Skip to main content
. 2022 Aug 22;35(6):1708–1718. doi: 10.1007/s10278-022-00681-0

Table 3.

The area under the ROC curve (AUC) with 95% confidence intervals, sensitivity, and specificity with standard deviation for each selected feature (univariate) and whole feature set (multivariable analysis). The “*” sign indicates significant predictive variables by univariate ROC curve analysis at the level of 0.05

Method Selected variables AUC (95% CI) Sensitivity Specificity Overall AUC (95% CI), sensitivity (SD), specificity (SD) DeLong’s test for comparison of two ROC curves
SCAD-penalized SVM First order-10 percentile 0.55 (0.40–0.71) 0.82 0.30

0.784 (0.64–0.92),

0.591 (0.09),

0.809 (0.10),

Z = 1.189

(p value = 0.264)

First order-skewness 0.59 (0.50–0.68)* 0.73 0.53
GLCM-autocorrelation 0.56 (0.40–0.71) 0.64 0.53
GLCM-cluster shade 0.55 (0.40–0.70) 0.77 0.43
GLCM-inverse variance 0.60 (0.52–0.75) * 0.68 0.57
GLSZM-gray-level non-uniformity normalized 0.62 (0.53–0.76) * 0.69 0.62
GLDM-large dependence high gray-level emphasis 0.59 (0.50–0.73) * 0.55 0.67
GLRLM-run percentage 0.57 (0.42–0.72) 0.46 0.76
GLSZM-gray-level non-uniformity 0.60 (0.50–0.74) * 0.68 0.53
GLRLM-long-run high gray-level emphasis 0.55 (0.39–0.70) 0.55 0.67
RP algorithm GLCM-sum average 0.56 (0.40–0.71) 0.91 0.24

0.654 (0.50–0.82),

0.727 (0.11),

0.523 (0.09),

NGTDM-contrast 0.56 (0.40–0.71) 0.86 0.34
GLSZM-gray-level variance 0.54 (0.38–0.69) 0.64 0.57
GLSZM-high-gray-level zone emphasis 0.54 (0.38–0.69) 0.59 0.57
First order-10 percentile 0.55 (0.40–0.71) 0.82 0.30
First order-skewness 0.59 (0.50–0.68) * 0.73 0.53
GLSZM-low gray-level zone emphasis 0.55 (0.39–0.70) 0.32 0.76