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A B S T R A C T

Fast-paced yield improvement in strategic crops such as soybean is pivotal for achieving sustainable global food
security. Precise genomic selection (GS), as one of the most effective genomic tools for recognizing superior
genotypes, can accelerate the efficiency of breeding programs through shortening the breeding cycle, resulting in
significant increases in annual yield improvement. In this study, we investigated the possible use of haplotype-
based GS to increase the prediction accuracy of soybean yield and its component traits through augmenting
the models by using sophisticated machine learning algorithms and optimized genetic information. The results
demonstrated up to a 7% increase in the prediction accuracy when using haplotype-based GS over the full single
nucleotide polymorphisms-based GS methods. In addition, we discover an auspicious haplotype block on chro-
mosome 19 with significant impacts on yield and its components, which can be used for screening climate-
resilient soybean genotypes with improved yield in large breeding populations.
1. Introduction

Moderate to severe food insecurity has been increasing significantly
due to the exponential increase in theworld's population [1]. This, in turn,
requires a fast-paced yield improvement inmajor crops, including soybean
as one of the world's four key crops [2]. In conventional soybean breeding
programs, yield improvement that is currently at an annual rate of ~1%
highly depends on the end-season yield selection strategy [3]. However,
the current rate fallswell short of the required rate of 2.4% todouble global
soybean production by 2050 [4]. In the last two decades, soybean breeders
have made tremendous efforts to increase the yield by selecting superior
genotypes not necessarily based on yield per se but yield components as
well [5]. Secondary yield-related traits in soybeans can be categorized into
four yield component layers based on their importance in determining the
overall yield [6, 7]. The first layer of the yield components in soybean
includes the number of nodes per plant (NP), number of non-reproductive
nodes per plant (NRNP), number of reproductive nodes per plant (RNP),
and number of pods per plant (PP), directly explained the variation of yield
in genotypes [7, 8]. However, due to the complex nature of these traits,
several intrinsic and extrinsic interactions need to be considered and
manipulated for a successful, fast-paced yield improvement [9].

Agricultural genomics has been a promising area for investigating and
discovering genetic and phenotype interactions using a wide range of
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genetic approaches in order to shorten the lengthy breeding process and
lead to breakthroughs in yield genetic gains [10]. Previously Varshney,
Graner and Sorrells [11] proposed the use of different genomic tools to
identify candidate genes andmolecular markers associated with the traits
of interest. Recently, genomic selection (GS) has been added to this
portfolio as an effective method to select superior genotypes based on
their genetic profiles [12]. The basis of GS is to exploit different genomic
predicting models on a large set of genetic markers distributed across the
genome to predict the desirable phenotypic performance of a given trait
in a wide range of genotypes [13, 14]. Genome prediction (GP) models
are developed over phenotypic and genetic information of the training
population and predict the phenotype of the testing population based on
its genotypic data [14, 15]. Unlike other genomic tools, GS does not
require prior knowledge about the marker-trait association, but the in-
clusion of the significant marker-trait associations into GP models can
improve its prediction accuracy [12, 13]. Nevertheless, the actual yield
improvement with GS depends on several factors, including the selection
of appropriate algorithms and precise genetic information, which hinder
its important role in future sustainability and global food security [16].

Significant efforts have been made to increase the efficiency of GS in
selecting superior genotypes [12, 13, 15, 17]. Those efforts included but
not limited to the use of haplotype blocks instead of genetic markers and
sophisticated bigdata analyzing methods. Haplotype refers to a set of
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different alleles in different genetic markers on a single chromosome with
strong linkage disequilibrium (LD) that are inherited together with the
least chance of recombination [18]. Due to the high variable linkage
disequilibrium (LD) patterns in soybean populations, incorporating all
genetic markers in GP models may significantly increase the overfitting
and false-positive rates. However, redundant genetic markers can be
eliminated by the use of haplotypes [18, 19]. Abdel-Shafy, Bortfeldt,
Tetens and Brockmann [20] reported the efficiency of using the haplotype
approach for detecting genomic regions associated with the trait of in-
terest instead of using a single-marker approach. Haplotypes can be ob-
tained using different approaches such as (1) estimating haplotype
diversity in a given segment of a chromosome, (2) calculating pairwise LD
between the adjacent genetic markers in a chromosome, and (3) clus-
tering genetic markers using sliding – windows or variable length [21].
Previous studies suggested the effectiveness of LD-based approaches in
identifying haplotypes in a given chromosome [19, 20, 21]. Although
using haplotypes in GS can improve the prediction accuracy per se, it can
be accelerated if using appropriate and sophisticated GP models [12].

By the recent advances in bigdata analyzing methods, machine
learning (ML) algorithms have been considered as high potential
analytical approaches to be exploited in different breeding aspects such
as early-stage yield prediction [22], genome-wide association studies
[23], and GS [24]. The basis of ML algorithms is to learn from the
available dataset and improve automatically without completely pro-
gramming [25]. Each ML algorithm can learn the data pattern from the
training dataset in a specific way and predict the target variable in the
testing dataset [25, 26]. For instance, random forest (RF) as one of the
most widely used ML algorithms, can predict the target variable by using
the average results of identical decision trees that are obtained from the
bootstrapped samples of the training dataset [27]. Support vector
regression (SVR), as the regression form of the support vector machine,
provides different sets of hyperplanes to select the best regression line
with the minimum possible errors in the model [28]. Radial basis func-
tion (RBF) regressor, as the regression form of RBF network algorithm,
quantifies the inherent existing knowledge in the training dataset and
detects all possible connections between inputs and target variables using
the radial basis function as an activation function [29].

Although all ML algorithms have revolutionized the bigdata analysis
methods, recent studies showed that the individual use of ML algorithms
might be subject to overfitting and false-positive rate [30]. Data fusion, in
which the results of two or more individual ML algorithms are combined
by using an ensemble strategy, can be considered as one of the common
approaches to tackle this shortage [31]. Previous studies demonstrated
the efficiency of using data fusion techniques for improving the yield
prediction in soybean [22], synergizing off-target in cannabis through
CRISPR/CAS [31], and nicosia wastewater treatment plant [32]. How-
ever, the possible use of data fusion techniques in GS to improve pre-
diction accuracy is still unexplored and requires comprehensive
investigations. This study was aimed to (1) investigate the possible use of
haplotype-based GS for predicting soybean yield and its component
traits, (2) conduct a comparative study on the success of ensemble and
individual ML algorithms for improving the prediction accuracy in GS,
and (3) determine the best haplotype profiles for improving soybean
yield and its component traits. Overall, the findings from this study shed
light on the use of optimized GS in selecting superior genotypes, which
will facilitate the development of soybean cultivars with improved yield
genetic gains as a sustainable way to tackle global food insecurity.

2. Results

2.1. Phenotyping and genotyping evaluations

The phenotypic evaluations and data collecting process of the tested
traits are explained in detail in Yoosefzadeh-Najafabadi, Tulpan and
Eskandari [5, 33]. In brief, the average yield performance of genotypes in
a panel of 250 soybeans ranged between 2.58 to 5.71 ton ha�1. Also, the
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average mean for the number of nodes per plant (NP), non-reproductive
nodes per plant (NRNP), reproductive nodes per plant (RNP), and pods
per plant (PP) were 15.21, 3.33, 11.89, and 45.02, respectively. While
the highest estimated heritability of the tested traits was found for NP
(0.34), seed yield had the lowest value (0.24). A full description of the
genetic evaluation can be found in Yoosefzadeh Najafabadi, Torabi,
Tulpan, Rajcan and Eskandari [34]. In brief, a total of 17,958 SNPs out of
40,712 SNPs were selected as the polymorphic and mapped onto 20
soybean chromosomes with an average 898 SNPs in each chromosome. In
addition, the mean genetic density of the tested population was 0.12 cM
for every SNP across the whole genome.

2.2. SNPs-based GS vs. haplotypes-based GS

To predict the breeding values of the genotypes for yield and its
component traits, different learning algorithms were performed on full
SNPs and haplotype blocks as input variables. Linear Pearson correlation
coefficient values, between training and testing prediction values for
each dataset, were used to evaluate the efficacies of the datasets. Using
haplotype blocks as input variables resulted in greater correlation values
for all the tested traits (Figure 1A–E). The average correlation coefficient
between training and testing prediction values using the full SNPs dataset
was 0.41, while the haplotype blocks dataset had an average value of
0.48. Therefore, further GS analysis was conducted on the haplotype
blocks dataset only.

2.3. Haplotype-based GS analysis

To perform the comparative haplotype-based GS analysis, coefficient
of determination (R2) values were estimated for the individual method,
including ridge regression best linear unbiased prediction (rrBLUP) and
each machine learning (ML) algorithm, and for the combined ML strategy
of Ensemble-Bagging (E-B). For yield, the highest R2 value was obtained
using the E-B method (R2 ¼ 0.21), and the lowest value was obtained
using rrBLUP (0.07). The SVR algorithm was the second-best algorithm
for predicting the breeding value of the yield using the haplotypes with
the R2 value of 0.16 (Figure 2A). For NP, the highest R2 was obtained
using E-B (0.51), while the lowest value was for rrBLUP (0.30). Other
tested ML algorithms had the R2 ranging from 0.35 to 0.47 in predicting
the breeding value of NP using the haplotype dataset (Figure 2B). For
NRNP, the highest R2 was obtained using EB (0.30), followed by SVR
(0.26), RBF (0.23), RF (0.21), and rrBLUP with an R2 value of 0.10
(Figure 2C). The same pattern was observed for RNP as the E-B had the
highest R2 (0.32) among all other tested algorithms while the rrBLUP had
the lowest value of 0.10 (Figure 2D). E-B was also the best algorithm for
predicting the breeding value of the PP with the R2 value of 0.23. The SVR
and RF algorithms were the second and third best algorithms for pre-
dicting the breeding value of PP with the R2 values of 0.13 and 0.11,
respectively. The lowest R2 (0.09) was obtained using rrBLUP (Figure 2E).

In addition to estimating R2 values of the tested methods for evalu-
ating their performance, the mean absolute error (MAE) and root mean
square error (RMSE) values were also estimated for them (Figure 3A-E).
Among all the tested algorithms, E-B had the lowest MAE and RMSE in
predicting the breeding values of all the tested traits except for PP, in
which rrBLUP had the lowest values for MAE (3.27) and RMSE (4.17).
The rrBLUP method had the highest MAE and RMSE values for yield, NP,
NRNP, and RNP (Figure 3A–D). For PP, E-B was the second-best algo-
rithm for this trait, with MAE and RMSE values of 3.31 and 4.47,
respectively (Figure 3E). Based on the average values of MAE and RMSE
in all the tested traits, E-B outperformed all other algorithms in pre-
dicting the breeding values for soybean yield and its components.

2.4. Top score associated haplotypes

The importance scores for each haplotype block were measured using
recursive feature elimination (RFE). All the haplotype blocks with



Figure 1. Estimated correlation coefficient values of the tested algorithms for (A) yield, (B) NP, (C) NRNP, (D) RNP, and (E) PP using full SNP (Full-) and haplotype
block (Haplotype-) dataset. Ensemble-Bagging (E-B), Radial basis function (RBF), Random forest (RF), support vector regression (SVR), Ridge regression best linear
unbiased prediction (rrBLUP).
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importance scores of over 50%were selected as the best haplotype blocks
for predicting the breeding values of the tested traits. The 50% threshold
was achieved based on using a global empirical threshold for estimating
the significant threshold of haplotype blocks associated with the tested
traits. For soybean yield, seven haplotype blocks were selected as best for
predicting the breeding value. Most of the high importance haplotype
blocks underlying yield were located on chromosomes 16 and 19, with an
average length of 731.4 kbp (Supplementary Table 1). The haplotype
blocks 16 and 23 located on chromosomes 19 and 16, respectively, had
the highest frequencies in predicting the breeding value for soybean
yield.

For NP, 10 haplotype blocks were selected to predict the breeding
value of this trait. Most of the high importance haplotype blocks were
located on chromosomes 19 and 8, with an average length of 2,278.0 kbp
(Supplementary Table 2). Haplotype block 16 on chromosome 19 was the
most frequent haplotype among all other high-scored haplotype blocks
important for predicting the breeding value of NP. For NRNP, 20
haplotype blocks, mostly located on chromosomes 8 and 13 with an
average length of 761.2 kbp, were identified as highly associated with
this trait. Haplotype block 16 on chromosome 19 was one of the high-
scored ones associated with this trait, and it was also detected as asso-
ciated with NP and yield. Haplotype block 65 on chromosome 8 was also
detected as the high importance one associated with both NP and NRNP
(Supplementary Table 3). For predicting the breeding value of RNP, we
identified 16 highly important haplotype blocks on eight chromosomes.
The most influential haplotype block was located on chromosome 1, with
the highest importance score of 98.9 (Supplementary Table 4). The
haplotype block 16 on chromosome 19 was also one of the detected
haplotypes that was highly associated with RNP. For PP, the high
3

importance score haplotype blocks were located on chromosomes 1, 8, 9,
11, 12, 14, 16, and 19. The highest scored haplotype block was located on
chromosome 16, with an importance score of 98.2 (Supplementary
Table 5). The haplotype block 16 on chromosome 19 was also one of the
high importance haplotypes underlying the breeding value of PP.

2.5. Extracting candidate genes underlying detected haplotype

Since haplotype block 16, located on chromosome 19, was found to
be associated with all the tested traits, potential candidate genes un-
derlying yield and its components located in this block were extracted
using the existing knowledge from previous studies and gene ontology
(GO) enrichment analyses. With 1,827 kbp length, the haplotype block
contained 69 SNPs in total, as illustrated in Figure 4. Three different sub-
haplotypes, namely 16–1, 16–2, and 16–3, were identified in this block
with the frequency rates of 0.47 (107 genotypes), 0.26 (60 genotypes),
and 0.26 (60 genotypes), respectively (Figure 4). Out of 12 candidate
genes located in this block, six genes namely, Glyma.19G064700, Gly-
ma.19G064800, Glyma.19G065100, Glyma.19G065200, Gly-
ma.19G065600, and Glyma.19G065700 were previously reported as
being associated with soybean yield and its related traits (Table 1). All six
candidate genes seem to be related to the plastid, plasma membrane,
cytosol, endoplasmic reticulum, mitochondrion, nucleolus, nucleus, and
membrane. Based on the GO annotation results, 18 GO profiles were
identified for the selected six genes that mainly encode oxidative stress,
glycolyse and nitrogen cycles, fatty acid beta-oxidation, developmental
growth, and cellular process (Table 1). Out of 18 GO profiles, nine were
detected in Glyma.19G065600, which mainly encodes the glutamate
biosynthetic process, ammonia assimilation cycle, nitrate assimilation



Figure 2. Estimated coefficient of determination (R2) values of the tested algorithms for (A) yield, (B) NP, (C) NRNP, (D) RNP, and (E) PP using haplotype block
(Haplotype-) dataset. Ensemble-Bagging (E-B), Radial basis function (RBF), random forest (RF), support vector regression (SVR), ridge regression best linear unbiased
prediction (rrBLUP).
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and compound metabolic process, developmental growth, NADH and
NADPH activities, gluconeogenesis, and glycolysis (Table 1).

3. Discussion

The most dominant strategy to increase the pace of soybean yield
improvement is to select the superior genotypes based on their yield
4

performance and its component traits. According to previous studies,
soybean yield components such as NP, NRNP, RNP, and PP play impor-
tant roles in determining the final yield production [33, 35].
Yoosefzadeh-Najafabadi, Tulpan and Eskandari [5] reported that PP and
NP had the highest positive correlation with yield, which indicated that
manipulating NP could result in significant changes in PP, leading to an
increase or decrease in the formation of final soybean seed yield.



Figure 3. The Mean Absolute Error (MAE, Top) and Root Mean Square Error (RMSE, Bottom) values of the tested algorithms for (A) yield, (B) NP, (C) NRNP, (D) RNP,
and (E) PP using haplotype blocks (Haplotype-) dataset. Ensemble-Bagging (E-B), radial basis function (RBF), random forest (RF), Support vector regression (SVR),
ridge regression best linear unbiased prediction (rrBLUP).

Figure 4. The haplotype block 16, on chromosome 19, with its 12 putative candidate genes and 18 GO profiles, underlying soybean yield improvement.
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Therefore, selecting superior genotypes based on yield influential char-
acteristics can accelerate the breeding process of cultivar development
programs.

With the emergence and fast advancement of the next-generation
sequencing (NGS) technologies, the cost and time of sequencing
breeding plant materials continue to decrease. This enables breeders to
exploit genetic information as a reasonable and sustainable tool in
selecting superior genotypes for accelerating genetic yield improvement
in soybean [12]. In addition to exploiting diverse genomic tools for
selecting genes and molecular markers associated with the trait of interest
[13], GS has recently been added to this portfolio as an effective method
to select superior genotypes based on their entire genetic profiles [12].
However, one of the major obstacles to using GS in applied breeding
programs is relatively low rates of prediction accuracy that need to be
improved. In this study, the efficiency of most common ML algorithms
individually and collectively, using E-B strategy, were evaluated using a
5

full SNPs-based dataset vs. an optimized haplotype-based dataset. Based
on the results, all the tested algorithms had higher performances using the
haplotype-based dataset, which indicated the efficiency of using haplo-
type blocks over the full complement of SNPs in predicting the breeding
values of soybean yield and its components. Bhat, Yu, Bohra, Ganie and
Varshney [12] (2021) reported that by using haplotype blocks in GS,
breeders could extract the multidimensional relationships between
phenotypic and genotypic information better than using full SNP markers.
It can be mostly explained by the better capturing of the genomic simi-
larity and LD in different genotypes, which resulted in capturing the high
allelic order interactions [12, 18]. Recently, Jan, Guan, Yao, Liu, Wei,
Abbadi, Zheng, He, Chen and Guan [36] compared the prediction per-
formance of haplotype and SNPs-based datasets in Brassica and detected a
higher prediction ability using haplotype-based datasets.

In addition to using haplotype blocks for a prominent improvement of
prediction accuracies in GS, choosing an appropriate GP model is



Table 1. The list of detected genes for the selected haplotype blocks in the tested
soybean panel.

Gene ID Go enrichment ID GO Description

Glyma.19G064700 GO:0031072 Heat shock protein binding

Glyma.19G064800 GO:0009684 Indoleacetic acid biosynthetic process

GO:0048523 Negative regulation of cellular process

GO:0006979 Response to oxidative stress

Glyma.19G065100 GO:0007010 Cytoskeleton organization

GO:0006094 Gluconeogenesis

GO:0006096 Glycolysis

Glyma.19G065200 GO:0006635 Fatty acid beta-oxidation

Glyma.19G065600 GO:0006537 Glutamate biosynthetic process

GO:0019676 Ammonia assimilation cycle

GO:0042128 Nitrate assimilation

GO:0006807 Nitrogen compound metabolic process

GO:0048589 Developmental growth

GO:0016040 Glutamate synthase (NADH) activity

GO:0045181 Glutamate synthase activity, NAD(P)H
as acceptor

GO:0006094 Gluconeogenesis

GO:0006096 Glycolysis

Glyma.19G065700 GO:0006661 Phosphatidylinositol biosynthetic process
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paramount to avoid overfitting issues and reduce false-positive rates.
This study demonstrated the efficiency of using the E-B data fusion
technique for increasing the prediction accuracy of soybean yield and its
related traits using the haplotype blocks dataset. The effectiveness of
using E-B over individual ML algorithms is due to the ability of the E-B to
combine multiple individual algorithms to construct a combined robust
algorithm. The E-B strategy is built upon using the decision trees for
different individual ML algorithms that significantly reduce the variance
and improve the accuracy, which results in a reliable strategy to deal with
overfitting rates. However, more studies are required to confirm the ef-
ficiency of E-B for increasing the prediction accuracy in soybean and
other plant species.

In addition, RFE was used to estimate the importance scores of all the
haplotype blocks for predicting the breeding values of the soybean yield
and its secondary related traits. The results showed that haplotype 16 on
chromosome 19 was highly influential on all the tested traits. Further-
more, we identified six candidate genes, with 18 GO profiles associated
with all the tested traits, which need further evaluations before being
used in future genetic engineering and genome design activities. Gly-
ma.19G064700 (GO:0031072) encodes heat shock protein (HSP) bind-
ing, which is important for both growth and abiotic stresses tolerance in
plant species [37]. Li, Wong, Cheng, Cheng, Li, Mansveld, Bergsma,
Huang, van Eijk and Lam [38] reported that HSP, which was significantly
induced under a wide range of abiotic stress treatments in soybean,
affected plant growth and development. Another candidate gene that was
found significantly important for soybean yield and its secondary-related
traits was Glyma.19G064800 (GO:0006979), which encodes response to
oxidative stress. It can be read that abiotic stresses played a major role in
determining the overall yield of the tested genotypes, and these two
candidate genes might be exploited further as a marker for selecting
superior genotypes that have a high abiotic stress tolerance.

Many of the identified candidate genes, such as Glyma.19G065100
(GO:0007010), Glyma.19G064800 (GO:0009684 and GO:0048523), and
Glyma.19G065600 (GO:0048589) encode cytoskeleton organization,
indoleacetic acid biosynthetic process, negative regulation of cellular
process, and developmental growth, respectively. Cytoskeleton and indo-
leacetic acid aremajor components for building, expanding, andmodifying
cell walls, which affects the internode length and NP in plant species [39,
40]. Changing the hormone balance in plants can greatly affect the growth
pattern, which results in increasing/decreasing the overall yield. Besides
6

hormonal balances, the optimal use of products of the primarymetabolism,
such as nitrogen and carbon ratio, can influence plant growth and devel-
opment [41]. In this study, one of the identified genes, Glyma.19G065600
(GO:0019676, GO:0042128, and GO:0006807), encodes ammonia assim-
ilation cycle, nitrate assimilation, and nitrogen compound metabolic pro-
cess. Ammonium assimilation plays an important role in incorporating
ammonium into proteins, directly affecting plant growth and development
[42, 43]. Nitrate assimilation is another important component in plants
that greatly influences crop yield, plant biomass, and productivity [44, 45].
These results indicate that nitrogen and ammonium assimilation rates are
strongly associated with the overall performance of the genotypes sug-
gesting that the candidate genes underlying these characteristics may be
used as markers for selecting superior genotypes.

In conclusion, a fast-paced yield improvement in soybean is conceiv-
able through exploiting GSmethods that are built on precise algorithms as
well as using optimized genetic information. Our findings suggested using
the E-B strategy as an effective approach for increasing the accuracy of GS
over conventional GS methods. In addition, using haplotype block data-
sets can increase the prediction accuracy of GS up to 7% compared to
using full SNP datasets for complex yield component traits. Overall, the
optimization process in GS can be done using both the E-B strategy and
haplotype dataset, and the information derived from the optimized GS can
be used to select the superior genotypes with improved yield genetic
gains. Through his study, we discovered a haplotype block on chromo-
some 19 (block 16) with significant effects on yield and its component
traits, which can be used as a reliable genomic fragment for screening
genotypes with improved yield genetic potential. The identified candidate
genes positioned in this haplotype block revealed the importance of genes
associated with plant growth and development as well as genes underly-
ing abiotic resilience for enhancing yield production in soybean. Although
the results of this study seem to be promising for improving yield in
soybean, there are some limitations with this study that may need to be
taken into account before generalizing the results to our germplasm and
environments. The tested soybean panel probably covers only a portion of
the available genetic variation in worldwide soybean germplasm. There-
fore, the authors recommend applying the same approach to more diverse
populations using whole-genome sequencing data to validate the results
and give a better estimation of the efficiency of using ML algorithms in
haplotype-based GS analysis for increasing the prediction accuracy. In
addition, we used the cross-validation technique to minimize false-
positive rates in our results; however, upstream analyses such as gene
expression and transcriptomics-related evaluations are recommended to
confirm the causal relationship between the identified genes and the
target traits in this study.

4. Methods

4.1. Plant materials and experimental data

A panel of 250 soybean genotypes was cultivated in the field at the
University of Guelph, Ridgetown Campus (200m above sea level,
42�27014.800N 81�52048.000W) and Palmyra (195 m above sea level,
42�25050.100N 81�45006.900W), Ontario, Canada in two consecutive years
(2018 and 2019). The field experiments were based on randomized
complete block design (RCBD) with two replications in each environ-
ment. Overall, there were four environments consisting of two locations
� two years. Each phenotypic plot in each replication consisted of five
4.2 m long rows with a row spacing of 43 cm and seedling rate of 57 per
m2. There were 250 plots per replication, 500 soybean plots per envi-
ronment, 1000 plots per year, and 2000 plots in total.

4.2. Seed yield and yield components data collection

Soybean seed yield (ton ha�1) was collected by harvesting three
middle rows of each plot and adjusting to 13% seed moisture and days to
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maturity. Soybean yield component traits information such as PP, NP,
RNP, and NRNP were collected from 10 randomly selected plants in each
plot for each genotype [5].
4.3. Statistical analyses

In order to control the possible error in the field, the nearest-neighbor
analysis (NNA) as one of the most common spatial analyzing methods
[46] was implemented to reduce the possible error in the field caused by
spatial variability in the field. All the tested traits were scaled, centered,
and standardized in the pre-treatment and pre-processing steps. The best
linear unbiased prediction (BLUP) mixed model was used to estimate the
average value of each yield component trait. The effect of the environ-
ment was considered as a fixed effect, and the effect of genotypes and
block was assumed to be random in the BLUP analysis [47]. Overall, the
following statistical model was used in this study (Eq. (1)):

Y ¼Zg þ Xa þWi þ ε (1)

where Y is the phenotypic value (yield and yield component traits), g in
the vector of random genotype effects, in which g ~ N(0, σ2g), a is the
vector of block effects includes all the environments, added to the overall
mean (fixed), i stands for the GxE interaction effects (random), which i ~
N(0, σ2int), and ε is the vector of residuals, which ε~ N(0, σ2ε). Z, X, and
W represent the incidence matrices of g, a, and i effects, respectively. The
Pearson correlation and the heritability of soybean yield and its related
traits were measured previously by Yoosefzadeh-Najafabadi, Tulpan and
Eskandari [5].
4.4. Genotyping

The young trifoliate leaf tissue of each genotype was collected from
the first plot at the Ridgetown location. Afterward, DNA was extracted
using the NucleoSpin Plant II kit (Macherey–Nagel, Düren, Germany),
and the DNA quality was checked with Qubit® 2.0 fluorometer (Invi-
trogen, Carlsbad, CA). Genotyping-by-sequencing (GBS) was conducted
at Genomic Analysis Platform at Universit�e Laval (Laval, Quebec, Can-
ada), using ApeKI as the common enzymatic digestion for soybean [48].
The Fast-GBS pipeline [49] was conducted for each genotype based on
the Gmax_275_v2 reference genome. Imputing missing loci and removing
markers with a minor allele frequency less than 0.05 was done through
Markov model in Beagle v5 pipeline. Overall, 23 soybean genotypes were
eliminated, and a total of 17,958 high-quality SNPs were obtained from
227 soybean genotypes.
4.5. SNP-based haplotype blocks

A total of 2103 haplotype blocks that were characterized from 17,958
SNPs were used in haplotype-based GS (Supplementary Table 6).
Haplotype blocks were constructed using Haploview version 4.1 [50]
based on the solid spline method. This method provides more robust
block boundaries by considering the first and last markers in a block with
a strong LD. A cut-off of 1% was set to exclude SNPs from the block if
adding particular SNPs resulted in more than 1% recombinant allele
frequency. The Tagger was used to tag the best SNPs representing specific
blocks in a chromosome. Then, all the untagged SNPs were excluded
from the dataset to construct the haplotype-based dataset.
4.6. Genomic prediction models

4.6.1. Ridge regression best linear unbiased predictor (rrBLUP)
The basis of rrBLUP is to exploit the genetic relationship to calculate

the breeding value of each genotype [51, 52]. The rrBLUP method con-
siders all genetic markers that explain the equal amount of variance in
the trait of interest based on the following equation (Eq. (2)):
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Y ¼ μþ gz þ ε (2)
where Y is the phenotypic value (yield and yield component traits in this
study), μ is the overall mean, g stands for the marker effects follow g ~
N(0, σ2m) distribution, in which σ2m is the amount of the genetic variance
that is explained by each genetic marker, z in the design matrix for the
genetic marker effects instead of an incident matrix, and ε is the vector of
residuals [51].

4.6.2. Data fusion technique
Three commonly usedML algorithms, namely RBF, SVR, and RF, were

exploited in GS individually and collectively using the ensemble Bagging
data fusion technique.

4.6.2.1. Radial basis function (RBF) regressor. RBF regressor is known as
one of the most important neural network algorithms that predict the
target variable using a linear combination of RBF from neurons and input
variables [53]. RBF regressor consists of different layers, including a
linear output layer, a hidden layer with non-linear RBF, and an input
layer. In this study, RBF regressor was constructed based on the radial
basis function (RBF) as follows (Eq. (3)):

KðXa;XbÞ¼ exp

 
� jjXa þ Xbjj2

2σ2

!
(3)

where, KðXa;XbÞ is the kernel function based on the RBF, σ2 is the vari-
ance, and jXa þXbj is the Euclidean distance measurement between two
Xa and Xb points.

4.6.2.2. Support vector regression (SVR). SVR is the regression form of
the support vector machine that is widely used in different regression
analyses. SVR is constructed based on different sets of hyperplanes
known as decision boundaries that are used to predict the target variable
[54]. SVR also takes benefits from different types of kernels, which
transform the input variables to the required form. In this study, SVR was
constructed based on the polynomial kernel as follows (Eq. (4)):

KðXa;XbÞ¼
�
aþ XT

1 þ X2
�b (4)

where, KðXa;XbÞ is the polynomial kernel between two data points, a is
the constant number, b is the degree of the kernel, and T is the transpose
element.

4.6.2.3. Random forest (RF). RF is another supervised ML algorithm,
which is constructed with different sets of parallel trees with no interac-
tion [55]. After constructing several decision trees based on the training
dataset, the output would be the mean of all classes derived from the
prediction results of all constructed decision trees. Overall, the following
equation was used to solve the regression problem in this study (Eq. (5)):

Yi ¼ 1
B

XB
b¼1

TbðXiÞ (5)

where Yi is the predicted value of the genotype Xi, T stands for the total
number of constructed trees, and B stands for the total number of
samples.

4.6.2.4. Ensemble bagging strategy (E-B). Ensemble techniques have been
used broadly to improve the prediction accuracy by combining the final
prediction output of all individual ML algorithms. In this study, (E-B) was
used by the following steps: (1) train each ML algorithm individually
using the training dataset, (2) select the best ML algorithm that can best
predict the output variable as the metaClassifier for (E-B), and (3)
combine and aggregate the results of all tested ML algorithms in order to
increase the prediction accuracy of soybean yield and its related traits.
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4.7. Haplotype importance score

The RFE method as one of the most commonly used methods to es-
timate the importance of haplotype blocks, was used for estimating the
importance of each haplotype in predicting soybean yield and its com-
ponents. The RFE method identifies the score of each haplotype block in
the following steps: (1) construct the model based on the complete set of
inputs, (2) calculate the importance score using a sequential selection
strategy, (3) remove the least important haplotype blocks and eliminate
them from the model, and (4) recursively repeat the process [56]. In this
study, RFE was used based on considering the haplotype blocks as inputs
and soybean yield and its components as output variables.

4.8. Extracting candidate genes underlying detected haplotype

The haplotype block 16, on chromosome 19 that was found to be
associated all the tested traits was chosen to extract the candidate genes
within the fragment. For this, the Glycine maxWilliam 82 reference gene
2.0 by the SoyBase database (https://www.soybase.org) was used. The
flanking regions of the detected haplotype were determined based on the
solid spline method with the expected spin if the coefficient of linkage
disequilibrium (D0) was higher than 0.5. Finally, the associated genes
with traits of interest were detected using discoveries from previous
studies and GO enrichment analysis.

4.9. Quantification of model performance and error estimations

The tested dataset consisted of the genetic information from 227
genotypes was randomly decided into the training and testing dataset
using a five-fold cross-validation (CV) technique with ten repetitions
[57]. The MAE (Eq. (6)) and The RMSE (Eq. (7)) as the twomost common
error estimated measurements, were calculated to quantify the perfor-
mance of each tested GS method.

MAE¼
Pn

i¼1

��Y0
i � YI

��
n

(6)

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðY0 � YÞ2

n

s
(7)

where Y stands for the observed value, Y0 is the predicted value, and n
stands for the number of observations.

In addition to the error estimation metrics, the R2 (Eq. (8)) was
calculated to estimate the goodness of fit between predicted and
observed values. The full definitions and descriptions of the tested met-
rics can be found in [58, 59, 60].

R2 ¼ SST � SSE
SST

(8)

where SST and SSE stand for the sum of squares for total and error,
respectively.

4.10. Visualizing and statistical analyzing

The results were visualized using Haploview [50], ggplot2 [61], and
ggvis [62] packages in the R software version 3.6.1. All pre-processing
steps and all description statistical procedures were conducted by R
software. Also, all ML algorithms were implemented using Weka soft-
ware version 3.8.5 [63] and caret [64] package in the R software.

Declarations

Author contribution statement

Mohsen Yoosefzadeh-Najafabadi: Performed the experiments;
Analyzed and interpreted the data; Contributed reagents, materials,
analysis tools or data; Wrote the paper.
8

Istvan Rajcan: Contributed reagents, materials, analysis tools or data;
Wrote the paper.

Milad Eskandari: Conceived and designed the experiments; Contrib-
uted reagents, materials, analysis tools or data; Wrote the paper.

Funding statement

None.

Data availability statement

Data will be made available on request.

Declaration of interest's statement

The authors declare no conflict of interest.

Additional information

Supplementary content related to this article has been published
online at https://doi.org/10.1016/j.heliyon.2022.e11873.

Acknowledgements

The authors are grateful to the past and current members of Eskandari
laboratory at the University of Guelph, Ridgetown, Bryan Stirling, John
Kobler, and Robert Brandt for their technical support. We would like to
thank Dr. Sepideh Torabi for his assistance with data collection.

References

[1] IFAD, UNICEF, WFP, WHO, The State of Food Security and Nutrition in the World
2021. Transforming Food Systems for Food Security, Improved Nutrition and
Affordable Healthy Diets for All, FAO Rome, Italy, 2021.

[2] Z. Liu, H. Ying, M. Chen, J. Bai, Y. Xue, Y. Yin, W.D. Batchelor, Y. Yang, Z. Bai,
M. Du, Optimization of China’s maize and soy production can ensure feed
sufficiency at lower nitrogen and carbon footprints, Nat. Food (2021) 1–8.

[3] D.K. Ray, N.D. Mueller, P.C. West, J.A. Foley, Yield trends are insufficient to double
global crop production by 2050, PLoS One 8 (2013), e66428.

[4] D.K. Ray, N. Ramankutty, N.D. Mueller, P.C. West, J.A. Foley, Recent patterns of
crop yield growth and stagnation, Nat. Commun. 3 (2012) 1293.

[5] M. Yoosefzadeh-Najafabadi, D. Tulpan, M. Eskandari, Application of machine
learning and genetic optimization algorithms for modeling and optimizing soybean
yield using its component traits, PLoS One 16 (2021), e0250665.

[6] M. Yoosefzadeh Najafabadi, Using Advanced Proximal Sensing and Genotyping
Tools Combined with Bigdata Analysis Methods to Improve Soybean Yield,
University of Guelph, 2021.

[7] J. Board, M. Kang, M. Bodrero, Yield components as indirect selection criteria for
late-planted soybean cultivars, Agron. J. 95 (2003) 420–429.

[8] S. Cui, D. Yu, Estimates of relative contribution of biomass, harvest index and yield
components to soybean yield improvements in China, Plant Breed. 124 (2005)
473–476.

[9] X. Wei, J. Qiu, K. Yong, J. Fan, Q. Zhang, H. Hua, J. Liu, Q. Wang, K.M. Olsen,
B. Han, A quantitative genomics map of rice provides genetic insights and guides
breeding, Nat. Genet. 53 (2021) 243–253.

[10] J.E. Decker, Agricultural genomics: commercial applications bring increased basic
research power, PLoS Genet. 11 (2015), e1005621.

[11] R.K. Varshney, A. Graner, M.E. Sorrells, Genomics-assisted breeding for crop
improvement, Trends Plant Sci. 10 (2005) 621–630.

[12] J.A. Bhat, D. Yu, A. Bohra, S.A. Ganie, R.K. Varshney, Features and applications of
haplotypes in crop breeding, Commun. Biol. 4 (2021) 1–12.

[13] K.S. Sandhu, S.S. Patil, M.O. Pumphrey, A.H. Carter, Multi-Trait Machine and Deep
Learning Models for Genomic Selection Using Spectral Information in a Wheat
Breeding Program, bioRxiv, 2021.

[14] M. Goddard, B. Hayes, Genomic selection, J. Anim. Breed. Genet. 124 (2007)
323–330.

[15] J.-L. Jannink, A.J. Lorenz, H. Iwata, Genomic selection in plant breeding: from
theory to practice, Brief. Funct. Genom. 9 (2010) 166–177.

[16] S. Singh, A. Jighly, D. Sehgal, J. Burgue~no, R. Joukhadar, S.K. Singh, A. Sharma,
P. Vikram, C.P. Sansaloni, V. Govindan, S. Bhavani, M. Randhawa, E. Solis-Moya,
S. Singh, N. Pardo, M.A.R. Arif, K.A. Laghari, D. Basandrai, S. Shokat,
H.K. Chaudhary, N.A. Saeed, A.K. Basandrai, L. Ledesma-Ramírez, V.S. Sohu,
M. Imtiaz, M.A. Sial, P. Wenzl, G.P. Singh, N.S. Bains, Direct introgression of
untapped diversity into elite wheat lines, Nat. Food 2 (2021) 819–827.

[17] C.A. Wartha, A.J. Lorenz, Implementation of genomic selection in public-sector
plant breeding programs: current status and opportunities, Crop Breed. Appl.
Biotechnol. 21 (2021).

https://www.soybase.org
https://doi.org/10.1016/j.heliyon.2022.e11873
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref1
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref1
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref1
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref2
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref2
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref2
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref2
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref3
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref3
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref4
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref4
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref5
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref5
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref5
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref6
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref6
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref6
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref7
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref7
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref7
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref8
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref8
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref8
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref8
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref9
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref9
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref9
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref9
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref10
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref10
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref11
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref11
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref11
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref12
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref12
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref12
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref13
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref13
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref13
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref14
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref14
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref14
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref15
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref15
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref15
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref16
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref16
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref16
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref16
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref16
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref16
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref16
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref16
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref17
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref17
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref17


M. Yoosefzadeh-Najafabadi et al. Heliyon 8 (2022) e11873
[18] K. Hamazaki, H. Iwata, RAINBOW: haplotype-based genome-wide association study
using a novel SNP-set method, PLoS Comput. Biol. 16 (2020), e1007663.

[19] R.I. Contreras-Soto, F. Mora, M.A.R. de Oliveira, W. Higashi, C.A. Scapim,
I. Schuster, A genome-wide association study for agronomic traits in soybean using
SNP markers and SNP-based haplotype analysis, PLoS One 12 (2017), e0171105.

[20] H. Abdel-Shafy, R.H. Bortfeldt, J. Tetens, G.A. Brockmann, Single nucleotide
polymorphism and haplotype effects associated with somatic cell score in German
Holstein cattle, Genet. Sel. Evol. 46 (2014) 1–10.

[21] J.S. Liu, C. Sabatti, J. Teng, B.J. Keats, N. Risch, Bayesian analysis of haplotypes for
linkage disequilibrium mapping, Genome Res. 11 (2001) 1716–1724.

[22] M. Yoosefzadeh-Najafabadi, D. Tulpan, M. Eskandari, Using hybrid artificial
intelligence and evolutionary optimization algorithms for estimating soybean yield
and fresh biomass using hyperspectral vegetation indices, Rem. Sens. 13 (2021) 2555.

[23] S. Szymczak, J.M. Biernacka, H.J. Cordell, O. Gonz�alez-Recio, I.R. K€onig, H. Zhang,
Y.V. Sun, Machine learning in genome-wide association studies, Genet. Epidemiol.
33 (2009) S51–S57.

[24] O.A. Montesinos-L�opez, A. Montesinos-L�opez, P. P�erez-Rodríguez, J.A. Barr�on-
L�opez, J.W. Martini, S.B. Fajardo-Flores, L.S. Gaytan-Lugo, P.C. Santana-Mancilla,
J. Crossa, A review of deep learning applications for genomic selection, BMC
Genom. 22 (2021) 1–23.

[25] Y. Kodratoff, Introduction to Machine Learning, Elsevier, 2014.
[26] M. Yoosefzadeh-Najafabadi, I. Rajcan, M. Vazin, High-throughput plant breeding

approaches: moving along with plant-based food demands for pet food industries,
Front. Vet. Sci. (2022) 1467.

[27] Y. Qi, Random forest for bioinformatics, in: Ensemble Machine Learning, Springer,
2012, pp. 307–323.

[28] W.S. Noble, What is a support vector machine? Nat. Biotechnol. 24 (2006)
1565–1567.

[29] M. Hesami, A.M.P. Jones, Application of artificial intelligence models and
optimization algorithms in plant cell and tissue culture, Appl. Microbiol.
Biotechnol. (2020) 1–37.

[30] M. Yoosefzadeh-Najafabadi, H.J. Earl, D. Tulpan, J. Sulik, M. Eskandari, Application
of machine learning algorithms in plant breeding: predicting yield from
hyperspectral reflectance in soybean, Front. Plant Sci. 11 (2021) 2169.

[31] M. Hesami, M. Yoosefzadeh Najafabadi, K. Adamek, D. Torkamaneh, A.M.P. Jones,
Synergizing off-target predictions for in silico insights of CENH3 knockout in
cannabis through CRISPR/CAS, Molecules 26 (2021) 2053.

[32] V. Nourani, G. Elkiran, S. Abba, Wastewater treatment plant performance analysis
using artificial intelligence–an ensemble approach, Water Sci. Technol. 78 (2018)
2064–2076.

[33] M. Yoosefzadeh-Najafabadi, S. Torabi, D. Torkamaneh, D. Tulpan, I. Rajcan,
M.M. Eskandari, Machine-learning-based genome-wide association studies for
uncovering QTL underlying soybean yield and its components, Int. J. Mol. Sci. 10
(2022) 5538.

[34] M. Yoosefzadeh Najafabadi, S. Torabi, D. Tulpan, I. Rajcan, M. Eskandari, Genome-
wide association analyses of soybean yield-related hyperspectral reflectance bands
using machine learning-mediated data integration methods, Front. Plant Sci. (2021)
2555.

[35] A. Xavier, K.M. Rainey, Quantitative genomic dissection of soybean yield
components, G3: Genes Genomes Genet. 10 (2020) 665–675.

[36] H.U. Jan, M. Guan, M. Yao, W. Liu, D. Wei, A. Abbadi, M. Zheng, X. He, H. Chen,
C. Guan, Genome-wide haplotype analysis improves trait predictions in Brassica
napus hybrids, Plant Sci. 283 (2019) 157–164.

[37] M.H. Al-Whaibi, Plant heat-shock proteins: a mini review, J. King Saud Univ. Sci. 23
(2011) 139–150.

[38] K.P. Li, C.H. Wong, C.C. Cheng, S.S. Cheng, M.W. Li, S. Mansveld, A. Bergsma,
T. Huang, M.J. van Eijk, H.M. Lam, GmDNJ1, a type-I heat shock protein 40
(HSP40), is responsible for both Growth and heat tolerance in soybean, Plant Direct
5 (2021), e00298.

[39] G.O. Wasteneys, M.E. Galway, Remodeling the cytoskeleton for growth and form:
an overview with some new views, Annu. Rev. Plant Biol. 54 (2003) 691–722.
9

[40] M.L. Lecube, G.O. Noriega, D.M. Santa Cruz, M.L. Tomaro, A. Batlle,
K.B. Balestrasse, Indole acetic acid is responsible for protection against oxidative
stress caused by drought in soybean plants: the role of heme oxygenase induction,
Redox Rep. 19 (2014) 242–250.

[41] D.K. Allen, J.D. Young, Carbon and nitrogen provisions alter the metabolic flux in
developing soybean embryos, Plant Physiol. 161 (2013) 1458–1475.

[42] Q. Li, B.H. Li, H.J. Kronzucker, W.M. Shi, Root growth inhibition by NH4þ in
Arabidopsis is mediated by the root tip and is linked to NH4þ efflux and GMPase
activity, Plant Cell Environ. 33 (2010) 1529–1542.

[43] H. Sun, L.H. Wang, Q. Zhou, X.H. Huang, Effects of bisphenol A on ammonium
assimilation in soybean roots, Environ. Sci. Pollut. Control Ser. 20 (2013)
8484–8490.

[44] M. Stitt, C. Müller, P. Matt, Y. Gibon, P. Carillo, R. Morcuende, W.R. Scheible,
A. Krapp, Steps towards an integrated view of nitrogen metabolism, J. Exp. Bot. 53
(2002) 959–970.

[45] G. Huang, L. Wang, Q. Zhou, Lanthanum (III) regulates the nitrogen assimilation in
soybean seedlings under ultraviolet-B radiation, Biol. Trace Elem. Res. 151 (2013)
105–112.

[46] A.S. Goldberger, Best linear unbiased prediction in the generalized linear regression
model, J. Am. Stat. Assoc. 57 (1962) 369–375.

[47] S. Bowley, A Hitchhiker's Guide to Statistics in Plant Biology, Any Old Subject
Books, Guelph, Ont., 1999.

[48] H. Sonah, M. Bastien, E. Iquira, A. Tardivel, G. L�egar�e, B. Boyle, �E. Normandeau,
J. Laroche, S. Larose, M. Jean, F. Belzile, An improved genotyping by sequencing
(GBS) approach offering increased versatility and efficiency of SNP discovery and
genotyping, PLoS One 8 (2013), e54603.

[49] D. Torkamaneh, J. Laroche, F. Belzile, Fast-GBS v2.0: an analysis toolkit for
genotyping-by-sequencing data, Genome 63 (2020) 577–581.

[50] J.C. Barrett, B. Fry, J. Maller, M.J. Daly, Haploview: analysis and visualization of LD
and haplotype maps, Bioinformatics 21 (2005) 263–265.

[51] B. Tan, D. Grattapaglia, G.S. Martins, K.Z. Ferreira, B. Sundberg, P.K. Ingvarsson,
Evaluating the accuracy of genomic prediction of growth and wood traits in two
Eucalyptus species and their F1 hybrids, BMC Plant Biol. 17 (2017) 1–15.

[52] J.B. Endelman, Ridge regression and other kernels for genomic selection with R
package rrBLUP, Plant Genome 4 (2011).

[53] D.S. Broomhead, D. Lowe, Radial basis functions, multi-variable functional
interpolation and adaptive networks, in: Royal Signals and Radar Establishment
Malvern (United Kingdom), 1988.

[54] N. Vapnik Vladimir, The Nature of Statistical Learning Theory (Information Science
and Statistics), Springer, 1999.

[55] L. Breiman, Bagging predictors, Mach. Learn. 24 (1996) 123–140.
[56] I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Gene selection for cancer classification

using support vector machines, Mach. Learn. 46 (2002) 389–422.
[57] B. Siegmann, T. Jarmer, Comparison of different regression models and validation

techniques for the assessment of wheat leaf area index from hyperspectral data, Int.
J. Rem. Sens. 36 (2015) 4519–4534.

[58] J. Farifteh, F. Van der Meer, C. Atzberger, E.J.M. Carranza, Quantitative analysis of
salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR
and ANN), Remote Sens. Environ. 110 (2007) 59–78.

[59] D.G. Cacuci, M. Ionescu-Bujor, I.M. Navon, Sensitivity and Uncertainty Analysis,
Volume II: Applications to Large-Scale Systems, CRC Press, 2005.

[60] J. Taylor, Introduction to Error Analysis, the Study of Uncertainties in Physical
Measurements, 1997.

[61] H. Wickham, M.H. Wickham, The ggplot package, URL: https://cran.r-projec
t.org/web/packages/ggplot2/index.html, 2007.

[62] T. Dennis, Using R and Ggvis to Create Interactive Graphics for Exploratory Data
Analysis, Data Visualization: a Guide to Visual Storytelling for Libraries, 2016.

[63] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The WEKA
data mining software: an update, ACM SIGKDD Explor. Newslett. 11 (2009) 10–18.

[64] M. Kuhn, Caret: Classification and Regression Training, Astrophysics Source Code
Library, 2015 ascl: 1505.1003.

http://refhub.elsevier.com/S2405-8440(22)03161-9/sref18
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref18
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref19
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref19
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref19
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref20
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref20
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref20
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref20
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref21
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref21
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref21
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref22
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref22
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref22
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref23
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref23
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref23
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref23
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref23
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref23
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref24
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref24
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref24
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref24
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref24
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref24
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref24
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref24
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref24
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref24
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref25
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref26
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref26
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref26
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref27
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref27
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref27
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref28
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref28
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref28
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref29
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref29
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref29
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref29
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref30
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref30
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref30
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref31
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref31
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref31
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref32
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref32
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref32
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref32
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref32
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref33
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref33
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref33
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref33
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref34
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref34
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref34
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref34
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref35
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref35
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref35
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref36
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref36
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref36
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref36
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref37
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref37
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref37
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref38
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref38
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref38
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref38
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref39
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref39
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref39
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref40
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref40
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref40
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref40
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref40
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref41
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref41
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref41
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref42
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref42
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref42
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref42
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref42
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref42
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref43
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref43
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref43
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref43
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref44
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref44
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref44
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref44
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref45
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref45
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref45
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref45
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref46
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref46
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref46
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref47
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref47
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref48
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref48
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref48
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref48
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref48
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref48
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref48
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref49
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref49
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref49
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref50
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref50
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref50
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref51
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref51
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref51
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref51
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref52
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref52
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref53
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref53
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref53
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref54
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref54
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref55
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref55
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref56
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref56
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref56
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref57
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref57
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref57
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref57
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref58
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref58
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref58
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref58
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref59
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref59
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref60
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref60
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref62
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref62
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref63
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref63
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref63
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref64
http://refhub.elsevier.com/S2405-8440(22)03161-9/sref64

	Optimizing genomic selection in soybean: An important improvement in agricultural genomics
	1. Introduction
	2. Results
	2.1. Phenotyping and genotyping evaluations
	2.2. SNPs-based GS vs. haplotypes-based GS
	2.3. Haplotype-based GS analysis
	2.4. Top score associated haplotypes
	2.5. Extracting candidate genes underlying detected haplotype

	3. Discussion
	4. Methods
	4.1. Plant materials and experimental data
	4.2. Seed yield and yield components data collection
	4.3. Statistical analyses
	4.4. Genotyping
	4.5. SNP-based haplotype blocks
	4.6. Genomic prediction models
	4.6.1. Ridge regression best linear unbiased predictor (rrBLUP)
	4.6.2. Data fusion technique
	4.6.2.1. Radial basis function (RBF) regressor
	4.6.2.2. Support vector regression (SVR)
	4.6.2.3. Random forest (RF)
	4.6.2.4. Ensemble bagging strategy (E-B)


	4.7. Haplotype importance score
	4.8. Extracting candidate genes underlying detected haplotype
	4.9. Quantification of model performance and error estimations
	4.10. Visualizing and statistical analyzing

	Declarations
	Author contribution statement
	Funding statement
	Data availability statement
	Declaration of interest's statement
	Additional information

	Acknowledgements
	References


