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The RNA editing landscape in acute
myeloid leukemia reveals associations
with disease mutations and clinical outcome

Eshwar Meduri,1,2,5,* Charles Breeze,4 Ludovica Marando,1,2,3 Simon E. Richardson,1,2,3

and Brian J.P. Huntly1,2,3,*

SUMMARY

Several studies have documented aberrant RNA editing patterns across multiple
tumors across large patient cohorts from The Cancer Genome Atlas (TCGA).
However, studies on understanding the role of RNA editing in acute myeloid
leukemia (AML) have been limited to smaller sample sizes. Using high throughput
transcriptomic data from the TCGA, we demonstrated higher levels of editing as
a predictor of poor outcomewithin theAMLpatient samples.Moreover, differen-
tial editing patterns were observed across individual AML genotypes. We also
could demonstrate a negative association between the degree of editing and
mRNA abundance for some transcripts, identifying the potential regulatory
potential of RNA-editing in altering gene expression in AML. Further edQTL anal-
ysis suggests potential cis-regulatory mechanisms in RNA editing variation. Our
work suggests a functional and regulatory role of RNA editing in the pathogen-
esis of AML and we extended our analysis to gain insight into the factors
influencing altered levels of editing.

INTRODUCTION

Acute Myeloid Leukemia (AML) is an aggressive, often fatal hematological malignancy, where the normally

exquisitely regulated processes of self-renewal, proliferation, and differentiation within the hematopoeitic

system are aberrantly coordinated.1 Transcriptional alterations have been shown to be a cardinal feature of

AML, and can be explained, at least in part, by recurrent mutations of transcription factors and epigenetic

regulators.2,3 Mutations of members of the RNA-splicing machinery are also common and more recently

RNA-modifications, such as N6-methyladenosine (m6A), have also been shown to be of mechanistic impor-

tance. Editing of RNA, alternatively termed as ‘‘RNA-DNA differences’’ (and hereafter RDDs), is another

such putative ‘‘epitranscriptomic’’ modification that may alter gene expression and cellular phenotype,

without permanently altering the DNA sequence. Although not the only modification, the major editing

event is the alteration of Adenosine (A) to Inosine (I), which in turn is read as Guanine (G) by the translational

machinery. This activity is predominantly catalyzed by the ADAR enzymes.4

Although RNA editing was originally described over 30 years ago, only recently, with the advent of deep

sequencing technologies, have millions of RDDs been documented across healthy individuals and several

cancers.5–11 RDDs predominantly occur in non-protein-coding DNA regions, where they have been

proposed to alter the recognition of transcripts by the RNAi machinery and/or to alter RNA splicing. A small

proportion of RDDs lie in the coding regions and may alter protein sequence. To estimate the clinical rele-

vance of RNA editing in cancers, several studies have compared tumors with tissue-matched controls, doc-

umenting site-specific and global (per-sample measure) differential patterns of RNA editing. Site-specific

analyses have revealed that editing levels remain similar to matched control samples at the majority of

sites. However, some sites demonstrate hypo/hyper editing patterns. Increased levels of RNA editing in

coding sequences lead to demonstrated alterations of the encoded protein. For example, AZIN1

(S367G) in Hepatocellular carcinoma and RHOQ (N136S) in Colorectal cancer, have been shown to be asso-

ciated with tumorigenesis. Similar trends are observed for global measures of RNA editing, where the

majority of cancers have been reported to have elevated levels of editing. Furthermore, it has been shown

for most tumors that increased levels of editing are associated with poor survival outcomes.9,11 Of all the

cancers studied, reduced levels of editing are reported only in Glioblastomas (GBM), where, interestingly,
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RNA editing acts in a gender-specific manner on patient outcomes, with high levels of editing being favor-

able in males,12 although the basis for this remains unknown.

In an earlier study across AML patient samples, a hyper-edited event at an intronic branchpoint of the

PTPN6 (SHP1) transcript was linked to disease progression.13 In addition, analyses of ADAR expression

and activity have revealed that increased editing activity occurs during myeloid cell differentiation.14 How-

ever, these studies were performed on smaller datasets. High throughput sequencing data of several can-

cers from the TCGA have been available for several years. RNA editing profiles across these samples were

studied by several research groups.9,11,12,15 However, the role of RNA editing in AMLs from a large study,

such as the TCGA cohort remains largely unexplored. Here we took the advantage of high throughput tran-

scriptomic dataset from The Cancer Genome Atlas (TCGA) study for 151 AML patient samples to explore to

what extent RNA editing may play a role in AML. We suggest a functional role for RNA editing in AML, by

associating it with survival outcomes and with the mutational status of patient samples. These results are

further validated by a recently published publicly available dataset from the BeatAML consortium.16

Furthermore, we suggest a regulatory potential for RNA editing by associating it with mRNA abundance.

Finally, in an attempt to understand the factors influencing differential editing levels, we perform cis-edQTL

analysis with the imputed genotypes.

RESULTS

RNA editing in acute myeloid leukemia

A schematic of the analytic pipeline for the study is shown in Figure 1. To first determine if RNA editing was

altered in Acute Myeloid Leukemia, we studied the TCGA dataset,17 where 151 RNA-seq samples were

available for analysis. This patient cohort consists of 82 males and 69 females with a median age of 56 years.

We could demonstrate that the majority of the individual RDDs are recurrent in only a few samples (Fig-

ure 2A). Therefore, to avoid false positives and to focus on common events, we report the RDDs that

were recurrent in at least five individuals. Of note, marked heterogeneity was seen in the number of

RDDs between AML individual patient samples, with a range from 3,572 to 15,723 editing events demon-

strated per sample (average 9230 RDDs) (Figure 2B). In the AML patient samples, we identified 78,035 and

5503 edited sites in the Alu and Non-Alu regions respectively (Table S1). However, as has been shown in

previous studies, we found the number of editing sites to be strongly correlated to the sequencing depth

(rho = 0.85, p value < 2.2e-16) (Figure 2B). RDDs were predominantly located in the non-protein-coding

regions, with only 123 events across 72 genes located in exonic regions. Of interest, however, double

the number of non-synonymous substitutions was observed in comparison to synonymous substitutions

at these sites (Table S1). In a recent study across several cancers, non-synonymous editing events were

functionally characterized, based on survival probabilities and differential editing levels across tumor

subtypes.9 Whilst we note that the quantification of RNA editing is a function of sequencing depth and

cohort size, we could still replicate the presence of 16 of their 35 non-synonymous editing events in our

AML dataset (Table S1). Of note, from the above 72 genes, HAUS3, PUS1, SDHAF2, SRP9, and ZNHIT3

were determined to be predicted vulnerabilities in AML by our previous genome-wide CRISPR -dropout

screen in AML cell lines.18 RDDs were also found in intergenic regions, possibly related to unannotated

transcripts. As in other studies, we saw a significant enrichment of RDDs in non-protein-coding DNA and

regions enriched for Alu elements (Table S1 and Figure 2C).

We subsequently used two approaches to quantify the degree of RNA editing to help understand its role in

AML. Using the RNAEditingIndexer tool,19 we estimated the Alu editing index (AEI), a global measure of

RNA Editing for each sample. This measure has been widely used in associating altered editing patterns

with patient survival probabilities across several cancers, and has helped in identifying global regulators

of RNA editing.8,11,12 We demonstrated a positive correlation between ADAR1 expression and AEI across

all patient samples (rho = 0.24, p value = 2.5e-03) (Figure 2D). However, we did not observe any association

of the AEI with age or sex across the samples. The second approach involved site-specific analysis,

where the degree of editing is measured by the ratio of A-to-G mismatched reads to the total number

of reads mapped at that locus. Both approaches are used in several downstream analyses as shown in

Figure 1.

Acute myeloid leukemia demonstrates an altered degree of RNA editing

It has been widely reported that RNA editing is altered in several cancers.11,12 The majority of solid-organ

tumors show an increase in editing in comparison to their counterpart normal tissue. As the TCGA AML
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lacked data from healthy individuals, we sought to look at differential patterns of RNA editing across a

recently published AML dataset, the BeatAML cohort (Tyner et al., 2018), which includes transcriptomic

data from 21 healthy samples. In line with other cancers, we also observed elevated levels of RNA editing

in AML (Figure 3A). Increased levels of editing in several cancers have correlated with ADAR1 expression

levels,11 however, ADAR1 is not differentially expressed between AMLs and healthy controls (Figure 3B).

Interestingly ADAR2 is significantly downregulated in AML (Figure 3C). These differential expression

patterns of ADAR1 and ADAR2 are further confirmed by a recent study exploring the functional role of

RNA editing mediated by ADAR2 in the leukemogenesis in patients carrying t(8; 21) or inv16 mutations.20

However, unlike for ADAR1, no correlation was noted between ADAR2 levels and the AEI (Figure S1A)

RNA editing varies according to acute myeloid leukemia genotype

Within the TCGA cohort, we further aimed to look at how RNA editing differs across different AML muta-

tional genotypes. We hypothesized that the heterogeneity in RNA editing levels in AMLmay relate, at least

in part, to the genetic heterogeneity evident within it. As previously documented, we observed genetic

Figure 1. Study design

Results are presented in four different sections as shown on the left.

ll
OPEN ACCESS

iScience 25, 105622, December 22, 2022 3

iScience
Article



heterogeneity within our cohort and used an up-to-date disease classifier to subdivide AML into pathoge-

netic subtypes.21 However, for pragmatic reasons, due to the relatively small number of patient samples we

collapsed together categories that are similar in terms of prognosis (see methods), to come up with six

distinct groups that broadly represented the genetic heterogeneity of AML. Of note, we observed a statis-

tically significant difference in the degree of editing across the different genetic categories (Kruskal-Wallis

rank-sum test, p value = 0.046, Figure 3D). This observation suggests that the degree of RNA editing in AML

differs according to the genetic sub-groups and infers a potential mechanistic link betweenmutation status

and RNA editing. We further aimed to validate our findings of the TCGA cohort with the BeatAML dataset

(Tyner et al., 2018). The numbers of patients in each mutational subgroup in both the TCGA AML and

BeatAML datasets are of similar size with few exceptions (see methods). However, as in the TCGA AML

A B

C D

Figure 2. Distribution of RDDs and association between AEI and ADAR1

(A) TCGA AML RDDs were categorized into groups based on their recurrence. Intervals on x axis represent the number of

samples in each group. Number of RDDs is shown on the y axis.

(B) Correlation between number of RDDs (y axis) in each sample and number of reads per sample (x axis). Spearman

correlation and p value are shown.

(C) Genomic locations of RDDs quantified in the AML dataset. As described in Annovar, ‘‘upstream’’ and ‘‘downstream’’

are defined as within 1-kb from the transcription start and end site, respectively.

(D) Correlation plot between AEI and ADAR1 gene expression (CPM). Each dot represents an AML patient sample. The

straight blue line represents the linear relationship between the AEI and ADAR1 expression.
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cohort, we could further replicate significant differences in RNA editing levels, across AML genotypes

within the BeatAML patient samples (p value = 0.036) (Figure S1B). As has been shown in an earlier study

across AML cell lines and patient samples,20 we observed ADAR2 (Figure S1C), but not ADAR1 (Figure 3E),

to be differentially expressed between different AML genotypes.

A B

C

D E

Figure 3. Differential editing in AML

(A) Boxplots of Alu editing index (AEI) between AML patient samples (red) and healthy controls (blue) from BeatAML

cohort.

(B) Boxplots of ADAR1 gene expression (CPM) between AML patient samples (red) healthy controls (blue) from BeatAML

cohort.

(C) Boxplots of ADAR2 gene expression (CPM) between AML patient samples (red) healthy controls (blue) from BeatAML

cohort.

(D) Boxplot of Alu editing index (AEI) plotted against the samples categorized based on their mutation status from TCGA

AML dataset. Number of patient samples in each group is shown in parenthesis (GT2 genomic subgroups - greater than

two genomic subgroups).

(E) Boxplot showing the differences in the ADAR1 expression levels (CPM) across TCGA AML genotypes. Number of

patients in each group is shown in the parenthesis. Plotted are data points for each patient group, alongside the median,

first and third quartile, and 95% confidence interval of median.
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Alu editing index correlates with survival in acute myeloid leukemia

We next sought to determine any link between RNA editing and survival, and, utilizing similar methodol-

ogies to previous studies (Figure S1D), we classified our patients into those ‘‘hypo’’ and ‘‘hyper’’-edited.

Sorting the AEI in ascending order, samples with the lowest 30th percentile were considered to be hypo-

edited (N = 45, AEI<0.546). Sample classification, including clinical data, is shown in Table S2. In keeping

with reports in other cancers, Kaplan-Meier analysis demonstrated that hyper-edited patients have an

inferior survival in comparison to hypo-edited patients (p value = 0.019, Figure 4A). Furthermore, we could

replicate these findings across the BeatAML dataset, with elevated levels of editing associated with poor

survival outcomes (p = 0.02) (Figure S1E).

To exclude an association of AEI with other prognostic variables within the TCGA data, we therefore

extended this analysis by fitting a multivariate model using several clinical characteristics of known prog-

nostic significance, such as mutation status, age and sex as additional variables.22 Prior to running the

model, the proportional hazard assumption was approved using Schoenfeld residuals and graphical eval-

uation. Of note, hyper-edited patients continued to demonstrate a significantly worse prognosis in

comparison to those hypo-edited (HR 1.9, CI 1.2-3.2, p value = 0.008 Figure 4B) in this multivariate analysis.

Specific RNA editing events correlate with patient survival

To try and correlate patient survival with specific RNA editing events, we next performed survival analyses,

plotting patient Kaplan-Meier curves for every RDD site, based on their editing status. To provide adequate

statistical power, we chose sites where at least 20 patients could be identified that either demonstrated or

lacked an editing event (N = 19,691). At FDR 20% (p value <1.5e-04), fifteen editing events, predominantly

located in non-protein-coding DNA, conferred a markedly poorer survival outcome for those patients who

either demonstrated or lacked an editing event (Figure 5A). The most statistically significant editing site,

predictive of a poorer outcome (p value = 5.4e-07, Figure 5B), was recurrent in 32 patients (chr12:

93,542,929, T>C) and was located in an exonic region of a non-protein-coding RNA (SOCS2-AS1). It has

recently been reported that SOCS2-AS1 modulates FLT3-ITD activity via sponging miRNA-221 activity to

maintain STAT5 signal transduction.23 However, we observed no significant differences in FLT3mutational

A B

Figure 4. Increased levels of editing are associated to poor survival outcome

(A) Kaplan-Meier analysis between hypo (AEI<0.546, N = 45) and hyper-edited samples from the TCGA AML dataset.

Time in months is shown on x axis. p value is shown in the plot.

(B) Multivariate survival analysis of TCGA AMLs using a cox proportional hazards model on editing status as a categorical

variable. Mutation status, age, and sex are used as additional variables. Number of samples in each category is shown in

parenthesis. p values and hazard ratios are shown in the plot (GR translocations + CEBPA - good risk translocations and

CEBPA, GT2 genomic subgroups - greater than two genomic subgroups, NC/ND - non class defining lesions and no

detected driver mutations).
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A

B C

D E

Figure 5. Association between presence/absence of RDD and survival outcome

(A) Kaplan-Meier analysis between the samples with the presence and absence of an RDD in TCGA AML. Only the sites

that are significant at FDR 20% (p value < 1.5e-04) are shown.

(B) Kaplan-Meier analysis between the samples with (N = 32) and without an editing event (N = 119) of the editing site at

SOCS2-AS1 at the loci chr12:935,429,429 (T - > C).

(C) Boxplot showing the differences in Alu Editing Index (AEI) between the samples with and without FLT3-ITDmutation.

Plotted are data points for each patient group, alongside the median, first and third quartile, and 95% confidence interval

of median.
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status between the number of patients with (11/32 cases, 34%) and those that lacked an RDD (33/119, 28%).

Moreover, the AEI also did not alter between patients that carried or lacked the FLT3-ITD mutation (Fig-

ure 5C). Multivariate survival analysis was performed to estimate the effect of the FLT3 mutation on the

overall survival of the patients with the editing event and observed that poor outcome appears to be

independent of the FLT3 mutation status (Figure S1F). However, as STAT5 can be activated by other

pathways in AML24 we cannot rule out STAT5 activation as the potential link.

Of interest, edited patients showed a markedly increased expression of SOCS2-AS1 in comparison to non-

edited patients (N = 119) (Figure 5D). We next checked if the degree of editing was in any way correlated

with gene expression. To our surprise, within the patients with edited SOCS2-AS1, we observed a strong

negative correlation between the degree of editing and the mRNA abundance (Figure 5E). Taken together,

these data demonstrate that the editing site at SOCS2-AS1 is correlated with poor survival and acts as a

potential regulatory editing event with higher expression levels in edited patients but demonstrates an

inverse correlation between the degree of editing and mRNA abundance.

Regulatory RNA editing events

Building on the potential regulatory effect of the presence of an editing event on SOCS2-AS1 expression

levels, we next analyzed whether this was also a general phenomenon across all RDDs (STAR methods and

Figure 6A). We sought to systematically determine how expression patterns for linked genes differ between

patients that demonstrated or lacked RDDs. To allow for stringent statistical comparison, we limited this

analysis to RDDs that are recurrent in at least 30 individuals. This led to the identification of 8725 RDDs

that directly mapped to 2332 genes (Table S3). At every RDDwe compared gene expression levels between

the samples, based on their editing status. At an FDR of 1% (p value <0.01), patients with an editing event

expressed the gene at higher levels in comparison to patients that lacked an RDD at more than one-third of

these RDD sites 3038/8725 (35%) (Figure 6B).

We further extended our analysis to determine how the degree of editing, rather than its binary presence or

absence, correlated with the expression of the primary transcript. From 8725 possible associations, at FDR

<10% (p value < 0.018) we found 966 sites (966/8725, 11%) corresponding to 610 genes (610/2332, 26%),

where the degree of editing significantly correlated with the expression level of their transcript (Figure 6B).

Remarkably, almost all of the sites (N = 938, 97%) were negatively correlated with host gene expression

(Table S3), replicating the pattern at SOCS2-AS1. We estimated 520 RDDs mapping to 337 genes overlap-

ping from the above two analyses, i.e. where the edited patients demonstrate higher levels of gene expres-

sion than the unedited patients, but the degree of editing negatively correlated with the transcript level

(Figure 6B). We have suggested these as regulatory RNA-DNA differences (or rRDD) that could potentially

act as cis-regulatory variants to determine mRNA levels (Table S3).

Tounderstand the functional relevanceof thegenes that are associatedwith rRDDs,we then sought toestimate

the extent of their overlap with genes differentially expressed between blasts frompatients with AML and from

healthy individuals (seemethods), to determine if this differencemight relate to their edited status.Of note, we

found that 33of 337genes (10%,p<0.003) linked to rRDD,overlappedwithgenesup-regulated in theBeatAML

dataset (Table S3), but that negligible overlap (<1%) with downregulated genes was observed. Importantly,

these observations suggest that altered RNA editing may also contribute, at least in some part, to the gene

expression differences evident between AML and normal hematopoeitic tissue.

Genetic variants regulating RNA editing

Quantitative trait loci (QTLs)-mapping is an approach that has been widely used to find an association

between genetic variants and phenotypic variation, such as gene expression (eQTL),25 splicing

(sQTL)26 and DNase1 sensitivity (dsQTL).27 In line with this, to understand potential factors regulating

the degree of RNA editing, we performed edQTL (editing quantitative trait locus) analysis by associating

the common genomic variants (minor allele frequency MAF>0.05) that are located 100 kb on either side

Figure 5. Continued

(D) Boxplot showing the differences in the expression levels (CPM) of SOCS2-AS1 between the samples with (N = 32) and

without an editing event (N = 119) within TCGA AML dataset. Plotted are data points for each patient group, alongside

the median, first and third quartile, and 95% confidence interval of median.

(E) Correlation between SOCS2-AS1 expression (CPM) and the degree of RNA editing for 32 edited patient samples.
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of the RNA editing site.28,29 To this end, edQTL analyses were performed with approximately two million

genotypes that were imputed against the 1000 genomes reference panel.30 Editing sites that are recur-

rent in at least 40% (3590 editing sites) of the individuals were used for this analysis. Missing editing

values were imputed using the missMDA package.31 Taking the genetic variants in close proximity

(G100kb window on either side of the RDD), we performed 451,285 association tests. At FDR 20% (p

value = 2.3e-03), 4873 genetic variants were found to have a significant association with 200 editing sites

that are mapped to 163 genes (Table S4). Hereafter, these RNA editing-associated SNPs are referred to

A

B

Figure 6. Regulatory RDDs

(A) Across all the RDDs from the TCGA AML dataset, samples are dichotomized based on their editing status. Samples

with and without an editing site are colored in red and blue respectively. Regulatory RNA-DNA differences (rRDD) are

identified based on two criteria. 1) Significant differential gene expression between the samples that have or lack an RDD.

2) Significant correlation between the degree of editing and the host gene expression, irrespective of whether these

genes satisfy criteria 1.

(B) Overlap of criteria 1 and 2 (Figure 6A) showing the number of rRDDs.
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as edSNPs. There is an enrichment of associations with very low p values (Figure S2A). Similar to the dis-

tribution of editing sites across the genome, we see an enrichment of these edQTLs in intronic and 30

UTRs; however, the corresponding edSNPs are largely located in intronic and intergenic regions

(Figure S2B).

We next sought to understand if there is any shared or coordinated genetic regulation of RNA editing with

the expression of the corresponding gene. For this, we performed gene expression QTL (eQTL) analysis

from the same dataset and overlapped variants of interest with our edQTLs identified above. As reported

in several studies, we performed eQTL association analyses with the same imputed genotypes within a 1

MB window from the TSS of the genes that are expressed in all the samples (N = 13,166). At FDR 10%

(2.87e-04), we found 3274 genes to have a significant association with a nearby genomic variant. However,

when the linkage disequilibrium (LD) structure (R2 > 0.8) of the genomic variants was taken into account, we

found only five genes (ABCB10, D2HGDH, MCM3AP, POLR2D, and SENP5) (Figure S3) to have a common

variant associated to the degree of RNA editing and to the expression of the corresponding gene,

effectively showing the independence of edQTLs and eQTLs.

Functional importance of editing quantitative trait locus associations

Upon testing 3590 RDDs, we found 200 edQTLs to have an association with the nearby genetic variant

(edSNPs). To determine the potential functional relevance of these associations, we sought to determine

the extent of overlap of the rRDD. We found 27 (13.5%) of the 200 edQTLs (Table S5) to overlap with the

rRDDs.

We noted that the majority of edSNPs are located in non-protein-coding DNA (Figure S2B). Multiple

genome-wide studies have determined that non-protein-coding DNA harbors not only disease-suscepti-

ble loci but contains several functional elements that regulate the genome.32–34 It has been reported

that the majority of DNase hypersensitive sites (DHSs), known to be enriched for such regulatory elements,

are located in the intronic and intergenic regions.35 We therefore analyzed our edSNPs with DHSs using the

recently developed FORGE2method (https://forge2.altiusinstitute.org/) which detects tissue and cell-type

specific enrichment in epigenomic regions including DNase I hotspots, histone mark broadPeaks and Hid-

den Markov Model (HMM) chromatin states.36 Interestingly, when applying FORGE2 analysis across

different tissues, we found that our edSNPs are enriched in blood-related cell lines including those from

the human leukemia cell line HL-60, derived from an AML patient (Figure S2C). Another recent resource

from ENCODE (https://screen.encodeproject.org/) integrated DHS regions with multiple epigenetic sig-

nals, namely H3K4me3, H3K27ac, and CTCF ChIP-Seq and defined candidate Cis-Regulatory elements

(cCREs) across different cell lines.37 To estimate if the overlap of our edSNPs with cCREs is expected

more than by chance, we applied the permutation approach with 1000 iterations (see methods). As

expected, we observed obvious tissue-specific enrichment with the highest overlap observed for hemato-

poeitic tissue and particularly hematopoietic malignancies (23/30 top Z-scores, Figure S2D). Further

classification of cCREs epigenetic modification signals within the exemplar HL-60 cell line revealed over

representation of edSNPs across regions with high DNase-seq and H3K4Me3 signals (Figure S2E),

suggesting that the edSNPs reside within classical cis-regulatory elements.

DISCUSSION

A-to-I RNA editing is a post transcriptional modification that is ubiquitous across Metazoans.38 Abnormal

RNA editing levels at coding or regulatory RNA sequences are now acknowledged to make a significant

contribution to several cancers.9,11,39 However, although the role of RNA editing in AML was first described

almost two decades ago, previous studies have been limited in size and its role remains undetermined.

Using the TCGA AML dataset, here we studied the functional and regulatory role of RNA editing in AML

linking this to patient characteristics including survival, cytogenetic and mutational status. We further

demonstrate that RNA editing is aberrant in AML, associate editing to RNA abundance, and identify

genetic variants linked to the degree of editing in AML.

More recently, global measures of RNA editing were estimated in patient cohorts from the TCGA and

demonstrated elevated levels of editing across multiple primary solid-organ cancers. These differences

in AEI are largely explained by ADAR1 expression levels.11 In agreement with other cancers, we observed

elevated levels of editing levels in AMLs, however this does not correlate with differential ADAR1 expres-

sion (Figures 3A and 3B).
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We further observed significant differences in the editing levels across patient samples with different AML

genotypes. Of note, in general, the genotype groups with low risk, including good risk translocations,

CEBPA, and NPM1 mutations, appear to have a lower degree of RNA editing in comparison with patients

carrying high-risk mutations (i.e. patients with mutated chromatin regulators and TP53). The AEI index is

positively correlated with ADAR1; however, we observed no significant differences in ADAR1 expression

levels across the AML genotype (Figure 3E, p value = 0.08). A recent study reported that ADAR2 is signif-

icantly downregulated in patients with t(8; 21) or Inv16 mutations, carrying RUNX1-ETO and CBFb-MYH11

fusion proteins. Tenen and colleagues have experimentally demonstrated RUNX1-ETO repression of

ADAR2 expression and proposed a mechanism whereby hypo-editing of specific transcripts by ADAR2

was implicated in the pathogenesis of t(8; 21) AMLs.20 We did not observe a general correlation of

ADAR2 with the AEI (Figure S1A), but did observe a distinct pattern of associations between ADAR1 and

ADAR2 with AEI across each AML mutation subtypes (Figure S1G) suggesting individual interactions of

ADAR enzymes with specific mutations in AML subgroups. Further studies are warranted to identify the

potential interactions of ADARs with disease-causing mutations.

Previous studies in breast invasive carcinoma (BRCA), liver hepatocellular carcinoma (LIHC), head and neck

squamous cell carcinoma (HNSC) and glioblastoma multiforme (GBM), have demonstrated that the AEI

correlates with overall survival11,12 (Figure S1D). To determine if such an association existed for AML, we

performed survival outcome analysis and indeed demonstrated hyper-edited AML patients to have a

poor prognosis. An obvious explanation for this would be our discovery that the degree of editing relates

to the specific AML genotype, and that poor-risk characteristics are associated with a greater degree of

editing (Figure S2F). However, the continued association of editing with a poor prognosis in multivariate

analysis suggests an effect independent of genotype.

We further assessed the potential effects of each individual editing site on the patient’s survival outcome.

Interestingly, we found that the presence of an RDD in the exonic location of the ncRNA SOCS2-AS1 (chr12:

93,542,929, T>C) predicted a poor outcome. In addition to RDD at the SOCS2-AS1 locus, we found many

sites that demonstrated an association between the degree of editing and steady-state mRNA levels.

However, this relationship appears complex given that the presence of an editing event was often

associated with a higher steady state mRNA for the primary transcript, but the degree of editing inversely

correlated with the mRNA abundance. Although initially counterintuitive, this suggests that RNA editing

may be an additional layer of control to regulate transcript abundance, and perhaps particularly in some

highly abundant transcripts, although whether this editing alters RNA stability or turnover remain

mechanistically elusive and warrants further investigation. Moreover, the significant overlap of these genes

with those overexpressed in AML vs healthy controls suggests that, along with several genetic and epige-

netic factors, RNA editing in AML may contribute to disordered transcription and the malignant

phenotype.

In summary, we present the first large-scale RNA editing analysis from AML patient samples. Our results

demonstrate that increased levels of editing are associated with poor prognosis, that the AEI varies across

AML genotypes and that there is an association between the degree of RNA editing and expression levels

ofmultiple genes, someofwhicharedysregulated inAML in comparison tonormal hematopoiesis .Our edQTL

analysis revealed that one of the factors potentially influencing the altered levels of editing are Cis-regulatory

variants. Earlier studies have shown that several RNA binding proteins (RBPs) facilitate editing by interacting

with ADARs or through binding to Alu elements in a tissue-specificmanner.40 Using K562 andHepG2 cell lines,

it hasbeen shown thatbothTranscription Factors (TFs) andRBPs co-occupy functional hotspots on thegenome

in a coordinatedmanner, highlighting the fact that both transcriptional and co-transcriptional mechanisms are

more functionally interconnected. Encode data has further suggested that RNA binding proteins (RBPs) pref-

erentially bind to open chromatin regions and DNase1 hypersensitive sites.41 As we found our edSNPs to en-

riched at these regions, we speculate that the binding of TFs or other RBPsmay play a crucial role in regulating

editing levels within the primary transcript, perhaps through 3D-communication and suggest that this hypoth-

esis should initiate further investigation.

Limitations of the study

Our study aims to understand the potential role of RNA editing in the pathogenesis of AML; however, it has

some limitations. To enable us to study RNA Editing, we have accessed the most comprehensive transcrip-

tomic data of patients with AML from the TCGA, a dataset that also benefits from having cytogenetic data
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regarding mutational events and clinical outcome data, allowing us to further correlate RNA editing with

these disease characteristics. However, an obvious drawback of this data is that it lacks a matched control

dataset, both at the level of the individual patient and an appropriate cell type. Therefore, to study the

global differences between AML and healthy controls we utilized transcriptomic data from a validating

external dataset, the BeatAML dataset. Within the BeatAML cohort, we validated our findings by observing

AMLs to have an elevated degree of RNA editing in comparison to healthy controls.

Although our cohort is the largest with transcriptome, genome, and clinical data available, another limita-

tion of our study is the cohort sample size, which is relatively modest at 151 patients, with another 135 in the

validating dataset. However, AML is a clinically heterogeneous disease that is characterized by a large

number of recurrent gene mutations and chromosomal abnormalities. A recent panel-based genome

study, performed on 1540 patients, classified AML into fourteen individual sub-groups. Given our relatively

small dataset of 151 patients, to allow us any statistical power, we therefore had to rationalize this classi-

fication system, collapsing similar biological and clinical groups together into a more manageable seven

genetically similar groups. Decades of genetic research have taught us that increasing the sample size

can add significant mechanistic granularity, therefore our underpowered study may have underestimated

or missed associations between RNA editing and AML biology. However, despite our limited cohort we

were still able to (i) demonstrate variable RNA editing across AML genotypes, (ii) describe that higher levels

of editing are a predictor of poor outcome, (iii) observed elevated degree of editing in AMLs in comparison

to healthy individuals, (iv) demonstrate that RNA editing is one of the contributors to altered gene expres-

sion in AML and (v) have identified edQTL to identify putative cis-regulatory regions that regulate RNA ed-

iting, and could validate the clinically relevant findings i-iii) in an independent AML cohort, the BeatAML

dataset.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests should be directed to the lead contact, Eshwar Meduri (em540@cam.

ac.uk).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d All data reported in this paper are shared as supplementary data.

d This paper does not report original code.

d Any additional information required to reanalyse the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Reads processing and calling RNA editing events

To estimate the RNA Editing events in the TCGA AML, we obtained the transcriptomic reads of 151 patient

samples from the NCI GDC portal.48 Reads were aligned to the hg38 reference genome and uniquely map-

ped reads were retained and PCR duplicates were removed using PICARD tools. Filtered reads were further

processed through RNA-Seq best practices pipeline in GATK, version 4.0.2.1 which includes Split’N’Trim,

indel realignment and base recalibration.42 Variant calling was performed using HaplotypeCaller algorithm

with parameters dontusesoftclippedbases and standcallconf = 20. Following this, SNP calls were filtered

using GATK-VariantFilteration with clusters of at least 3 SNPs that are within a window of 35 bases, Fisher

Strand values >30.0 and Qual By Depth values <2.0.

As all the patient samples do not have the corresponding whole genome sequence available, RNA editing

events were quantified by overlapping with the published datasets.8,9 To avoid false positives, SNPs were

further filtered from the genomic variants listed in the 1000 genomes project (dbSNP build 151).49 We

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

GATK McKenna et al.42 https://gatk.broadinstitute.org/hc/en-us

Annovar Wang et al.43 https://annovar.openbioinformatics.org/en/latest/

RNAEditingIndexer Roth et al.19 https://github.com/a2iEditing/

RNAEditingIndexer

BamUtil Jun et al.44 https://github.com/mskilab/bamUtils

Survival Therneau and

Grambsch22
https://github.com/therneau/survival

Survminer NA https://rpkgs.datanovia.com/survminer/index.html

edgeR Robinson et al.45 https://bioconductor.org/packages/release/bioc/

html/edgeR.html

DESeq2 Love et al.46 https://bioconductor.org/packages/release/bioc

/html/DESeq2.html

QTLtools Delaneau et al.47 https://qtltools.github.io/qtltools/

missMDA Josse and Husson31 http://factominer.free.fr/missMDA/index.html

GTC2VCF NA https://github.com/freeseek/gtc2vcf
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discarded the reads with mismatches at the 50 end.50 As described earlier, we quantified RNA editing sites

with at least three mismatches and one mismatch at non-Alu and Alu sites respectively.8 Using a very con-

servation approach, we finalised the RNA editing events that are recurrent in at least five individuals. At

each editing site we calculated the degree of editing by dividing the reads with altered bases by the total

number of reads. RDDs are annotated using ANNOVAR.43

For replication purposes, we obtained transcriptomic data of AML patient samples from BeatAML

cohort.16,48 Reads were processed using the same pipeline as TCGA AML dataset. Samples from

BeatAML contains a mixture of samples collected from bone marrow and peripheral blood. Interestingly

we found significant differences of RNA editing levels between the sample types (Figure S2G). For all repli-

cation analysis we retained only the samples from peripheral blood tomatch the data to that of TCGAAML.

In addition, a few samples were sequenced more than once, probably due to relapse of disease. However,

as the timing of the samples and the clinical condition of the individual at that time were not given, due our

lack of knowledge of the potential evolution of RNA-editing with disease progression, these samples were

also removed from subsequent analysis. This resulted in 135 AML patient samples from the BeatAML

cohort.

Global measurement of the degree of editing

The majority of Adenosines genome-wide have variable reads mapped and are edited at a very low level

(<1%). With the trade-off between the sequencing costs and the number of reads, it is not feasible to cap-

ture editing levels of all Adenosines in large cohorts. To overcome this, a metric called the Alu Editing Index

(AEI) was designed to measure global editing levels in each sample.19,51 It has been reported that estima-

tion of AEI is sensitive to read lengths and the alignment process. To maintain uniformity, we realigned the

reads from both the datasets with the same parameters. To match with read lengths of TCGA AML patient

samples we trimmed the reads of the BeatAML samples to 50 bp using BamUtil package44 before

estimating AEI.

Regrouping of AML patient samples

Based on a recent study performed on 1540 patients, AML can be classified into 14 sub-groups.21 However,

due to our relatively small sample size in the TCGA AML and to the lack of or small number of patients in

some of these groups, in an attempt to obtain statistical significance, we sought to rationalise this

classification by amalgamating genetically similar groups. Using this practical approach, we came up

with seven distinct groups as shown in Table S2. Patients with the IDH2R172 mutations sub groups contained

only one patient, that was excluded, whereas patients with NPM1, mutated chromatin+TP53, good risk

translocations+CEBPA, > 2 genomic subgroup eligibility and no class defining lesions+driver mutations,

were present at a range of 6–34 patients (see Table S2). We used a similar approach to group the

BeatAML patients. Number of patients in each mutational subgroup in both the TCGA and

the BeatAML are of similar size with a few exceptions. The ‘‘GT2 Genomic subgroups (greater than

two genomic subgroups)’’ patient group is missing in the BeatAML and the size of the ‘‘Mutated

Chromatin+TP53’’ subgroup in the BeatAML dataset is proportionally larger than in the TCGA dataset

(Table S2).

Statistical analysis

All the statistical analyses were performed using the R statistical package and figures were plotted using

the ggplot2 package. Kaplan Meier, univariate and multivariate survival analyses were performed using

the ‘‘survival’’, ‘‘suvminer’’ and ‘‘dplyr’’ packages.

Gene expression analysis

RNA-Seq counts for each gene were processed with HTSeq package.52 Read counts were normalised and

CPM (counts per million reads) values were estimated using edgeR package.45 Differential expression anal-

ysis was carried out using Bioconductor package DESeq2.46 Genes are considered to be differentially

expressed at 5% Bonferroni correction and log fold change of G1.5.

Estimating regulatory editing sites

To establish the correlation between the degree of editing and gene expression, we used a two-step

approach. First, we shortlisted the editing sites with differential mRNA abundance within the same gene

ll
OPEN ACCESS

iScience 25, 105622, December 22, 2022 17

iScience
Article



between edited and non-edited samples. A simple Wilcoxon test was applied on normalised CPM

values. In the second step, among the edited samples, significant correlations should exist between the

degree of editing and host gene expression. For this, we applied a multiple regression model to check

for an association between the gene expression levels and the degree of editing, taking age and sex as

covariates (DGX � DdRDD + sex + age). Regulatory editing events are quantified by overlapping filtered

significant events fulfilling both the above criteria. As an exemplar, we chose RDD at chr12: 935429492

in SOCS2-AS1 gene (Figure 6A).

Genotype imputation

All the patient samples were genotyped on the Affymetrix Genome-wide Human SNP Array 6.0. Raw data

was downloaded from GDC data portal (https://portal.gdc.cancer.gov/) and was processed using Affyme-

trix library files and converted to the VCF format using https://github.com/freeseek/gtc2vcf. Prior to impu-

tation we followed several QC steps as follows 1) we filtered for common variants (MAF > 0.01) and

deviations from HWE (1e-05). 2) Two samples were removed after checking for high levels of missing

data. Data was pruned at LD > 0.2. 3) We excluded high LD and non-autosomal regions from the pruned

file. 4) Related individuals (IBD, identical-by-descent >0.1875) were further discarded.53 Comprehensive

genotype imputation was run on the Sanger imputation server against the 1000 genomes reference panel

using pre-phasing and imputation with EAGLE2+PBWT pipeline.30 After imputation, SNPs were filtered at

a MAF > 5% and info value of >0.8. As a sanity check, we validated the imputed genotypes with the

sequencing data Match BAM to VCF (MBV).54

edQTL analyses

Associations between the degree of editing (dRDD) and the imputed genotypes were performed using

QTLTools package.47 We filtered samples by matching them with those of imputed genotypes and created

a matrix with the editing levels. Editing sites that are recurrent in at least 40% of the samples (N>59) were

used for this analysis. Missing values in the matrix are imputed using missMDA package.31 PCA was per-

formed on the dRDD and the genotype files using QTLTools. As the imputed genotypes are mapped to

hg19, we converted the location of the editing sites from hg38 to hg19 using liftOver. Taking age, sex,

five genotype PCs and two editing PCs as covariates, we performed a Cis nominal analysis limiting to

SNPs located 100kb on the either side of the editing location. False discovery rate was calculated using

qvalue package in R.55

eQTL analyses

As described in the GTEx consortium eQTL analysis pipeline, read counts were normalised using trimmed

mean of M values (TMM).56 Prior to that, genes were filtered based on the criteria 1) R 0.1 TPM in R 20%

samples and 2)R 6 unnormalised reads inR 20% samples GTEx.57 UsingQTLTools package we performed

eQTL analysis with the imputed genotypes using 1MB window against the normalised gene expression

values.47 Age, sex, five genotype based principal components and 30 PEER factors were used as covariates

for eQTL mapping.

FORGE2 and cCRE analysis

FORGE2 command line analysis was performed on 4,305 top edSNPs using standard settings and

ENCODE data (1000 background repetitions, ENCODE DNase I hotspot data analysis setting.36 For

cCRE analysis we downloaded cCREs regions across all the cell lines that are reported in the SCREEN

database. They are classified based on the occupancy of DNase, H3K4me3, H3K27ac and CTCF signals.

Regions with low-DNase and Unclassified (low H3K4me3, H3K27ac or CTCF) were excluded. To test for

the enrichment of edSNPs across cCREs, a permutation test was performed with 1000 iterations using

the regioneR package.58

QUANTIFICATION AND STATISTICAL ANALYSIS

We used the Wilcoxon test for comparisons between two groups and the Kruskal–Wallis test for compar-

isons between more than two groups. To compare two continuous variables we used Pearsons correlation

method but with additional covariates we applied multiple regression model. Kaplan-Meier analysis was

used to estimate survival outcomes and hazard ratios were calculated using amultivariate Cox proportional

hazards regression model. The qvalue package was utilized to adjust the p values during multiple testing.
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Unless otherwise stated, all the statistical tests were considered to be significant with a p value < 0.05. All

the statistical tests were performed using the R package.

Availability of data and materials

The data used for the analyses described in this manuscript were obtained from the dbGaP website under

accession number TCGA: phs000178.v11.p8 and BeatAML: phs001657.v2.p1. All the data generated is

available along with this article.
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