
https://doi.org/10.1007/s10278-022-00681-0

ORIGINAL PAPER

Myocardial Function Prediction After Coronary Artery Bypass Grafting 
Using MRI Radiomic Features and Machine Learning Algorithms

Fatemeh Arian1 · Mehdi Amini2 · Shayan Mostafaei3 · Kiara Rezaei Kalantari4,14 · Atlas Haddadi Avval5 · 
Zahra Shahbazi6 · Kianosh Kasani4 · Ahmad Bitarafan Rajabi1,4,12,13 · Saikat Chatterjee7 · Mehrdad Oveisi8,15 · 
Isaac Shiri2   · Habib Zaidi2,9,10,11

Received: 19 August 2021 / Revised: 21 June 2022 / Accepted: 12 July 2022 
© The Author(s) 2022

Abstract
The main aim of the present study was to predict myocardial function improvement in cardiac MR (LGE-CMR) images in 
patients after coronary artery bypass grafting (CABG) using radiomics and machine learning algorithms. Altogether, 43 
patients who had visible scars on short-axis LGE-CMR images and were candidates for CABG surgery were selected and 
enrolled in this study. MR imaging was performed preoperatively using a 1.5-T MRI scanner. All images were segmented 
by two expert radiologists (in consensus). Prior to extraction of radiomics features, all MR images were resampled to an 
isotropic voxel size of 1.8 × 1.8 × 1.8 mm3. Subsequently, intensities were quantized to 64 discretized gray levels and a total 
of 93 features were extracted. The applied algorithms included a smoothly clipped absolute deviation (SCAD)–penalized 
support vector machine (SVM) and the recursive partitioning (RP) algorithm as a robust classifier for binary classification 
in this high-dimensional and non-sparse data. All models were validated with repeated fivefold cross-validation and 10,000 
bootstrapping resamples. Ten and seven features were selected with SCAD-penalized SVM and RP algorithm, respectively, 
for CABG responder/non-responder classification. Considering univariate analysis, the GLSZM gray-level non-uniformity-
normalized feature achieved the best performance (AUC: 0.62, 95% CI: 0.53–0.76) with SCAD-penalized SVM. Regarding 
multivariable modeling, SCAD-penalized SVM obtained an AUC of 0.784 (95% CI: 0.64–0.92), whereas the RP algorithm 
achieved an AUC of 0.654 (95% CI: 0.50–0.82). In conclusion, different radiomics texture features alone or combined in 
multivariate analysis using machine learning algorithms provide prognostic information regarding myocardial function in 
patients after CABG.
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Introduction

According to the World Health Organization, cardiovascu-
lar diseases (CVDs) hold the title of the highest prevalent 
noncontagious diseases worldwide [1]. Estimates show 

considerably high mortality of CVD mostly happening in 
underdeveloped and developing countries [1, 2]. Coronary 
artery disease (CAD), often linked to atherosclerosis and/or 
aggregation of the plaque in the arteries, is the most com-
mon type of CVD [3].

Different approaches were developed for CAD treat-
ment including pharmaceutical treatments, invasive cardiac 
catheterization methods (percutaneous coronary interven-
tion (PCI)), and fully surgical solutions like coronary artery 
bypass grafting (CABG) [4]. For patients with severe condi-
tions such as reduced cardiac function due to left main artery 
disease [5], diabetic patients [6], and patients suffering from 
multi-vessel disease [7], CABG is the primary treatment 
choice. Moreover, studies have demonstrated that CABG 
leads to decreased incidence of complications, includ-
ing harsh cardiac and cerebrovascular illnesses, compared 
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to PCIs [8, 9]. Hence, CABG remains the most effective 
treatment for patients with severe CAD [10–12]. However, 
CABG is an intricate, costly, and invasive procedure often 
coming with risks and post-operational complications (e.g., 
myocardial infarction (MI), cardiac stroke, graft blockage, 
renal dysfunction, and inflammation) [13, 14]. To extend 
the improvements in outcome, researchers and clinicians are 
constantly looking for new effective biomarkers to predict 
patients’ response to CABG [4, 15]. So far, the investigated 
biomarkers include serum and genetic biomarkers (e.g., pro-
tein biomarkers, adhesion molecule biomarkers, cytokine 
biomarkers, and coagulation cascade biomarkers), which are 
costly and invasive [4, 15].

Various medical imaging modalities, including computed 
tomography (CT), positron emission tomography (PET), and 
single-photon emission computed tomography (SPECT), can 
be effective for assessing and diagnosing CADs and their 
complications [16]. In addition to these methods, cardiac 
magnetic resonance imaging with late gadolinium enhance-
ment (LGE-CMR) is also an appropriate diagnostic method 
for assessing myocardial function as it depicts the scar tis-
sue developed from MI [17, 18]. Furthermore, it can be a 
decent predictor of a patient’s clinical outcomes [17, 19, 20]. 
A number of studies have shown that LGE-CMR reveals 
the scar region with the highest sensitivity and specificity 
among all methods due to its high spatial resolution [21]. 
However, subjective biomarkers face a lack of reproducibil-
ity since they drastically rely on the interpreter.

Radiomics can be terminologically defined as the extrac-
tion of quantitative data, such as shape, intensity, histogram, 
and texture features from medical images, creating a suitable 
feature set for the analysis of the hidden patterns in images 
using data mining and machine learning algorithms [22–25]. 
The prognostic potential of CMR radiomics and their practi-
cality in clinical applications have been reported in multiple 
studies [26]. Raisi-Estabragh et al. [27] reviewed studies 
reporting on CMR radiomics, particularly for clinicians 
while discussing obstacles and shedding light on the route 
for further investigation. They confirmed the high potential 
of CMR radiomics in changing our approach to define image 
phenotypes, ultimately improving diagnostic accuracy, treat-
ment choice, and prognosis. Larroza et al. [28] discrimi-
nated chronic (occurring > 6 months before imaging) and 
acute (occurring within 1 week) MI using radiomic features 
of LGE-CMR images and fed them into machine learning 
techniques. Avard et al. [29] investigated the potential of 
Cine-CMR radiomics for differentiating MI from normal tis-
sue. Using a dataset comprising 72 patients, they achieved 
an AUC and accuracy of 0.93 and 0.86, when using logis-
tic regression, and 0.92 and 0.85 for SVM, respectively. In 
this proof-of-concept study, we assess the potential of radi-
omic features extracted from LGE-CMR images along with 
machine learning algorithms to predict the effectiveness of 

the CABG operation. Our proposed methods help classify 
CAD patients into CABG responders and non-responders 
before performing this costly and invasive treatment.

Materials and Methods

Ethics Approval, Study Design, and Dataset

The schematic framework of the study is presented in Fig. 1, 
which presents the different steps implemented in this study.

This retrospective study was approved by the ethics com-
mittee of Iran University of Medical Sciences (NO. IR.IUMS.
FMD.REC.1398.146). Based on our inclusion criteria, 43 
patients who had visible scars on short-axis LGE-CMR images 
and were candidates for CABG surgery (left ventricular ejection 
fraction (LVEF) < 35%) were selected and enrolled in this study. 
Table 1 shows patients’ characteristics. The LVEF of all patients 
was recorded before and 3 months after the CABG surgery, and 
patients experiencing ≥ 5% increase in LVEF (22 patients) were 
considered responders to CABG treatment. In addition, the pre- 
and post-operational LVEF of all patients is shown in Fig. 2.

Image Acquisition and Segmentation

Patients were scanned using a 1.5-T MRI scanner (Avanto, 
Siemens). Ten minutes following bolus injection of 
0.15 mmol/kg Gd-DTPA, LGE-CMR images were cap-
tured via a 2D Phase-Sensitive Inversion-Recovery sequence 
(PSIR) with TR = 683 ms, TE = 1.23 ms, flip angle = 45°, 
FOV = 340 × 340 mm2, and in-plane resolution = 1.8 × 1.8 
mm2 in short-axis view. The slices were obtained with a 
1.5-mm interval and 7-mm thickness. Abnormal regions on 
the images were segmented by two experienced radiologists 
(10 and 8 years of experience, specialized in cardiac MRI) 
simultaneously by consensus using the 3D-Slicer software.

Feature Extraction

To generate rotationally invariant texture features prior to 
the extraction of radiomic features, all MR images were 
resampled to an isotropic voxel size of 1.8 × 1.8 × 1.8 mm3 
[30]. Subsequently, intensities were quantized to 64 discre-
tized gray levels to make the calculation of the features fea-
sible [30]. A total of 91 features were extracted from each 
image using the Pyradiomics library [31]. Our feature set 
comprised 16 first-order features describing the distribu-
tion of intensities without considering neighboring voxels 
and 75 higher-order features (extracted from gray-level co-
occurrence matrix (GLCM), gray-level size zone matrix 
(GLSZM), gray-level run length matrix (GLRLM), neigh-
boring gray tone difference matrix (NGTDM), gray-level 
dependence matrix (GLDM) matrices) reflecting the textural 
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information of the segmented areas. The features are listed 
in a more detailed manner in Table 2. The features extracted 
utilizing Pyradiomics are standardized in accordance with 
the Image Biomarker Standardization Initiative (IBSI) refer-
ence manuals [30].

Univariate and Multivariable Analyses

In this study, we utilized two embedded methods to simul-
taneously select the optimum feature set and construct 
classifier models. The methods included smoothly clipped 
absolute deviation (SCAD)–penalized support vector 
machine (SVM) (“penalized SVM” R package) [32] and 

recursive partitioning (RP) for (“rpart” R package) [33] 
algorithms for binary classification. The SCAD-SVM 
algorithm is a flexible and robust method providing the 
advantages of the SCAD penalty while at the same time 
avoiding sparsity limitations for non-sparse data in high-
dimensional structure data [34]. In addition, the PR algo-
rithm is a nonparametric and consistent method designed 
to find local low-dimensional structures in functions that 
have a high-dimensional global dependence [35]. The cut-
off point for the selected features was identified based on 
the maximization Youden index. The importance value of 
the selected features was calculated by gain information 
measure. After obtaining the feature sets, we constructed 
univariate models using each selected feature individually 
in addition to the multivariable models to achieve a better 
insight into effective features.

All models were evaluated and validated by fivefold 
cross-validation with 10,000 bootstrapping resamples. As 
a tuning parameter in the SCAD penalty method, optimal 
lambda was estimated by the minimized cross-validation 
error rate. After fitting the SCAD-penalized SVM and RP 
algorithms, the area under the ROC curve (AUC), sensitiv-
ity, and specificity were calculated in order to assess the pre-
dictive power of each selected feature and the whole feature 

Fig. 1   Radiomics framework adopted in the current study

Table 1   The demographic data of patients (total number, age, gender) 
are shown along with their preoperative LVEF based on each patient’s 
response to CABG surgical treatment

Number of 
patients

Age 
(mean ± SD)

Gender 
(male/
female)

LVEF 
% (pre/
post)

Responder 22 58 ± 13 16/6 26/39
Non-responder 21 58 ± 8 18/3 28/25
Total 43 58 ± 11 34/9 27/32
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set overall. The importance value of the features was also 
calculated. Finally, the statistical comparison of the area 
under the ROC curve (AUCs) between the two algorithms 
was performed by DeLong’s test using the “pROC” R pack-
age [36] with a statistical significance level of 0.05.

Results

Figure 3 represents an unsupervised cluster heat map of radi-
omic features in two groups, which did not show any specific 
cluster class in dataset.

Figure 4 shows selected features and their importance 
value using (a) SCAD-penalized SVM and (b) RP algo-
rithms. As can be seen, 10 features were selected with 
SCAD-penalized SVM (importance value ranging from 42 
to 70%), and 7 features selected by the RP (importance val-
ues ranging from 40 to 60%) algorithm for CABG responder/
non-responder classification. The selected feature sets were 
a combination of first-order and texture features. First-order 
10 percentile (importance value: 70%) and GLCM sum aver-
age (importance value: 60%) features were the most impor-
tant features in SCAD-penalized SVM and RP algorithms, 
respectively.

Table 3 shows the area under the ROC curve (AUC) with 
95% confidence intervals, sensitivity, and specificity with stand-
ard deviation for both univariate analysis and multivariable/over-
all models. Considering univariate analysis, GLSZM gray-level 
non-uniformity-normalized (AUC = 0.62, 95% CI: 0.53–0.76) 
and first-order skewness (AUC = 0.59, 95% CI: 0.5–0.68) 
achieved the best performance using SCAD-penalized SVM 
and RP algorithms, respectively. Regarding multivariable mod-
eling, SCAD-penalized SVM achieved statistically insignificant 
(p value = 0.264) higher performance (AUC = 0.784, 95% CI: 
0.64–0.92) compared to the RP algorithm (AUC = 0.654, 95% 
CI: 0.50–0.82) (Fig. 5).

Discussion

Leading to lethal conditions, such as MI, CAD is often promptly 
treated with pharmaceutical medications or invasive proce-
dures, such as PCI and CABG [37]. Based on previous studies, 
patients who underwent CABG treatment show less postop-
eration complications in comparison with patients treated with 
PCI [8, 9], which explains the high prescription of CABG for 
patients with severe CAD [10, 11]. The lethal condition of CAD 
and the invasiveness of conventional treatments raise demand 
for robust diagnosis and prognostic methods to characterize 
the disease and predict treatment outcomes. In recent years, 
medicine has been remarkably influenced by the discovery of 
biomarkers supplying prognostic evidence and information for 
clinicians to predict clinical outcomes. However, compared to 
other fields of medicine such as oncology, fewer studies have 
investigated to identify biomarkers for cardiac prognosis, espe-
cially for treatment outcome prediction based on images.

Radiomics and machine learning have been recently 
applied to different modalities of cardiac imaging to provide 
diagnostic and prognostic models. In a study by Antunes 
et al. [38], seven patients were examined for the discrimina-
tion between normal and scarred myocardium using texture 
analysis of cardiac CT images. They achieved 94% accuracy 
for differentiating between normal and scar tissue. Shu et al. 
[39] examined CT-based radiomics machine learning to pre-
dict chronic myocardial ischemia in 154 patients using 378 
extracted texture features. They reported an accuracy of 0.83 
for the radiomics nomogram designed for the detection of 
myocardial ischemia. Larroza et al. [28] examined the dif-
ferentiation between acute from chronic MI in 44 patients 
using machine learning techniques and MRI texture features. 
They reported sensitivity, specificity, and AUC of 0.79, 
0.85, and 0.85, respectively, as the best results. Baeßlera 
et al. [40] suggested a model for discovering tissue change 
in hypertrophic cardiomyopathy (HCM) patients on CMR 
images without any contrast agent. Using the random forest 

Fig. 2   Pre- and post-CABG left ventricular ejection fraction (LVEF) of patients included in this study protocol. Patients 1–22 were responders, 
whereas patients 23–43 were non-responders
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algorithm, they could achieve a sensitivity and specificity of 
91% and 93%, respectively. Another study has been designed 
for discriminating between hypertensive heart disease and 
HCM in T1 mapping. They reported an accuracy of 86.2% 
using SVM classifier and the selection of texture features 
[41].

Baessler et al. [42] investigated the combination of different 
texture features using multiple logistic regression models. The 
AUC of their models reached 0.93 and 0.92 for diagnosing large 
and small MI on cine MR images, respectively. Eftestøl et al. 
[43] concluded that texture analysis of LGE-CMR images is able 
to identify high- and low-risk cardiac patients and discriminate 
them for using ICD implantation. Their results indicated that 

texture analysis of LGE-CMR images includes data that can 
boost the capability of predicting a target up to a 0.84 specificity. 
Shao et al. [44] reported that a machine learning–based SVM 
model reached an accuracy of 0.85 with the aid of histogram 
and GLCM features to distinguish between dilated cardiomyo-
pathy (DCM) patients and control groups using T1 MR images. 
Chen et al. [45] examined radiomic analysis in 70 patients with 
ST-elevation MI for the differentiation between reversible ver-
sus irreversible myocardial damage. Five texture features were 
extracted from contrast T1 mapping, reporting an AUC of 0.91 
(p < 0.0001) for the differentiation between reversible and irre-
versible myocardial damage. Another study revealed that tex-
ture analysis is capable of diagnosing Takotsubo syndrome in 

Table 2   List of radiomics  features extracted by  Pyradiomics in this 
study, for first-, second, and high-order features. GLCM: Gray-level  
co-occurrence matrix,  GLSZM: gray-level size zone matrix,  GLRLM:  

gray-level run length matrix, NGTDM: neighboring gray tone difference 
matrix, GLDM: gray-level dependence matrix

First order GLCM GLSZM

Interquartile range Joint average Gray-level variance
Skewness Sum average Zone variance
Uniformity Joint entropy Gray-level non-uniformity normalized
Median Cluster shade Size zone non-uniformity normalized
Energy Maximum probability Size zone non-uniformity
Robust mean absolute deviation Idmn Gray-level non-uniformity
Mean absolute deviation Joint energy Large area emphasis
Total energy Contrast Small area high gray-level emphasis
Root mean squared Difference entropy Zone percentage
90percentile Inverse variance Large area low gray-level emphasis
Entropy Difference variance Large area high gray-level emphasis
Range Idn High gray-level zone emphasis
Variance Idm Small area emphasis
10percentile Correlation Low gray-level zone emphasis
Kurtosis Autocorrelation Zone entropy
Mean Sum entropy Small area low gray-level emphasis

GLRLM MCC GLDM

Short-run low gray-level emphasis Sum squares Gray-level variance
Gray-level variance Cluster prominence High gray-level emphasis
Low gray-level run emphasis Imc2 Dependence entropy
Gray-level non-uniformity normalized Imc1 Dependence non-uniformity
Run variance Difference average Gray-level non-uniformity
Gray-level non-uniformity Id Small dependence emphasis
Long-run emphasis Cluster tendency Small dependence high gray-level emphasis
Short-run high gray-level emphasis NGTDM Dependence non-uniformity normalized
Run length non-uniformity Coarseness Large dependence emphasis
Short-run emphasis Complexity Large dependence low gray-level emphasis
Long-run high gray-level emphasis Strength Dependence variance
Run percentage Contrast Large dependence high gray-level emphasis
Long-run low gray-level emphasis Busyness Small dependence low gray-level emphasis
Run entropy Low gray-level emphasis
High gray-level run emphasis
Run length non-uniformity normalized
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Fig. 3   Cluster heat map of radiomic features for responder and non-responder groups
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58 patients. In their study, T2-weighted MRI texture features 
were fed to a naïve Bayes machine learning classifier provid-
ing overall best performance with a sensitivity of 82.9% (95% 
CI:80–86.2), specificity of 83.7% (95% CI:75.7–92), and AUC 
of 0.88 (95% CI:0.83–0.92) [46].

Although the effectiveness of CABG has not been 
assessed by CMR radiomics before, the outcome prediction 
of other interventional treatments was previously investi-
gated. Ma et al. [47] conducted a study to develop a radiom-
ics model based on features extracted from T1-mapped CMR 

Fig. 4   Importance value of the selected features using a SCAD penalized SVM and b recursive partitioning algorithms

Table 3   The area under the ROC curve (AUC) with 95% confidence 
intervals, sensitivity, and specificity with standard deviation for each 
selected feature (univariate) and whole feature set (multivariable anal-

ysis). The “*” sign indicates significant predictive variables by uni-
variate ROC curve analysis at the level of 0.05

Method Selected variables AUC (95% CI) Sensitivity Specificity Overall AUC (95% 
CI), sensitivity (SD), 
specificity (SD)

DeLong’s test for 
comparison of two ROC 
curves

SCAD-penalized 
SVM

First order-10 percentile 0.55 (0.40–0.71) 0.82 0.30 0.784 (0.64–0.92),
0.591 (0.09),
0.809 (0.10),

Z = 1.189
(p value = 0.264)First order-skewness 0.59 (0.50–0.68)* 0.73 0.53

GLCM-autocorrelation 0.56 (0.40–0.71) 0.64 0.53
GLCM-cluster shade 0.55 (0.40–0.70) 0.77 0.43
GLCM-inverse variance 0.60 (0.52–0.75) * 0.68 0.57
GLSZM-gray-level 

non-uniformity 
normalized

0.62 (0.53–0.76) * 0.69 0.62

GLDM-large depend-
ence high gray-level 
emphasis

0.59 (0.50–0.73) * 0.55 0.67

GLRLM-run percent-
age

0.57 (0.42–0.72) 0.46 0.76

GLSZM-gray-level 
non-uniformity

0.60 (0.50–0.74) * 0.68 0.53

GLRLM-long-run 
high gray-level 
emphasis

0.55 (0.39–0.70) 0.55 0.67

RP algorithm GLCM-sum average 0.56 (0.40–0.71) 0.91 0.24 0.654 (0.50–0.82),
0.727 (0.11),
0.523 (0.09),

NGTDM-contrast 0.56 (0.40–0.71) 0.86 0.34
GLSZM-gray-level 

variance
0.54 (0.38–0.69) 0.64 0.57

GLSZM-high-gray-
level zone emphasis

0.54 (0.38–0.69) 0.59 0.57

First order-10 percentile 0.55 (0.40–0.71) 0.82 0.30
First order-skewness 0.59 (0.50–0.68) * 0.73 0.53
GLSZM-low gray-

level zone emphasis
0.55 (0.39–0.70) 0.32 0.76
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scans for predicting major adverse cardiac events threatening 
patients with acute ST elevation MI undergoing PCI. By 
enrolling 157 patients, their model performed well in the 
test set with an AUC of 0.90 and F1 score of 0.62. More 
comprehensive studies are needed to consider both scenarios 
(PCI and CABG) and compare the most predictive features 
and overall performance. In this study, we investigated the 
potential of LGE-CMR texture analysis for CABG outcome 
prognosis. As a proof-of-concept study, our results provide 
a body of evidence, asserting that texture analysis of LGE-
CMR scans has the potential to characterize the underlying 
pathology of lesions to differentiate between responder and 
non-responder CABG candidate patients. We established 
robust multivariable classifiers providing significant predic-
tive power (AUCs of 0.784 and 0.654 for SCAD penalized 
SVM and RP, respectively). By distinguishing CABG non-
responder patients, they can benefit from alternative effec-
tive treatment strategies such as pharmacological treatments 
or be directed toward heart transplantation surgery.

One of the bright sides of radiomics analysis, in com-
parison with more complicated methods, such as deep 
learning, is its ability to identify predefined standard fea-
tures that correlate well with the outcome of interest. While 
such interpretation may not always be straightforward, more 
and more studies are attempting to justify univariate out-
comes by exploring possible explanations for the high per-
formance achieved by certain features [22, 24, 48, 49]. This 
can also help toward offsetting probable biases in results and 

conclusions, which is very common in radiomics studies 
owing to the unavailability of large datasets and the lack of 
external validation. Our results also highlighted single fea-
tures that are capable of significantly stratifying patients into 
classes. In necrosis areas, the elevated extracellular volume 
and the decreased speed of washout result in the accumula-
tion of gadolinium, which produces a stronger signal in the 
LGE-CMR scan [50]. GLSZM gray-level non-uniformity 
normalized (szm-glnu-norm) from the SCAD-SVM algo-
rithm had the highest important value. This feature calcu-
lates the distribution of zone counts over the gray levels. 
A higher value of this feature means that zone counts are 
distributed unequally over the gray levels [51]. We hypothe-
sized that this feature reflects poor prognosis due to the pres-
ence of severely infarcted zones (zones with high gadolin-
ium accumulation) that cannot be revived even after oxygen 
is supplied via surgical revascularization. The other most 
predictive feature was skewness in the RP algorithm. Skew-
ness is the representative of unsymmetrical distribution of 
gray-level values in the region of interest. A negative skew 
in an image is associated with a high number of voxels with 
a strong signal, here indicating high gadolinium accumula-
tion by the severely infarcted tissue. Hence, skewness is also 
in concordance with szm-glnu-norm representing infarcted 
myocardial tissue showing poor prognosis.

Regarding machine learning algorithms, we utilized two 
robust/consistent classifiers with built-in embedded feature 
selections. Embedded feature selection methods identify 
the subset of features that optimize the performance of the 
desired machine learning algorithm through considering 
interactions of features and simultaneously keeping com-
putational costs reasonably low (40). Although the SCAD-
SVM model achieved higher AUC compared to the RP algo-
rithm (0.784 vs 0.654), their difference was not significant 
based on the comparison of their AUCs using DeLong’s 
test. Moreover, both models were significantly predictive 
considering ROC curve analysis at a level of 0.05. Putting 
together the positive results of both multivariable models 
and certain single features, we can strengthen the evidence 
that radiomic features extracted from LGE-CMR scans of 
CAD patients can predict CABG outcome regardless of the 
feature selection and machine learning algorithm. However, 
the performance of the model can be optimized by selecting 
the most appropriate model. Future studies might explore 
more advanced and complex machine learning models and 
their integration with ensemble learning methods.

This preliminary study suffered from a number of 
limitations. To start with, the number of patients was 
relatively small. However, our dataset was well-balanced 
with respect to responder and non-responder patients. In 
addition, we used repeated fivefold cross-validation with 
10,000 bootstrapping resamples. Overall, considering the 
study as a proof-of-concept, the number of patients was 

Fig. 5   ROC curves for SCAD-SVM and RP classifiers. The statistical 
comparison of the two ROC curves with 10,000 bootstrapping resa-
mples showed no statistically significant difference (p value = 0.264)
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sufficient. Future studies should enroll larger datasets to 
further validate our findings and extend the model to a 
more robust and reproducible condition. Different stud-
ies used different criteria to assess the effectiveness of 
CABG surgery on myocardium functionality [52–54]. In 
this study, the difference between pre- and post-CABG 
LVEF of patients obtained with echocardiography was 
used as a threshold to classify them into responder and 
non-responder classes. The threshold of 5% increase was 
selected to ensure the difference is not due to the echo-
cardiography error. Different studies use different criteria 
based on what data they have access to. To improve the 
reliability of studies of this kind, standardization is needed 
for the evaluation of CABG treatment outcomes.

Conclusion

The results of this study showed that machine learning 
algorithms can provide useful insight into the prediction 
of myocardial function in patients after CABG. Multiple 
radiomics texture features alone or combined in the mul-
tivariable model using machine learning algorithms pro-
vide prognostic information regarding myocardial function 
improvement in patients after CABG.
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