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Abstract
Glioma is an aggressive type of cancer that develops in the brain or spinal cord. Due to many differences in its shape and 
appearance, accurate segmentation of glioma for identifying all parts of the tumor and its surrounding cancerous tissues is 
a challenging task. In recent researches, the combination of multi-atlas segmentation and machine learning methods pro-
vides robust and accurate results by learning from annotated atlas datasets. To overcome the side effects of limited existing 
information on atlas-based segmentation, and the long training phase of learning methods, we proposed a semi-supervised 
unified framework for multi-label segmentation that formulates this problem in terms of a Markov Random Field energy 
optimization on a parametric graph. To evaluate the proposed framework, we apply it to publicly available BRATS datasets, 
including low- and high-grade glioma tumors. Experimental results indicate competitive performance compared to the 
state-of-the-art methods. Compared with the top ranked methods, the proposed framework obtains the best dice score for 
segmenting of “whole tumor” (WT), “tumor core” (TC ) and “enhancing active tumor” (ET) regions. The achieved accuracy 
is 94% characterized by the mean dice score. The motivation of using MRF graph is to map the segmentation problem to an 
optimization model in a graphical environment. Therefore, by defining perfect graph structure and optimum constraints and 
flows in the continuous max-flow model, the segmentation is performed precisely.

Keywords  Multi-modal brain MRI · Glioma brain tumor · Multi-atlas segmentation · MRF energy optimization · 
Continuous max-flow model

Introduction

The abnormal growth of glial cells within the brain could 
cause glioma tumors which can disrupt proper functioning 
of brain and lead to life-threatening situations. According to 
the malignancy grade, there are four types of glioma, grades 
1 and 2 are known as low-grade glioma (LGG) that grow 
slowly and they are less harmful and treatable. Grades 3 and 
4 are the high-grade glioma (HGG) that are fast developing 
and harmful [1, 2].

Magnetic resonance imaging (MRI) is widely used in the 
clinical diagnosis of glioma. The anatomical structure of 

soft tissue can be reflected in MR images. Also, the location 
and size of tumors can be characterized by analyzing them.

Due to the intensity inhomogeneity in brain images, 
more pathological information is needed for precise tumor 
delineation and description. Therefore, various MRI 
sequences including T1 weighted, T1 weighted with contrast 
enhancement ( T1C ), T2 weighted and T2 weighted with fluid-
attenuated inversion recovery ( T2Flair ) are necessary for bet-
ter results [3].

The automatic brain tumor segmentation from multi-
modal magnetic resonance images (MRI) is the key step for 
computer-aided diagnosis in surgery and radiotherapy. The 
complex pathological changes cause the complex changes in 
brightness and texture of glioma on MRI images. Different 
tissues such as normal and tumor, may have similar intensity 
values, which present challenges to the accurate and stable 
segmentation of glioma. Hence, an essential clue to simplify 
this task is a prior anatomical information that can be pro-
vided in different ways, for instance, as a set of predefined 
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rules based on known tissue properties, or as a set of manual 
expert annotations [4].

Regarding to segmentation challenges, numerous algo-
rithms have been developed to perform brain tumor detec-
tion and segmentation.

In recent years, learning-based methods have been widely 
used in MR image segmentation fields, such as the support 
vector machine (SVM) [5], random forest (RF) [6] and con-
volutional neural network (CNN) [7]. The automatic and 
unsupervised segmentation algorithms driven by machine 
learning ([8, 9]) are presented in other modalities. These 
methods are suitable for the image analysis of specific ana-
tomical structures due to their advantages in terms of effi-
ciency in pairwise registration and feature description.

Most of the automatic glioma segmentation approaches 
have learned a discriminative model in offline mode [10, 
11]. In these models, image intensity features are computed; 
then, a machine learning algorithm is trained offline. Most 
computation time is spent during the learning stage, which 
should be run again if a new data is added. Moreover, results 
are highly dependent on the choice of features [12], and fea-
ture extraction has to be performed at test time. The gen-
erative approach relies on distribution of tissues as a prior 
knowledge. It builds a probabilistic model of observed image 
intensity given the tissue type. The latent variable is the spa-
tial distribution of healthy tissues or tumor compartments. 
Prior knowledge, generally, includes the location and spatial 
extent of healthy tissues in an atlas.

In the past decade, atlas-based methods have shown supe-
rior performance over other automatic brain image segmen-
tation algorithms [13]. The main idea of the atlas-based 
methods is to use the prior knowledge of the atlas to classify 
the target pixels. Each atlas contains an intensity image and 
its label map determined by a radiologist [13].

Many of the atlas-based segmentation techniques rely 
on label propagation from multiple atlases after nonlinear 
registration to a target image [14]. The segmentation can 
be formed by label fusion of the propagated labels, e.g., by 
applying a majority vote or another combination strategy 
such as a weighted average based on global or local similar-
ity measures between the target and atlas images [15].

A multi-atlas segmentation method combined with SVM 
classifiers and super-voxels has been proposed in [16]. This 
method is not sensitive to pair registration and reduces regis-
tration time by using affine transformation. In another study 
[17], an atlas forest automatic labeling method has been pro-
posed in brain MR images that encodes atlas images into the 
atlas forest to reduce registration time. Also, [7] proposed a 
convolutional neural network model combining convolution 
and prior spatial features for sub-cortical brain structure seg-
mentation and trained the network using a restricted sample 
selection to increase segmentation accuracy.

Patch-based segmentation methods are another 
approaches for tumor classification. The author in [18] 
studied about the glioma labeling using patch based mod-
els. A patch-based MR image tissue classification method 
is presented in [19]. It defines a sparse dictionary learning 
method and combines the statistical atlas prior to the sparse 
dictionary learning.

A frequently used method that efficiently solves the labe-
ling problem is to express it as a Markov Random Field 
energy function [20] and minimize it using min-cut/max-
flow techniques [21]. The MRF is normally defined by a 
graph constructed on a regular grid representing the target 
image. However, some applications formulate the MRF 
energy function on graphs connecting multiple images.

Our Contribution

Brain tissue boundary regions are difficult to segment for 
both multi-atlas segmentation and learning-based segmen-
tation methods [22]. It is mainly because the pixel values 
of the tissue boundary regions are very similar and it is dif-
ficult to identify whether the pixels of these regions belong 
to the target image. In addition, the segmentation result of 
one slice does not help in refining the segmentation of its 
preceding slices.

In order to overcome these shortcomings and make full 
use of the prior information of the atlas, we introduce an 
efficient optimization based approach to solve segmentation 
problem.

The proposed method is defined based on a flexible graph 
structure that allows optimizing segmentation by using 
multi-atlas patch-based techniques. More specifically, we 
introduce a graph that encodes the atlas labels in the unary 
potential functions and local information propagation in the 
pairwise potential functions. The proposed graph satisfies 
Markov Random Field property and its energy function is 
introduced accordingly. The MRF energy function minimi-
zation leads to maximize the label probability of the unla-
beled voxels (i.e., target voxel) [21]. Therefore, we define a 
continuous max-flow model which is equivalent to the for-
mulated related optimization problem. Continuous max-flow 
algorithm solves the continuous counterpart to the discrete 
min-cut/max-flow problem, and it can be computed using an 
inherently parallel multiplier-based algorithm with guaran-
teed convergence. This makes it suitable for the optimiza-
tion of large labeling problems. We demonstrate how label 
propagation, spatial regularization and data models can be 
expressed simultaneously through this representation.

The proposed method is mainly aimed at improving 
the segmentation results in the tissue boundary region and 
improving the segmentation accuracy. We define four types 
of edges for modeling the information flows in the graph.

1635Journal of Digital Imaging  (2022) 35:1634–1647

1 3



To optimize the MRF energy function, we provide an 
efficient optimization scheme based on continuous max-
flow in "The Proposed Framework". "Experimental Results" 
explains the experiments and comparative analysis of the 
proposed method. "Discussion" summarizes the discussion 
and we draw the conclusion in "Conclusion".

The Proposed Framework

The proposed method relies on learning parameters of a 
Markov Random Field and optimization of its energy func-
tion. A complete architecture of the method is shown in 
Fig. 1. It consists of four modules as follow: 

1)	 “Preprocessing”: Due to variety of intensity value of 
a tissue in multi-modal MRI, intensity normalization 

method is applied on brain MR images. Also, the poten-
tially cancerous region of interest (CROI) is extracted 
to reduce the size and complexity of graph. In addition, 
all images (i.e., atlas and unlabeled images) are divided 
into patches, and similar patches are selected for the next 
stage.

2)	 “Graph Construction”: The graph representation and its 
potential functions are defined in the second module.

3)	 “MRF Energy Optimization”: In the third module, the 
MRF energy function is formulated based on the poten-
tial functions, and then, it is optimized subject to the 
constraints using a continuous max-flow model.

4)	 “Segmentation”: The labeling function is calculated in 
an iterative optimization procedure. All estimated labels 
are fused, and the final label is assigned to unlabeled 
voxels in the final module.

Fig. 1   Architecture of the proposed method pipeline
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Preprocessing

The first module includes three steps: In the first step, the 
intensity value of voxels is normalized. In the second step, 
cancerous region of interest (CROI) is extracted. In the third 
step, the CROI voxels are divided into the patches and they 
are compared for graph construction.

Intensity Normalization

Intensity normalization is applied to ensure an identical 
intensity distribution of the same sequence from different 
patients and scanners.

One of the main disadvantages of brain MRI sequences 
is that the same type of tissue does not have a specific inten-
sity. Different MRI sequences show different intensity values 
for the same tissue type even within the same subject. These 
intensity variations make segmentation and image analysis 
difficult [23]. Therefore, intensity normalization is an impor-
tant pre-processing step for MR image analysis [24]. Various 
intensity normalization methods have been proposed. In this 
work, we used one of the simplest ones called Gaussian 
intensity normalization that rescales the intensity values by 
a global linear scaling. In this method, the primary intensi-
ties are divided by the standard deviation of the entire inten-
sity values within one slice: Inew =

I

�
 where I is the primary 

intensity value and � is the standard deviation of an entire 
scan. This method assumes each sequence (such as T1 , T1C , 
T2 and T2Flair ) has the same distribution, and the normaliza-
tion is done based on this assumption [25]. The intensity 
resolution is typically 12 bits in MRI. We re-scale the inten-
sity values in the range of [0, 1024] in order to present each 
voxel intensity value with 10 bits. By analyzing the gray 
level range, we found that re-scaling does not lead to a sig-
nificant information loss.

Cancerous Region of Interest (CROI) Extraction

The segmentation methods can achieve competitive running 
time by extracting the potentially cancerous region of inter-
est and enclosing high-probability tumor regions [18]. In 
fact, voxels outside of the CROI are directly discarded from 
the subsequent steps . The purpose of this step is to reduce 
the search space and restrict it into certain regions where 
some abnormalities are observed. In this paper, we use an 
efficient technique to extract regions suspicious to cancer. 
This technique is based on general symmetry of brain struc-
tures in the two hemispheres [26]. First, the symmetry plane 
of the image is detected using an ellipse fitted to the brain 
border in MRI slices. The major axis of the fitted ellipse 
is considered as the symmetry plane. Two hemispheres are 

distinguished using the detected symmetry plane. Conse-
quently, texture features of hemispheres are extracted and 
compared using Euclidean distance to calculate the simi-
larity distances between the left and right hemispheres’ 
voxels. The obtained similarity distances are normalized in 
[0,1]. Then, the normalized distances are multiplied by the 
corresponding intensity values of the original image. As a 
result, the dissimilar regions get higher intensity values. The 
brighter regions are considered as the cancerous region of 
interest (CROI). This procedure is illustrated in Fig. 2.

Similar Patch Pre‑selection

The atlas is defined as the combination of a gray-level image 
(template) and its label map (the atlas labels). Here, training 
samples are considered as the atlas set that help to segment 
the unlabeled test images (target images). The fundamental 
assumption in patch-based methods is that the central vox-
els of similar patches should have identical labels. Conse-
quently, the target labels could be inferred by finding similar 
patches in a subset of the atlas images. The CROIs that are 
extracted from both atlas and target images are divided into 
overlapping cubic patches of identical size. The correspond-
ing mean (�) and standard deviation (�) of each patch are 
computed and preserved to avoid multiple computations dur-
ing the labeling procedure.

In order to reduce graph size and complexity, the patches 
are mutually compared with respect to the first and second 
statistical moments by means of structural similarity index 
measure (SSIM) which measures the perceptual difference 
between two similar patches. Applying a pairwise compari-
son makes it possible to discard dissimilar patches.

Suppose two patches Pi(x) and Pj(x) centered on voxel 
x in unlabeled image i and atlas image j, respectively. The 
similarity of Pi(x) and Pj(x) is calculated according to SSIM 
defined as follows:

where � , � and cov represent the mean, standard deviation 
and covariance of the patches, respectively. The constants 
c1 = (k1L)

2 and c2 = (k2L)
2 stabilize the division with weak 

denominator. L is the dynamic range of intensity value, 
k1 = 10−2 and k2 = 3 × 10−2 by default.

The similar patch pre-selection procedure based on SSIM 
can be performed as follows: If the value of SSIM is greater 
than a given threshold (T), meaning the two patches have 
acceptable similarity, then vertices corresponding to voxel 
x in target image i and atlas image j can be connected by 
an edge in the graph. The value of T is chosen empirically 

(1)

SSIM(Pi(x),Pj(x)) =
(2�i�j + c1)(2cov(Pi(x),Pj(x)) + c2)

(�2
i
+ �2

j
+ c1)(�i(x)

2 + �2
j
+ c2)
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because it should provide an acceptable balance between 
segmentation accuracy and computational time.

Graph Construction

In the second module, a graph-based structure is introduced 
to model how the information propagates between the atlas 
and target images. In the following, we explain graph repre-
sentation and its potential functions.

Graph Representation

We proposed an undirected graph G = (V ,E) consisting of 
a nonempty vertex set V and an edge set E. The vertex set V 
consists of all CROI voxels in all images such as atlas and 
unlabeled images (i.e., {V} = {Vatlas} ∪ {Vtarget} ). The pro-
posed graph contains two additional special vertices as well, 
called terminals. In the context of vision, terminals corre-
spond to the set of labels that can be assigned to a voxel. In 
case of classification, L = {0, 1} , two terminals are defined: 
source s, corresponding to L = 1 and sink t, corresponding 
to L = 0 . The terminals are illustrated in Fig. 3, where the 
virtual nodes are shown in red ( L = 0 ) and blue ( L = 1).

There are two types of edges in the edge set E: N-links 
and T-links.

N-links connect pairs of neighboring voxels. Thus, they 
represent a neighborhood relation between two vertices. The 

weight assigned to the N-links defines the local similarity 
between the voxels.

We propose two different N-links in G:

–	 E1 , the edge between center voxel of Pi(x) and center 
voxel of Pj(x) , with weight wij(x) calculated based on 
SSIM. E1 exists only between voxels in similar patches 
that their calculated SSIM is acceptable and selected in  
“Similar Patch Pre-selection” step, as described in "Simi-
lar Patch Pre-selection". E1 weight, wij(x) , is defined 
based on the similarity of center voxels of atlas and tar-
get patches to express how well label information can 
be propagated along this edge. The normalized cross-
correlation (NCC) is chosen as a similarity metric, which 
is invariant to linear intensity changes and fast to com-
pute. It is suitable for patch comparison within a large 
set of images [27]. Consider an unlabeled image patch 
Pi(x) and similarly an atlas image patch Pj(x) , of identical 
size n × n × n . The normalized cross-correlation (NCC) 
between patches Pi(x) and Pj(x) is defined as follows: 

 where k and l refer to intensity value of voxels located 
in Pi(x) and Pj(x) , respectively. � and � are mean and 

(2)NCC(Pi(x),Pj(x)) =

∑
k∈Pi(x),l∈Pj(x)

(k − �i)(l − �j)

n3
�

�2
i
�2
j

Fig. 2   “CROI Extraction” steps 
[26]. a Ellipse fitted to an axial 
slice, b suspicious hemisphere 
detection, c estimated tumor 
border (green) and cancerous 
region of interest(red)
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standard deviation of patches. To further discard edges 
between dissimilar patches, the edge weights are defined 
as: 

 This also ensures all edge weights are positive and in 
the range [0, 1].

–	 E2 that connect target voxel x to its neighbors in Pi(x) 
on a grid structure. The corresponding edge weight 
�i(x) , is calculated based on the intensity gradients: 

T-links connect voxels into the terminals. The weights of 
T-links depend on penalty for assigning a label to a voxel. 
Two T-links are defined in the proposed graph G:

–	 E3 , the edge connects center voxel of atlas patch Pj(x) 
to the source S or sink T corresponding to its label.

–	 E4 , the edges between center voxel of target patch Pi(x) 
and two terminals source S and sink T, weighted as 
ws
i
(x) and wt

i
(x) , respectively. Both ws

i
(x) and wt

i
(x) are 

defined based on a prior probability.

Figure 3 shows a sample sub-graph constructed according 
to the above procedure. Since glioma segmentation is a 
multi-labeling problem, the above graph structure is repli-
cated for every label. In other words, instead of one source 

(3)wij(x) = max(0,NCC(Pi(x),Pj(x)))

(4)�i(x) = exp(−
||∇Pi(x)||2

2�2
i

)

terminal, the proposed graph, G, has L source terminals 
{S1, ...SL} where L is the number of labels.

Potential Functions

Markov Random Field is an efficient model for solving the 
segmentation problem [20]. The MRF joint probability 
distribution is defined as follows:

where C denotes the set of cliques (i.e., fully connected sub-
graphs) of G, and �c(Vc) is a non-negative potential function 
over the variables in a clique. The partition function Z is a 
normalizing constant that ensures the distribution sums to 
one. According to graph structure, we define a unary poten-
tial function related to the T-links, and two pairwise potential 
functions corresponding to the N-links. So, (5) becomes:

As mentioned in "Graph Representation", T-links con-
nect atlas and target vertices to the terminals. �(l(x)) is the 
unary potential function, named “data term” that encodes 
the voxel labels. It is set to 0 for atlas vertices (i.e., voxels 
in the atlas images). For target vertices (i.e., unlabeled 

(5)p(li(x)) =
1

Z

∏
c∈C

�c(Vc), Z =
∑
V

∏
c∈C

�c(Vc)

(6)
p(li(x)) =

1

Z

∏
c∈C

{�(li(x))

+ �(li(x), lj(x)) + �(li(x), li(k))}

Fig. 3   Proposed graph repre-
sentation. All types of edges 
(N-links and T-links) are dis-
played and two virtual terminal 
nodes S and T are shown in blue 
and red, respectively
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voxels), it is calculated based on an arbitrary prior prob-
ability of labels, e.g., uniform distribution:

where L is the number of labels.
�(li(x), lj(x)) is a pairwise potential function, named 

“propagation term” related to those edges between an atlas 
vertex j and a target vertex i (i.e., N-links E1 ), for label prop-
agation. It penalizes conflicting labels in voxels connected 
by a high weight wij(x):

where �(.) is an indicator function. This assigns a high pen-
alty when the target and atlas labels are different, and the 
atlas patch Pj(x) is considered similar to the target patch 
Pi(x) , as defined by the similarity measure NCC.

In addition, we define another pairwise potential func-
tion between adjacent voxels within a target patch Pi(x) (i.e., 
N-links E2 ) that encodes label propagation in form of the 
spatial regularization through intra-image edges:

where �i(x) is the regularization weight of N-links E2 cal-
culated in (4).

The “regularization term” enforces spatial consistency 
by penalizing different label assignment in adjacent voxels. 
If the regularization weights ( �i(x) ) are based on intensity 
gradients, consistent labels can be enforced in adjacent 
labels that are similar in appearance, while allowing differ-
ent labels across intensity boundaries.

MRF Energy Function Optimization

Energy Function Formulation

The joint probability distribution, p(li(x)) , satisfies the inde-
pendence assumptions and can be found by invoking the 
Hammersley–Clifford theorem. It states that every Markov 
Random Field follows a Gibbs distribution of the form (5). 
The Gibbs distribution p(li(x)) from (5) can be re-written in 
an exponential form as shown in (10):

The MRF energy function E(li(x)) is then simply the sum 
of clique energies �c(Vc) = − log�c(Vc) . So (10) becomes:

(7)�(li(x)) =

{
0 i ∈ Vatlas
1

L
i ∈ Vtarget

(8)�(li(x), lj(x)) = wij(x)�(li(x) ≠ lj(x))

(9)�(li(x), li(k)) =
∑

k∈Pi(x)−{x}

�i(x)�(li(x) ≠ li(k))

(10)

p(li(x)) =
1

Z
exp(log(

∏
c∈C

�c(Vc)))

=
1

Z
exp(−

∑
c∈C

− log(�c(Vc)))

In our proposed graph, we define the unary potentials to 
encode voxel labels using (7). The corresponding energy of 
the data term is defined as:

According to the pairwise potential function defined in 
(8), the label propagation is encoded in adjacent edges E1 
between atlas and target vertices. So, the propagation energy 
is:

where Ni(x) is the neighborhood set of target voxel x in Pi(x) . 
Another pairwise potential function is defined for spatial 
regularization in target images (9). The corresponding regu-
larization energy is formulated as follow:

Therefore, the proposed MRF labeling energy function 
consists of three components corresponding to the data (12), 
propagation (13) and regularization (14) terms:

The above comprehensive formulation handles the multi-
labeling segmentation within a single framework and con-
siders all the components simultaneously.

Continuous Max‑Flow model for Optimization

As explained in ''Graph Representation", the constructed 
graph satisfies local Markov property which states that 
each vertex is independent of any other node given its set of 

(11)p(li(x)) =
1

Z
exp(−

∑
c∈C

�c(Vc)) =
1

Z
exp(−E(li(x)))

(12)Edata(li(x)) =
∑

j∈Vatlas

�(lj(x)) +
∑

i∈Vtarget

�(li(x))

(13)

Epropagation(li(x)) =
∑

j∈Ni(x)

�(li(x), lj(x))

=
∑

j∈Ni(x)

wij(x)�(lj(x) ≠ li(x))

=
∑

j∈Ni(x)

wij(x)�(lj(x) = li(x))

−
∑

j∈Ni(x)

wij(x)

(14)

Eregularization(li(x)) =
∑

k∈Pi(x)−{x}

�(li(x), li(k))

=
∑

k∈Pi(x)−{x}

�i(x)�(li(x) ≠ li(k))

=
∑

k∈Pi(x)−{x}

�i(x)�(li(x) = li(k))

−
∑

k∈Pi(x)−{x}

�i(x)

(15)
E(li(x)) = Edata(li(x)) + Epropagation(li(x))

+ Eregularization(li(x))
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neighbors. On the other hand, the voxels in the target image 
are conditionally independent given the atlas images.

Since the atlas labels are fixed and assumed to be inde-
pendent of each other (a common assumption in multi-atlas 
segmentation), it follows that the target voxels are statisti-
cally independent, and the optimal label can be found by 
minimizing E(li(x)) independently for all voxels:

The goal is to find a label � for voxel x in target image i 
that minimizes the MRF energy. The MRF energy function 
consists of unary and pairwise terms that can therefore be 
minimized by finding either the minimum cut or the maxi-
mum flow. It yields globally optimal results for classifica-
tion problems and approximately globally optimal results for 
multi-labeling problems. In max-flow approach, the energy 
function on the graph can be optimized by maximizing a 
source flow through the network, subject to flow conserva-
tion and capacity constraints on the edges.

We first introduce the configuration of flows (as illus-
trated in Fig. 4), such that:

(16)

li(x) = argmin
�

E(li(x) = �)

= argmin
�
{Edata(li(x) = �) + Epropagation(li(x) = �)

+ Eregularization(li(x) = �)}

–	 For each center voxel in target patch Pi(x) , two terminal 
flows Cs

i
(x) and Ct

i
(x) are added that link the target voxel 

to the source S and sink T, respectively.
–	 For each adjacent edge between target voxel i and atlas 

voxel j, there exists a propagation flow rij.
–	 Each target voxel links to its grid neighbors in pi(x) 

with spatial flows qi,l.

With the above flow settings, we formulate the continuous 
max-flow model by maximizing the total amount of flows 
subject to the following flow constraints:

–	 Capacity constraints on terminal flows: 

–	 Capacity constraints on spatial flows: 

–	 Capacity constraints on propagation flows: 

Considering L labels ( l ∈ {0, ..., L − 1} ) in this problem, 
the summation of all input and output flows must be zero :

(17)Cs
i
(x) ≤ ws

i
(x), Ct

i,l
(x) ≤ wt

i
(x)

(18)||qi,l(x)|| ≤ �i(x)

(19)rij(x) ≤ wij(x)

Fig. 4   Configuration of flows in 
Continuous Max-Flow model
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Here, div is divergence operator. The next step is to 
define an augmented lagrangian function as follow:

where Ω is denoted as target image space and c > 0 is con-
stant. �i,l(x) is lagrange multiplier that represents the labe-
ling function of voxel x in target image i. By means of the 
augmented lagrangian algorithm, an iterative procedure is 
defined in which L(�,Cs,Ct, q, r) is optimized over each 
variable while the other variables are fixed [21]. Therefore, 
to update variables in each iteration the following steps are 
performed: 

1.	 Maximizing L(�,Cs,Ct, q, r) over the source flow Cs
i
(x) , 

subject to the flow constraint Cs
i
(x) ≤ ws

i
(x) , while the 

other variables (�,Ct, q, r)k are fixed, which amounts to: 

 where Fk(x) is fixed and summarizes terms independent 
of Cs

i
(x) in iteration k.

2.	 Maximizing L(�,Cs,Ct, q, r) over the sink flow Ct
i,l
(x) , 

subject to Ct
i,l
(x) ≤ wt

i
(x) , while the other variables 

(�,Cs, q, r)k are fixed, which amounts to: 

 where Gk(x) is fixed and summarizes terms independent 
of Ct

il
(x) in iteration k.

3.	 Maximizing L(�,Cs,Ct, q, r) over the spatial flows 
qi,l(x) , subject to ||qi,l(x)|| ≤ �i(x) , while the other vari-
ables (�,Cs,Ct, r)k are fixed, which amounts to: 

 where Hk(x) is fixed and summarizes terms independ-
ent of qi,l(x) in iteration k and � is some step-size for 
convergence.

(20)�i,l = div qi,l(x) − Cs
i
(x) + Ct

i,l
(x) +

∑
j∈Ni(x)

rij(x) = 0

(21)

L(�,Cs,Ct, q, r) =
∑
Vtarget

(∫
Ω

Cs
i
(x)dx

+ ∫
Ω

L−1∑
l=0

�i,l(x)�i,ldx −
c

2

L−1∑
l=0

||�i,l||2)

(22)

Cs
i

k+1
(x) = arg max

Cs
i
(x)≤ws

i
(x)�Ω

Cs
i
(x)dx −

c

2
||Cs

i
(x) − Fk(x)||2

= min(Fk(x) +
1

c
,ws

i
(x))

(23)
Ct
i,l

k+1
(x) = arg max

Ct
i,l
(x)≤wt

i
(x)
−
c

2
||Ct

i,l
(x) − Gk(x)||2

= min(Gk(x) + wt
i
(x))

(24)

qi,l
k+1(x) = arg max||qi,l(x)||≤�i(x)

−
c

2
||div qi,l(x) − Hk||2

= proj ||qi,l(x)||≤�i(x)(q
k
i,l
+ �∇(div qk

i,l
) − Hk)

4.	 Maximizing L(�,Cs,Ct, q, r) over the propagation flows 
rij(x) , subject to rij(x) ≤ wij(x) , fixing (Cs,Ct, q)k+1 , (�)k , 
which gives: 

 this leads to: 

 where: 

5.	 Updating the labeling function �i,l(x) by: 

The above steps repeat until convergence is achieved. In 
each iteration, we evaluate the following convergence criterion:

If error < 𝜖 , then it is converged.

(25)

rij
k+1(x) = arg max

rij(x)≤wij(x)
−
c

2
||

R∑
j=1,i≠j

rij(x) − Jk
i
(x)||2

−
c

2
||

R∑
j=1,i≠j

rij(x) − Jk
j
(x)||2

(26)rij
k+1(x) =

Jk
j
− Jk

i

2

(27)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Jk
i
= div qk+1

i,l
− Cs

i
(x)k+1 + Ct

i,l
(x)

k+1

−
�k
i

c
+

R�
m=1,m≠i,j

rk
im
(x)

Jk
j
= div qk+1

j,l
− Cs

j
(x)k+1 + Ct

j,l
(x)

k+1

−
�k
j

c
+

R�
m=1,m≠i,j

rk
mj
(x)

(28)�i,l(x)
k+1 = �k

i,l
(x) − c�k

i,l
(x)

(29)error =
�i,l(x)

k+1 − �i,l(x)
k

�i,l(x)
k+1

Table 1   Main attributes of BRATS datasets

*1M is equal to one million

Dataset Grade Number of 
patients

Positive 
voxels

Negative voxels

BRATS 2015 LGG 54 5.46 M* 476.65 M
HGG 220 24.32 M 1939.8 M

BRATS 2017 LGG 75 8.32M 661.2 M
HGG 210 20.21 M 1854.6 M

BRATS 2019 LGG 76 8.47 M 670.05 M
HGG 259 24.39 M 2270 M
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Segmentation

Segmentation is a progressive process that becomes accurate 
through the above iterative procedure. After convergence, a 
segmentation is performed by discretizing the resulting solu-
tion for �i,l(x) , e.g., by threshold �:

Experimental Results

The performance of the proposed framework is evaluated on 
BRATS datasets provided by the multimodal brain image 
segmentation challenge. All BRATS datasets are publicly 
available1 and they include four MRI modalities ( T1 , T1C , 
T2 , and T2Flair ). All images are skulls stripped and resam-
pled to 1mm isotropic resolution. Also, all MRI-sequences 
of each case are co-registered. Further technical details of 
the datasets are given in Table 1. As mentioned, the BRATS 
datasets have two sub-sets: high grade glioma (HGG) and 
low grade glioma (LGG). One third of each sub-set is used 
for testing and the rest have been used for training using 
4-fold cross-validation.

A ground truth segmentation is available which also pro-
vides distinguishing different labels including 0) normal tis-
sues, 1) necrosis, 2) edema, 3) non-enhancing tumor and 4) 
enhancing tumor. To evaluate the performance of segmenta-
tion algorithms, different tumor subregions are grouped into 
three regions that are proper for clinical tasks: 

1.	 WT: The “whole tumor” region (including all four 
tumor subregions).

2.	 TC: The “tumor core” region (including all tumor struc-
tures except edema).

3.	 ET: The “enhancing active tumor” region (including 
only the enhancing core sub-region defined only for 
high-grade cases) [3].

Framework Evaluation

In order to verify the accuracy of proposed methods, the 
predicted cancerous region by proposed framework (PR) was 
compared with manually delineated ground truth (GT). We 
applied six widely used segmentation metrics to measure 
the average slice-wise true positive rate (sensitivity), true 
negative rate (specificity),positive predictive value(PPV), 
Dice and Jaccard similarity, and Hausdorff distance. These 
metrics are defined as follows:

(30)𝜇
𝛾

i,l
(x) =

{
1 𝜇l(x) > 𝛾

0 𝜇l(x) ≤ 𝛾
, l = 0, ..L − 1

The Dice score normalizes the number of true positives 
to the average size of the two segmented areas. The Jaccard 
index indicates the similarity between two sets. The higher 
scores of both Dice and Jaccard show more accurate seg-
mentation [3].

Table 2 represents the sensitivity, specificity,positive 
predictive value, Dice and Jaccard indexes, and Hausdorff 
distance for high-grade glioma segmentation with the pro-
posed framework.

As shown in Table 2, the “whole tumor” region is better 
labeled than the “tumor core” and “active tumor” regions. 
Also, due to better coverage of the glioma tumors in training 
set available in BRATS 2019 dataset, the results obtained in 
this dataset are more accurate.

Figure 5 shows a HGG test case examples and a segmen-
tation result of the proposed method.

Influence of the Patch Size

As mentioned in "Similar Patch Pre-selection", the patch 
size is an important factor in segmentation accuracy. Table 3 
shows the performance of the proposed method for different 
patch sizes.

Regarding to the size of regions in atlas set, it is observed 
that all regions such as “whole tumor,” “tumor core” and 
“enhancing active tumor” are segmented with higher accu-
racy by considering 5 × 5 × 5 and 7 × 7 × 7 patches than 
3 × 3 × 3 and 9 × 9 × 9 patches. Since the size of “tumor 
core” and “enhancing active tumor” regions in atlas set are 
approximately smaller than the patch size 9 × 9 × 9 , choos-
ing a smaller patch (i.e., 7 × 7 × 7 ) will increase accuracy. 
Conversely, due to the larger size of “whole tumor” region, 
choosing the 7 × 7 × 7 patches lead to less accuracy than 

(31)Sensitivity(PR,GT) =
|PR ∩ GT|

|GT|

(32)Specificity(PR,GT) =
|PR ∩ GT|

|PR|

(33)PPV(PR,GT) =
|1 − (PR ∪ GT)|

|PR|

(34)Dice(PR,GT) =
2|PR ∩ GT|
|PR| + |GT|

(35)Jaccard(PR,GT) =
2|PR ∩ GT|
|PR ∪ GT|

(36)
HD(PR,GT) = max{Supp∈PR{Infg∈GTd(p, g)}

, Supg∈GT{Infp∈PRd(p, g)}}

1  https://​ipp.​cbica.​upenn.​edu
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5 × 5 × 5 . The best choice for patch size is 7 × 7 × 7 , as  
it is possible to segment all three regions with remarkable 
accuracy.

Segmentation Benchmark

The proposed approach is benchmarked on BRATS datasets 
against the top-performing documented methods. The com-
parisons with several state-of-the-art algorithms demonstrate 
the efficiency of proposed framework for glioma segmenta-
tion. The accuracy of proposed method is compared with 
the existing methods for BRATS datasets; the results are 
summarized in Table 4.

As described previously, the “tumor core” (TC) region 
contains necrosis, enhancing, and non-enhancing tumors 
labels. The “whole tumor” (WT) region includes edemas as 
well. Table 4 shows that our framework compares well with 
the state-of-the-art methods.

In comparison with the top ranked methods applied on 
BRATS 2015, (except the one based on CNN [30]), our 
framework could achieve the highest dice score for “whole 
tumor” and “tumor core” regions. In BRTAS 2017, our 
framework could achieve the highest dice score for “tumor 
core” segmentation. The segmentation accuracy of “whole 
tumor” (WT) in [33] that is based on CNN is better that 
others. In case of BRATS 2019, the performance of our 
proposed method in detecting all cancerous regions such as 
“whole tumor” (WT), “tumor core” (TC) and “enhancing 
active tumor” (ET) is higher that other methods.

Complexity Analysis

Since the proposed algorithm is a semi-supervised learn-
ing algorithm, both atlases (i.e., the training data) and target 
images (i.e., the test data) contribute to the segmentation 
concurrently. As mentioned in "The Proposed Framework", 
the proposed framework has four main stages. The first and 
second stages (“Pre-processing” and “Graph Construction,” 
respectively) are performed offline. So, they are not consid-
ered in complexity analysis. The time complexity is dominated 
by the time of third stage, “Energy Function Optimization,” 

that is an iterative procedure in the core of proposed frame-
work. Suppose N and M are the number of atlas and target 
voxels, respectively. After CROI extraction, the number of 
atlas and target voxels become N′ and M′ , where N′ < N 
and M′ < M . Training is performed on a Nvidia GPU RTX 
3080 with 12GB memory. In the worst case, all atlas vox-
els are connected to all target voxels in the constructed graph 
G = (V ,E) , and all target voxels of a patch are connected 
together as well. Each atlas patch, Pi(x) , is a m × m × m 
grid. For this grid graph, there are m × m × (m − 1) edges 
in each direction. Therefore, the number of edges inside of 
Pi(x) is 3 × m2 × (m − 1) = 3m3 − 3m2 . So, the graph G with 
|V| = N� +M� + (L + 1) , has E = N� ×M� +M�(3m3 − 3m2) 
edges. For each target voxel i, Eq. (20) must be solved and four 
variables Cs

i
,Ct

i,l
, qil and rij must be calculated in each iteration. 

According to Eq. (28), labeling function is determined based 
on calculating other variables. Overall, it takes O(m3) where 
m3 is the size of neighborhood set of voxel i. Therefore, the 
upper bound for time complexity of calculating parameters for 
all target voxels in one iteration is: O(M� × m3) . Considering 
k as the number of iterations, the overall time complexity is 
O(k ×M� × m3) . In the worst case, k × m3 ≈ M� . So, the pro-
posed framework takes O(M�2) . In comparison with the above 
state-of-the-art methods, convolutional neural networks have 
much larger computational complexity which highly depends 
on their architecture (i.e., number of layers and number of 
nodes in each layer). In addition, compared with 2D network 
structures, 3D network models are time consuming and takes 
more GPU memory. Therefore, they require large memory 
capacity and high-speed advanced processors during both 
training and testing stages.

Discussion

In this paper, a semi-supervised multi-labeling framework is 
proposed for automatic glioma segmentation. It uses multi-
atlas segmentation concept to take advantage of the prior 
information of the annotated images (i.e., atlas images). The 
framework consists of four main modules: image prepara-
tion, graph construction, Markov Random Field energy 

Table 2   Evaluation of proposed method using sensitivity, specificity, Dice and Jaccard similarity indexes and Hausdorff distance for HGG of 
BRATS 2015, BRATS 2017 and BRATS 2019, where patch pre-selection threshold is 0.9 and patch size is 5 × 5 × 5

BRATS 2015 BRATS 2017 BRATS 2019

WT TC ET WT TC ET WT TC ET

Sensitivity 0.9209 ±0.01 0.8921±0.01 0.8782±0.01 0.9212±0.01 0.9002±0.02 0.8965±0.02 0.9304±0.01 0.9104±0.01 0.9019±0.02
Specificity 0.992±0.005 0.988±0.006 0.986±0.009 0.994±0.003 0.993±0.004 0.993±0.003 0.997±0.003 0.995±0.003 0.992±0.006
PPV 0.983±0.01 0.981±0.01 0.978±0.02 0.989±0.01 0.991±0.01 0.984±0.014 0.988±0.012 0.991±0.007 0.987±0.01
Dice 0.9234±0.02 0.9038±0.015 0.9212±0.01 0.9454±0.01 0.9132±0.013 0.9362±0.01 0.9482±0.01 0.9248±0.02 0.9386±0.014
Jaccard 0.895±0.06 0.8707±0.07 0.8816±0.05 0.8919±0.04 0.8765±0.04 0.8873±0.04 0.9042±0.03 0.888±0.05 0.893±0.04
Hausdorff 5.27±1.3 5.77±1.1 5.43±1.3 4.78±2.2 5.06±1.1 5.23±2.1 4.32±2.1 4.63±2.1 4.78±2.5
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optimization and segmentation as shown in Fig. 1. “MRF 
Energy Optimization” is the core of proposed framework, 
in which a continuous max-flow model is defined and its 
parameters are learned during the iterative procedure.

As mentioned in "Similar Patch Pre-selection", atlas and 
target voxels are compared based on patch similarity. Due to 
the patch overlap in patch-based segmentation methods, it is 
possible to overfit to the atlas labels. The max-flow model 

Fig. 5   Example of high-grade 
glioma patient from BRATS 
dataset, a original image, 
b ground truth tumor regions, 
c segmented tumor region result 
of proposed framework. The row 
1 ∼ 4 from up to down, show the 
modalities T

1
 , T

1C
 , T

2
 , and T

2Flair
 . 

Tumor structure consists of 
edema (yellow), non-enhancing 
core (red), enhancing core (blue) 
and necrosis (purple)
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parameters that are learned iteratively can reduce the risk 
of overfitting, since these parameters smooth the labeling 
procedure.

The motivation of using MRF graph is to map the seg-
mentation problem to an optimization model in a graphical 
environment. Therefore, by defining perfect graph structure 
and optimum constraints and flows in the continuous max-
flow model, the segmentation is performed precisely.

Conclusion

In this paper, we proposed a reliable brain tumor segmenta-
tion framework in multi-modal MRI by formulating the seg-
mentation problem as an MRF energy optimization model. 
In order to reduce the effects of limited prior information on 
atlas-based segmentation, we presented a semi-supervised 
framework that benefits the contribution from both atlases 
(i.e., the training data) and target images (i.e., the test data).

Among the segmentation approaches, graph-based 
approaches are powerful tools due to their ability in reflect-
ing general image properties. In addition, they reduce com-
putational complexity of segmentation problem. In this 
paper, we introduced a fixed-size graph structure. So, the 
needed memory is fixed and can be estimated beforehand. 
According to the time analysis, the running time highly 
depends on the number of samples and their size.

As demonstrated in "Segmentation Benchmark", this 
approach has compared well enough with the state-of-the-art 
methods on publicly available BRATS datasets for segment-
ing high-grade glioma tumors.

In our future work, we will focus on the dynamic graph 
structures, aiming to reduce overall running time and com-
plexity. We expect that this framework would be suitable 
for the segmentation of other brain tumors or abnormalities, 
such as ischemic stroke lesions.
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