 26% more than FCN. However, 
the per-case test time is higher than that of other networks.

Figure 16 shows the loss curves of training and verifica-
tion. EAR-U-Net converges the fastest and reduces to the 
lowest in the training loss. In the loss of verifying set, the 

loss values of the five networks all show some fluctuations 
in the first few epochs, but after the loss is stable, the value 
of EAR-U-Net is reduced to the lowest.

Figure 17 shows some visualizations of hard-to-segment 
livers. (i) The first row is the result of liver segmentation 
of the gallbladder with similar contrast. It can be seen that 
FCN, U-Net, and attention U-Net have mistakenly seg-
mented the gallbladder, while attention Res-U-Net and 
EAR-U-Net did not appear to have such an error. (ii) The 
liver in the second row is adjacent to the low-contrast gall-
bladder and spleen. It can be seen that FCN segmentation 
shows the worst effect, not only segmenting the gallbladder 
but also incorrectly segmenting the spleen far away from 
the liver. Meanwhile, U-Net also mistakenly segmented the 
gallbladder. Although the segmentation of attention U-Net 
and Res-U-Net have improved significantly, there are still 
some under-segmentation errors. Among all, the segmen-
tation effect of EAR-U-Net is the best. (iii) The third row 

Fig. 14   Visualization of typical 
segmentation cases. a Discon-
tinuous liver area, b liver area 
with the adjacent organs of 
low contrast, and c small liver 
area (green line stands for the 
ground truth, and the purple 
line represents the result of the 
corresponding method)

Table 5   Comparison of various 
liver segmentation methods in 
LiTS17 test dataset

For each metric, bold value indicate the best result in that column

Method Dimension DC DG VOE RVD ASSD MSD

Kaluva et al. [26] 2D 0.912 0.923 0.150 −0.008 6.465 45.928
Roth et al. [27] 2D 0.940 0.950 0.100 −0.050 1.890 32.710
Wardhana et al. [18] 2.5D 0.911 0.922 1.161 −0.046 3.433 50.064
Li et al. [19] 2.5D 0.961 0.965 0.074 −0.018 1.450 27.118
Jin et al. [17] 3D 0.961 0.963 0.074 0.002 1.214 26.948
Yuan [28] 3D 0.963 0.967 0.071 −0.010 1.104 23.847
Proposed method 2D 0.952 0.956 0.092 0.013 2.648 42.987
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Table 6   Quantitative comparison with four state-of-the-art methods on Sliver07-training datasets

For each metric, bold value indicate the best result in that column

Methods Dice (%) VOE (%) RVD (%) ASSD (mm) MSD (mm) Training time Test time

FCN 93.06 ± 1.21 12.96 ± 2.11 −4.47 ± 4.22 4.19 ± 2.81 114.82 ± 20.58 3 h 22 min 35 s 32.5 s
U-Net 95.09 ± 2.83 9.01 ± 4.96 1.51 ± 3.59 1.99 ± 0.87 97.62 ± 17.36 5 h 34 min 49 s 33 s
Attention U-Net 95.25 ± 3.14 8.94 ± 5.57 −2.21 ± 3.57 2.07 ± 1.63 99.85 ± 37.21 6 h 12 min 23 s 33.4
Attention Res-U-Net 95.72 ± 2.87 8.09 ± 5.11 −2.06 ± 6.6 1.81 ± 0.81 103.75 ± 16.56 6 h 58 min 56 s 33.4 s
EAR-U-Net 96.23 ± 2.65 7.16 ± 4.75 −1.42 ± 5.63 1.26 ± 0.68 87.32 ± 34.43 4 h 33 min 2 s 39.5 s

Fig. 15   Comparative results of different methods on Sliver07-training datasets. a Dice, b VOE, c RVD, d ASSD, and e MSD

Fig. 16   Loss curves of different models on SLiver07 datasets. a Training set and b validation set
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shows the discontinuous liver area. Again, both FCN and 
U-Net show obvious over-segmentation errors, while atten-
tion U-Net, attention Res-U-Net, and EAR-U-Net have alle-
viated the over-segmentation errors compared with FCN 
and U-Net. (iv) The fourth and fifth rows demonstrate the 
liver region containing portal veins. All methods result in 
specific over-segmentation errors, but the segmentation 
effect of EAR-U-Net on the portal vein is significantly 
improved compared to the other four networks. The above 
cases proved that our network has a better segmentation 
effect in the liver area containing adjacent organs and por-
tal vein.

Conclusion

This paper presents a new EAR-U-Net network for auto-
matic liver segmentation in CT. To extract feature infor-
mation more effectively, we employ EfficientNetB4 as the 
encoder. In addition, to highlight the feature information and 
eliminate the irrelevant feature responses, we add attention 

gates to the skip structure. Moreover, the introduction of the 
residual block also effectively prevents gradient vanishment.

In the experiments, we validated the proposed method 
on two publicly available datasets, LiTS17 and Sliver07. 
Specifically, we compared the proposed method with four 
classical models, including FCN, U-Net, attention U-Net, 
and attention ResU-Net. As a result, the proposed method 
achieved superior results on five standard metrics. More-
over, we also conducted experiments on different loss 
functions and proved that the combination of DL and BL 
produces a better effect in liver segmentation, including 
challenging cases. However, it is prone to false segmenta-
tion in the liver adjacent to other organs/tumors with low 
contrast.

In conclusion, the proposed EAR-U-Net could enrich the 
semantic information, enhance feature learning ability, and 
focus on small-scale liver information. Nevertheless, consid-
ering the limitations of the proposed EAR-U-Net in making 
full use of 3D data, we will focus on the 3D-based segmen-
tation approach for the liver adjacent to organs/tumors with 
low contrast in future work.

Fig. 17   Test on tricky cases 
of SLiver07. a FCN, b U-Net, 
c attention U-Net, d attention 
Res-U-Net, and e EAR-U-Net 
(the green line denotes the 
ground truth, and the purple 
line indicates the segmenta-
tion result of the corresponding 
method)
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