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Androgen-regulated MafB drives cell
migration via MMP11-dependent
extracellular matrix remodeling in mice

Mellissa C. Alcantara,1 Kentaro Suzuki,1,* Alvin R. Acebedo,1 Daiki Kajioka,1 Satoshi Hirohata,2

Tsuneyasu Kaisho,3 Yu Hatano,4 Kazuo Yamagata,4 Satoru Takahashi,5 and Gen Yamada1,6,*

SUMMARY

While androgen is considered a pivotal regulator of sexually dimorphic develop-
ment, it remains unclear how it orchestrates the differentiation of reproductive
organs. Using external genitalia development as a model, we showed that
androgen, through the transcription factor MafB, induced cell migration by
remodeling the local extracellular matrix (ECM), leading to increased cell contrac-
tility and focal adhesion assembly. Furthermore, we identified the matrix metal-
loproteinase Mmp11 as a MafB target gene under androgen signaling. MMP11
remodels the local ECM environment by degrading Collagen VI (ColVI). The
reduction of ColVI led to the fibrillar deposition of fibronectin in the MafB-ex-
pressing bilateral mesenchyme both in vivo and ex vivo. The ECM remodeling
and development of migratory cell characteristics were lost in the MafB loss-of-
function mice. These results demonstrate the requirement of mesenchymal-
derived androgen signaling on ECM-dependent cell migration, providing insights
into the regulatory cellular mechanisms underlying androgen-driven sexual
differentiation.

INTRODUCTION

Androgen is the key regulator for the sexually dimorphic development of the external genitalia.1 Arising

from a common anlage, the male and female embryonic external genitalia (eExG) of mice begin to show

sexual differences at embryonic day (E) 15.5. Under androgen regulation, the urethra of malemice canalizes

around E16.5, a process termed urethral masculinization. In contrast, the ventral side of the urethra remains

open in females. V-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B (MafB) is a transcrip-

tion factor that is expressed in the mesenchyme lateral to the presumptive urethra, hereafter referred to as

the bilateral mesenchyme (biMs). Previously,MafB has been identified to be a direct androgen target that is

essential for urethral masculinization: male MafB mutant mice show an abnormal, open urethra.2,3 Prior to

androgen induction,MafB is required for vascular differentiation during testicular organogenesis (Li et al.,

2021). Although several androgen-regulated cellular processes during urethral masculinization have been

described,1,4–8 how MafB contributes to this event has yet to be defined.

During organogenesis, androgens have been reported to regulate the cytoskeletal elements during

urethral masculinization.4,5 In this study, we observed defects in cell migration in the MafB knockout

mice; therefore, a unique pathway is likely downstream of androgen-MafB signaling. Cell migration is high-

ly influenced by either the composition, stiffness, or concentration of the ECM.9,10 Matrix metalloprotei-

nases (MMPs) are endopeptidases that can cleave matrix proteins and remodel the ECM environment.

Their function is essential for both developmental and pathological processes, especially in cancer.11

MMP11, also known as stromelysin-3, is anMMP that was first isolated from breast cancer tissue.12,13 During

embryogenesis, Mmp11 is expressed transiently in mesenchymal cells that are associated with tissue

remodeling14–16; however, in healthy adult human organs, Mmp11 is seldom expressed.17

MMP11 has been reported to cleave the a3 subunit of ColVI,18 a ubiquitous ECM protein that interacts with

other ECM proteins to form a structural network for cells.19 One such interaction is with the ECM protein

fibronectin (FN), wherein ColVI expression regulates the deposition pattern of FN.20–22 FN participates

in cell differentiation, growth factor signaling, and cell migration.23 In several biological systems,
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Figure 1. Mesenchymal MafB regulates Mmp11 during urethral masculinization

[A–D] Mesenchymal, not epithelial, MafB is involved in urethral masculinization. See also Figure S1A. (A) The formation of a urethral tube (arrow) was

observed in E16.5 control mice. (B) Mesenchymal-specific MafB knockout mice (Sall1cre/+;MafBflox/flox) failed to form a urethral tube. (C) Endodermal

epithelium-specific MafB knockout mice (Shhcre/+;MafBflox/flox) exhibited a masculinized urethral tube. (D) Ectodermal epithelium-specific MafB knockout

mice (Wnt7acre/+;MafBGFP/flox) exhibited a masculinized urethral tube. Scale bar: 50 mm [E-N] Mmp11 is involved in urethral masculinization. See also

Figures S1B and S1C.
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perturbations in FN expression led to phenotypes associated with impaired cell migration,24–26 and the

fibrillar deposition of FN has also been correlated with cell movement.27–29 In fact, the FN network

continuously changes during embryonic development: In the Xenopus embryo, FN fibrils are constantly

remodeled from gastrulation until neurulation,30 while spatiotemporal differences in the pattern of FN

deposition accompany palate shelf elevation.31 Both neurulation and palatogenesis are widely accepted

models for the investigation of tissue fusion, which both point to the importance of spatiotemporal regu-

lation of FN during midline fusion in organogenesis.32,33 Since the male-type urethra also undergoes

migration and fusion events, we investigated whether FN was involved in this process.

Here, we elucidate the mechanism of androgen-driven cell migration during male eExG development. We

demonstrate MMP11-dependent ECM remodeling during sexual differentiation. MMP11-degradation of

ColVI changes the ECM microenvironment and promotes focal adhesion formation and cell contractility.

Furthermore, we propose that MafB regulates Mmp11 under androgen signaling and reveal the

significance of this signaling cascade during urethral masculinization.

RESULTS

MafB regulates biMs cell migration into the midline

Androgen-driven biMs cell migration is one of the essential processes for the eExG development.4,5 To

understand the role of MafB during urethral masculinization, we cultured tissue slices from the eExG of

MafBGFP/GFP knockout (MafB KO) and control mice for 48 h. Cells of the biMs in the control slices actively

migrated toward the midline, forming the urethral tube (Video S1). In contrast, biMs cells of the MafB KO,

while motile, remained in place (Video S2). These data suggest that MafB is necessary for cell migration

during urethral masculinization.

Mesenchymal MafB function is required for urethral masculinization

Although MAFB is predominantly expressed in the biMs, it is also expressed in the epithelia (Figure S1A).

To confirm whether only mesenchymalMafB is crucial to urethral masculinization, we analyzed several con-

ditional knockout mice which specifically targeted the mesenchymal, endodermal-epithelial, and

ectodermal-epithelial MafB in the eExG (Figures 1A-1D). Sall1 has previously been reported to be ex-

pressed in the biMs, while Shh (Sonic hedgehog) is specific to the endoderm-derived urethral epithelium.5

Meanwhile, Wnt7a is expressed in the ectodermal epithelium of the eExG.34 At E16.5, only the

mesenchymal Sall1cre/+MafBf/f (MafB cKO) mice showed the female-like open urethra, similar to the con-

ventional knockout mice.3 The urethral tube was formed completely in the other two mutants, indicating

that mesenchymal MafB is essential for androgen-driven urethral masculinization.

MMP11 is aMafB-regulated, sexually dimorphic metalloproteinase in the embryonic external

genitalia

We hypothesized that MafB drives urethral masculinization through the regulation of cell migration. Mod-

ifications in the composition or arrangement of the ECM are known to regulate cell migration,9 and one of

the knownmechanisms by which the ECM is remodeled is throughMMPs. We performed RNA-seq analysis

of the biMs to investigate their transcriptomic expression profile and observed that Mmp2, Mmp11, and

Mmp14 were the most highly expressed MMPs in the biMs of the eExG at E16.5 (GEO: GSE185966). How-

ever, RT-qPCR analysis determined that only Mmp11 was a sexually dimorphic gene (Figures 1E–1G).

Indeed, both MMP11 mRNA and protein were strongly expressed in the biMs of the male eExG from

E15.5 (Figure 1H) compared with that of the female (Figure 1I), concurrent with the onset of androgen-

dependent urethral masculinization.7 This dimorphic expression extends to E16.5 (Figures 1J and 1K; Fig-

ure S1B), at which the urethral tube begins to form prominently. To explore the possibility that Mmp11 is

Figure 1. Continued

(E–G) Gene expression analysis of Mmp11 (E), Mmp2 (F), and Mmp14 (G) revealed that Mmp11 is sexually dimorphic. Data expressed as mean G SEM

*p < 0.05, t-test.

(H–K)Mmp11 was expressed more strongly in the biMs of male mice at E15.5 (H) and E 16.5 (J) compared to the female (I and K). Scale bar: 50 mm. (L and M)

Mmp11 expression was induced with testosterone proprionate (TP) treatment. Scale bar: 50 mm [N–S]Mmp11 is underMafB-regulation. See also Figure S1D.

(N and O) Mmp11 expression was downregulated in the mesenchymal-specific MafB knockout. Scale bar: 50 mm.

(P) An H3K27ac element is present in the Mmp11 promoter region.

(Q) MafB-binding sequence (MARE).

(R) ChIP-PCR analysis confirmed that MAFB was present in the H3k27ac element within the Mmp11 promoter region.
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regulated by androgen, we treated wild-type female mice with testosterone proprionate (TP) during the

masculinization window (E14.5-E15.5).7 Mmp11 was induced in the TP-treated female (Figures 1L and

1M), thus indicating that MMP11 is an androgen-inducible metalloproteinase that is highly expressed

during urethral masculinization.

We next determined whetherMmp11 is a downstream target of the androgen-dependent masculinization

factor MafB. Conditional mesenchymal deletion of MafB resulted in the downregulation of the expression

level of Mmp11 in the biMs of the eExG (Figures 1N and 1O). To further confirm the necessity of MafB in

Mmp11 expression, we administered TP to MafB KO female mice and observed that its expression was

not induced in the female mutant embryos even in the presence of androgen (Figure S1C). Moreover,

the promoter region ofMmp11was highly conserved amongmice, humans, and chimpanzees (Figure S1D),

and we identified a histone 3 lysine 27 acetylation (H3K27ac) positive site in this region (GEO: GSE158279)

(Figure 1P). The Maf recognition element (MARE) (Figure 1Q) was identified within this H3K27ac positive

element by using the JASPAR database,35 and ChIP-PCR analysis confirmed that MAFB was bound to

this MARE site (Figure 1R). Taken together, these data suggest that, under androgen signaling, MafB reg-

ulates ECM remodeling through Mmp11 during urethral masculinization.

Requirement of MMP11 activity for extracellular matrix remodeling

One of the known targets of MMP11 is the a3 chain of ColVI.18 Thus, we analyzed its expression and

observed that ColVI was downregulated in the biMs of both E15.5 and E16.5 male eExG (Figure 2A, Fig-

ure S2A). This reduction was not observed in the female (Figures 2B and S2A), suggesting that the changes

in mesenchymal ColVI are required for the process of urethral masculinization. Loss of ColVI expression has

been reported to be necessary for the proper deposition and organization of FN.20–22 We next analyzed the

expression of FN in the eExG and observed different FN deposition patterns between the male and the

female biMs. Although a subtle difference between the sexes could be observed at E15.5 (Figure S2B),

the sexually dimorphic FN deposition pattern became more prominent at E16.5. This difference was

observed despite similar transcript expression levels between sexes (Figure S2C). FN fibrils were formed

in the biMs at E16.5 (Figures 2C and 2E), coinciding with reduced ColVI expression; while a ring-like FN

deposition was observed in the female biMs E16.5 (Figures 2D and 2F). These results suggest that mesen-

chymal ECM remodeling is required for androgen-driven urethral masculinization.

It has been reported that FN deposits inCol6a1 null fibroblasts appear as streaked fibrils as opposed to the

ring-like FN deposited in control cells.20 To investigate whether the pattern of FN deposition is dependent

on ColVI in the ECM, we analyzed the effect of exogenous ColVI on the pattern of FN deposition using an

established eExG slice culture system.5 eExG slices were cultured on gels supplemented with 10% ColVI

(ColVI [+]) or without ColVI (control) for 24 h (Figure 2G). Similar to the female phenotype, slices cultured

on ColVI [+] exhibited a ring-like deposition of FN (Figure 2H); whereas the streak-like pattern was

observed in the control group (Figure 2I). The pattern of FN deposition in the biMs, therefore, is affected

by the ColVI within the ECM environment.

To investigate whether MMP11 degrades ColVI in the biMs, we analyzed its expression in the biMs after

culturing in MMP11-containing conditioned media. As MMP11 is secreted in its active form,36 we

transfected aMmp11 expression vector into HEK293 cells and confirmed the presence of the MMP11 pro-

tein by immunostaining and Western blotting (Figures S3A and S3B). Female eExG slices were cultured in

either the MMP11 conditioned medium (Mmp11[+]) or control media for 24 h (Figure 2J). The deposition of

ColVI was reduced in Mmp11[+] slices (Figure 2K) compared to the control (Figure 2L), suggesting that

MMP11 in the biMs likely degrades ColVI during androgen-driven urethral masculinization. On the other

hand, Collagen I, a major collagen in the eExG, was not affected by this treatment (Figure S2C), suggesting

the substrate specificity of MMP11 to ColVI. The addition of MMP11, however, induced the fibrillar

Figure 2. Requirement of MMP11 activity for ECM remodeling

[A–F] The ECM in the biMs is sexually dimorphic. See also Figure S2. (A and B) ColVI was downregulated in the biMs of E16.5 male mice (A) in contrast to the

female (B). Scale bar: 10 mm. (C and D) Fibrillar deposition of FN was observed in the E16.5 male biMs (C). In contrast, FN was deposited in a ring-like pattern

in the female (D). Scale bar: 10 mm. (E and F) Color-inverted photomicrographs of the FN network in E16.5 male (E) and female (F) biMs.

(G–L) Regulation of ColVI byMmp11 affects FN organization. Schematic diagram of eExG slices cultured on gels with exogenous ColVI. See also Figure S3G

Schematic diagram of eExG slices cultured on gels with exogenous ColVI. (H and I) FN was deposited in a fibrillar pattern in the gel only set-up (H) and in a

ring-like pattern in the presence of ColVI (I). Scale bar: 10 mm. (J) Schematic diagram of Mmp11 overexpression set-up. (K and L) ColVI expression was

reduced in eExG slices cultured in MMP11 conditioned medium (K) versus the control (L).Scale bar: 10 mm.
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Figure 3. ECM remodeling is necessary for migration in the male biMs

(A and B) BiMs cells migrate more efficiently on FN rather than on ColVI. See also Videos S3 and S4. (A) Schematic diagram

of primary cell migration assay. (B) Still images from live imaging video of biMs on either FN or ColVI. Images taken at 0,
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deposition of FN in the female biMs (Figure S2D). Altogether these data suggest that MMP11 remodels the

ECM in the biMs by degrading ColVI which, in turn, alters the deposition pattern of FN during urethral

masculinization.

MMP11-dependent extracellular matrix remodeling leads to cell migration in the male

embryonic external genitalia

Since cell migration is necessary for urethral masculinization,5 we next investigated whether ECM remod-

eling is critical for this process. In the absence of ColVI, both epithelial cells and neural crest cells have

been reported to become more migratory on FN substrate.21,22 To investigate whether MMP11-regu-

lated ECM remodeling is required for cell migration in the eExG, we developed a migration assay using

primary biMs cells. Following the recent methods of Hagiwara et al. (2021), polydimethylsiloxane (PDMS)

rings were coated with either ColVI or FN, and cells were cultured within an inner well (Figure 3A).37 After

the cells have attached, we removed the PDMS sheets and observed the cells for 48 h. Live imaging

analysis revealed that biMs cells migrated into the FN-coated region (Figure 3B; Video S3) within the first

hour of culture. The cells proceeded to migrate efficiently into the coated region throughout the 48 h

duration. In contrast, cells that were within the ColVI-coated region remained stationary (Figure 3B;

Video S4).

To understand the mechanism leading to cell migration, we cultured biMs primary cells on either ColVI

or FN (Figure 3C). After 24 h, a higher number of biMs cells was attached to the FN-coated well

(Figures 3D and 3E). The presence of focal adhesions was marked using vinculin (VCL), and cell contrac-

tility was assessed by analyzing the expression of the phosphorylated myosin light chain (pMLC). Cells

cultured on FN formed prominent lamellipodia that contained longer and more distinct focal adhesions

(Figure 3F and 3F00), while those cultured on ColVI tended to form smaller adhesions (Figure 3G and 3G00)
(Figure S4A). Contractile stress fibers were also more prominently expressed by cells cultured in the pres-

ence of FN (Figure 3F’ and 3F00) than on ColVI (Figure 3G’ and 3G00) (Figure S4A). These results suggest

Figure 3. Continued

24, and 48 h. Yellow dotted line marks the border between the coated and non-coated regions. Red dotted line

indicates the end of migrating cells.

(C–G) BiMs cells cultured on FN possess prominent focal adhesions and stress fibers. (C) Schematic diagram of primary

cell culture on either FN or ColVI. (D and E) More biMs cells adhered to FN (D) than to ColVI (E). Scale bar: 50 mm. (F and G)

On FN, VCL (F) was strongly expressed on the edges of the cell, while pMLC (F0) was prominent throughout the cell body.

On ColVI, VCL (G)-marked focal adhesions were smaller, and pMLC (G0) was restricted to the sides of the cell. F00 and G00

show merged image. Scale bar: 10 mm.

Figure 4. Focal adhesions are assembled in the male biMs

(A and B) pFAK was expressed more prominently in the male biMs (A) compared to the female (B). Scale bar: 50 mm.

(C and D) VCL and ITGA5 expressions co-localized in the male biMs (C), marked with SALL1, but not in the female (D). (C0

and D0 ) VCL expression in the biMsmarked by SALL1. (C00 and D00) VCL expression in the biMs marked by SALL1. Scale bar:

50 mm. See also Figure S4.
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that biMs cells require a shift from ColVI to FN to develop focal adhesions and contractility, leading to

cell migration.

These in vitro data prompted us to investigate the cytoskeletal dynamics in the tissue during androgen-

driven urethral masculinization. pMLC is upregulated in the male E16.5 eExG, compared to the female5;

Figure S4B). The sexually dimorphic expression occurred from E15.5 (Figure S4B), concurrent with the onset

of morphologically dimorphic eExG development. Furthermore, focal adhesion markers - phosphorylated-

focal adhesion kinase (pFAK), VCL, and integrin a5 (ITGA5) - were also expressed prominently in the male

biMs but not in females (Figures 4A–4D). The sexually dimorphic expression was observed from E15.5

(Figures S4C and S4D). Collectively, these findings suggest that to form the urethral tube during masculin-

ization, MMP11-dependent ECM remodeling in the biMs is required for the MafB-positive cells to acquire a

migratory state.

MafB drives cell migration via MMP11-dependent extracellular matrix remodeling

As mentioned, MafB regulates Mmp11 expression in the biMs. To reinforce the significance of upstream

MafB signaling, we analyzed the expressions of several ECM proteins, cell-matrix adhesion markers, and

Figure 5. MafB is required for ECM-remodeling and subsequent cell migration

(A–D) The ECM environment of theMafB KO is similar to the female phenotype. (A and B) ColVI expression was reduced in

theMafB KO (B) versus control (A). Scale bar: 50 mm. (C and D) FN expression in theMafB KO (D) was ring-like in pattern, in

contrast to the fibrillar expression in the control male (C). Scale bar: 50 mm.

(E and F) Color-inverted photomicrographs of the FN network in control male (E) and MafB KO (F) biMs.

(G–J) Focal adhesion proteins and cell contractility are reduced in the MafB KO. (G and H) Focal adhesion proteins were

downregulated in the MafB KO. (G0 and H0) VCL only. (G00 and H00) ITGA5/Hoechst. Scale bar: 50 mm. (I and J) pMLC was

downregulated in the biMs of theMafB KO (J) compared to the control (I). Blood vessel expression (*) of pMLC remained

the same. Scale bar: 50 mm. See also Figure S5.
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actomyosin activity in the MafB KO mice. A MafB-GFP knock-in mouse line (MafBGFP/+) was utilized to

identify the MafB-expressing biMs cells (Figure S5). Expression of ColVI remained in the biMs of the KO

mouse (Figures 5A and 5B) and FN was observed in a ring-like pattern (Figures 5C–5F), which was similar

to the female ECM microenvironment. Moreover, pMLC, VCL, and ITGA5 were downregulated in the

absence of MafB (Figures 5G–5J). These results indicate that MafB regulates cell migration through

MMP11-dependent ECM remodeling in the biMs.

DISCUSSION

Androgens govern the development of the male reproductive organs. Epithelial androgen signaling

regulates cell proliferation, differentiation, and survival during the development of the prostate, epidid-

ymis, and seminal vesicles.38 While mesenchymal androgen receptor (AR) signaling is necessary for

epithelial cell proliferation and differentiation in the prostate gland,39 the role of mesenchymal androgen

signaling during male external genitalia development has yet to be elucidated. Here, we demonstrate

that local ECM remodeling, under mesenchymal androgen signaling, is essential during eExG

development. Androgen-MafB drives cell migration through the regulation of MMP11-dependent ECM

remodeling: MMP11-degradation of ColVI in the mesenchyme leads to the fibrillar deposition of FN,

and this allows the biMs cells to form focal adhesions required for sexually dimorphic cell migration

(Figure 6).

MafB is a regulator of Mmp11 under androgen signaling

Androgens regulate MMP expression in prostate and bladder cancers; however, its regulatory effect is

context-, type-, and dose-dependent.40–42 While it is generally accepted that AR signaling can stimulate

MMP activity,40,43,44 it has also been reported to downregulate the expression of MMPs through Ets tran-

scription factors.45 AR induces the activity of target genes through transcription factors such as SRY, SP1,

and the Activator Protein-1 (AP-1) super family.1,46–48 The AP-1 superfamily consists of the Jun, Fos, andMaf

families.1,49,50 A highly conserved region, which includes a binding site for Jun/Fos dimers, is present in the

cis-regulatory elements of the promoter regions of several MMPs.51,52 MMP11 possesses an additional

AP-1 site in its promoter region that, while still responsive to Jun and Fos, is not an exact match.53 In addi-

tion, MMP3, which belongs to the same MMP group as MMP11, similarly possesses this slightly divergent

AP-1 site.53 In chondrocytes, MafB has been reported to stimulate MMP3/13 expression in response to ret-

inoic acid signaling,53,54 suggesting a possibility of MafB as a regulator not only of MMP11, but of strome-

lysins. Here, we report that a MARE is present in the promoter region of Mmp11 and that MafB, another

member of the AP-1 family of transcription factors, binds to this site during urethral masculinization. Since

there are currently no knownMmp11 regulators during development, androgen-regulatedMafB is the first

suitable candidate as an upstream regulator of Mmp11.

Androgen-driven cell migration via extracellular matrix remodeling during organogenesis

In the prostate, androgens initiate ductal growth and cell differentiation.55,56 In the Wolffian duct, andro-

gens are required for cell differentiation and proliferation.57 While androgen is known as the master regu-

lator for sexually dimorphic reproductive organ formation, the mechanism through which it orchestrates

organogenesis has yet to be defined. We previously reported that male-specific mesenchymal cell

Figure 6. Androgen-regulated MafB drives cell migration via Mmp11-dependent ECM remodeling

Cleavage of ColVI (green) by MafB-induced MMP11 results in the fibrillar organization of FN (purple). This change in the

ECM substrate allows the cells of the biMs to adapt migratory characteristics, leading to the masculinization of the

urethral tube.
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dynamics is indispensable during androgen-dependent urethral masculinization.1,4,58 Here, we report that

cell migration is defective in the MafB mutant mesenchyme, indicating that androgen-regulated MafB is

required for mesenchymal cell migration during eExG development.

Organogenesis is generally associated with high levels of tissue remodeling and cell migration.59 During

gut looping, the migration of the epithelial lateral plate mesodermal cells requires the loss of laminin

through MMP activity,60 and the direction of looping is determined through asymmetric ECM deposition

in the mesenchyme.61 Extensive remodeling of the ECM also occurs during the development of the lung,

the tooth, and the palate.62,63 Our data demonstrate remodeling of the ECM alongside urethral tube

development: MMP11 degrades ColVI, resulting in the fibrillar deposition of FN. It has been suggested

that this is due to the competitive binding of ColVI for integrin b1 which prevents fibrillogenesis.20,21 We

observed increased focal adhesion assembly and cell contractility in the male biMs and also in cells

cultured with FN. FN has been reported to promote the formation of focal adhesions and cell migra-

tion.22,64 In the lung, FN polymerization is required for small airway epithelial cell migration.65 Myoblast

cells have also been shown to migrate with persistent directionality on FN but not on gelatin.66 In addi-

tion, polymerization of soluble FN into fibrils has been reported to be required to generate cytoskeletal

tension.67 It has further been suggested that a low ColVI/high FN environment leads to an increase in the

phosphorylation of MLC through alterations in the calcium pathway.21 Lastly, in the eExG, F-actin stress

fibers and actomyosin contractility increase in response to androgens.4,5 Hormone-dependent ECM re-

modeling has also been previously reported during tadpole metamorphosis: MMP11 cleaves the base-

ment membrane in response to thyroid hormone during intestinal development.16,68 We have shown

that MMP11 is an androgen-dependent metalloproteinase in the eExG. Intriguingly, androgen exposure

is sufficient to induce cell migration in female eExG slice cultures.5 These all support our finding that

MMP11-regulated ECM remodeling is vital in androgen-driven mesenchymal cell migration during

eExG sexual differentiation.

Tissue fusion is classically studied through neural tube formation, palate morphogenesis, and heart devel-

opment. Among these three, mesenchymal cell migration is most well-studied during heart development,

focusing on neural crest cells as a model.69 Our study introduces the development of the external genitalia

as an alternative model for investigating mesenchymal cellular processes that occur during tissue fusion.

We report that this process is under androgen regulation. Several other organs suggest links between

androgen signaling, MafB expression, and tissue remodeling. Organs of the cardiovascular system

undergo androgen-dependent development,70 and MafB is a critical transcription factor for the develop-

ment of the highly migratory cardiac neural crest cell.71 Similarly, the development of the CNS has also

been reported to be sexually dimorphic.72,73 In this system, MafB is required for hindbrain segmentation

and regional specification.74 It will be interesting to investigate whether androgen-MafB signaling can

induce cell migration via MMP11-dependent ECM remodeling in other systems.

Limitations of the study

In this study, we elucidated the role of androgen-regulatedMafB during cell migration using the masculin-

ization of the mouse urethra as a model, and our in vitro assays on migration utilized mouse primary cells.

Whether the same mechanism occurs in other mammals, including humans, remains to be explored.

Furthermore, MafB is also expressed in other organs. Investigating downstream events to MafB in these

systems would contribute to the generality of our proposed mechanism.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti Type VI Collagen (raised against cow) pAb

(Rabbit, Antiserum)

Cosmo Bio Ltd. Cat. No.: LSL-LB-1697; RRID:AB_10708895

Anti-Fibronectin antibody produced in rabbit Sigma Cat. No.: F3648; RRID:AB_476976

Mouse Anti-Vinculin Monoclonal Antibody, Unconjugated,

Clone hVIN-1

Abcam Cat. No.: ab11194; RRID:AB_297835

Anti-Integrin alpha 5 antibody [EPR7854] ab150361 Abcam Cat. No.: ab150361; RRID:AB_2631309

Myosin light chain (phospho S20) antibody Abcam Cat. No.: ab2480; RRID:AB_303094

Phospho-FAK (Tyr397) Recombinant Rabbit Monoclonal

Antibody (31H5L17)

Thermo Fisher Scientific Cat. No.: 700255’ RRID:AB_2532307

Anti human SALL1 mouse monoclonal antibody Perseus Proteomics Cat. No.: PP-K9814-00; RRID:AB_1964373

Anti-mouse GFP Roche Cat. No.: 11814460001, RRID:AB_390913

Alexa Fluor546 Molecular Probes Oregon Cat. No.: A-11010, RRID:AB_2534077

Alexa Fluor488 Molecular Probes Oregon Cat. No.: A-21121, RRID:AB_2535764

Alexa Fluor647 Abcam Cat. No.: ab150079, RRID:AB_2722623

Rabbit Anti-Murine MafB Polyclonal, Unconjugated

antibody

Novus Cat. No.: NB 600-266; RRID:AB_525413

Hoechst33342 Sigma-Aldrich Cat. No.: 875756-97-1

MafB (P-20) antibody, Santa Cruz Biotechnology Santa Cruz Biotechnology Cat. No.: sc-10022; RRID:AB_648633

Monoclonal ANTI-FLAG� M2 antibody Sigma-Aldrich Cat. No.: F1804; RRID:AB_262044

MMP-11 antibody Abcam Cat. No.: 1881-1, RRID:AB_765032

Chemicals, peptides, and recombinant proteins

Tamoxifen Sigma-Aldrich Cat. No.: T5648

Testosterone proprionate Sigma-Aldrich Cat. No.: T1875

Fibronectin Sigma Cat. No.: F1141

Collagen VI, Human Corning Cat. No.: 354261

Signal Enhancer HIKARI for Western Blotting

and ELISA

Nacalai Tesque Cat. No.: 02267-41, 02270-81

Chemi-Lumi One L Nacalai Tesque Cat. No.: 07880-70

Critical commercial assays

Vector TrueVIEW Autofluorescence Quenching Kit Vector Laboratories Cat. No.: SP-8400

Multi Tissue Dissociation Kit 1 Miltenyl Biotec Inc. Cat. No.: 130-110-201

QIAquick PCR Purification kit Qiagen Cat. No.: 28104

Deposited data

RNA sequencing data Kajioka et al., 202146 GEO: GSE158279

RNA sequencing data This paper GEO: GSE185966

Experimental models: Cell lines

Human: HEK293 cells ATCC CRL-1573; RRID:CVCL_0045

Experimental models: Organisms/strains

Mouse: Sall1cre/+ Inoue et al., 201075 N/A

Mouse: Shh cre/+ Harfe et al., 200476 N/A

Mouse: Wnt7a cre/+ Winuthayanon et al., 201077 N/A
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for reagents and resources should be directed to and will be fulfilled by

the lead contact, Gen Yamada (genyama77@yahoo.co.jp).

Materials availability statement

This study did not generate new unique reagents.

Data availability statement

RNA-seq data have been deposited at GEO (GEO: GSE185966) and are publicly available as of the date of

publication.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All laboratory animals were maintained under standard conditions in accordance to the Animal Use and

Care Guidelines of the Wakayama Medical University, Japan. The following mouse lines were used in

this study: ShhCre/+,76 Wnt7aCre/+,77 Sall1Cre/+,75 MafBf/f,79 and MafBGFP/+.78 All lines were on a C57BL/6J

genetic background. Mice were bred, and the presence of a vaginal plug was designated as E0.5. For con-

ditional knock-out mice, the flox allele was deleted by oral administration of Tamoxifen (200 mg/kg body

weight) on E11.5 for Sall1Cre/+MafBf/f and E9.5 for ShhCre/+MafBf/f. Heterozygous or wild-type littermates

were used as control. To analyze the sexual dimorphism of mRNA and protein expressions in the eExG,

ICR mice were utilized. TP was orally administered at E14.5 and E15.5 at 100 mg/kg body weight to induce

masculinization in female mice prior to harvest.

METHOD DETAILS

Histological analyses and imaging

All tissue samples were fixed in 4% wt/vol paraformaldehyde in PBS (PFA/PBS) and serially dehydrated in

methanol. The samples were paraffin-embedded and cut into 6 mm sections for immunofluorescence and

hematoxylin/eosin (HE) staining, while a thickness of 10 mm was used for mRNA in situ hybridization. HE

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: MafBGFP/+ Moriguchi et al. 200678 N/A

Mouse: MafBf/f Tran et al., 201679 N/A

Oligonucleotides

RNA probe: Mmp11 Lefebvre et al., 199214

RNA probe: FN This paper

Primer: Mmp11 (Table S2) This paper

Primer: Mmp2 (Table S2) This paper

Primer: Mmp14 (Table S2) This paper

Recombinant DNA

Mmp11 (NM_008606) Mouse Tagged

ORF Clone

OriGene Cat. No.: MR207900

Software and algorithms

CellSense Standard v1.6 Olympus

ZEN 2012 SP1 v8.1 (black edition) Carl Zeiss

ImageJ Schneider et al., 201280 https://imagej.nih.gov/ij/

Other

HistoVTOne Nacalai Tesque Inc. Cat. No.: 06380-05

Polydimethylsiloxane (PDMS) sheets Takehiko Ogawa;

Komeya et al., 201981
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staining was performed using standard protocol. For mRNA in situ hybridization, the samples were depar-

affinized, rehydrated, and then incubated in 65�C overnight with the mRNA probe for either Mmp1114 and

FN (forward: 50-GCATCAGCCCGGATGTTAGA-30; reverse: 50-GGTTGGTGATGAAGGGGGTC-30). The

slides were then washed with 1X TBST and labeled with an anti-DIG probe (1:1000) prior to colorization

with NBT/BCIP.

Proteins were detected using standard immunofluorescence protocol: the samples were deparaffinized

and rehydrated before being subjected to antigen retrieval. HistoVTOne (105�C, 15 min) was used as

the antigen retrieval agent for all antibodies except for anti-fibronectin (FN; 5% w/v trypsin, 5 min). For

detecting extracellular matrix proteins, rabbit monoclonal antibodies for Collagen VI (ColVI; 1:1000) and

FN (1:200) were used in this study. For detecting focal adhesions and related proteins, we used mouse

monoclonal antibody for vinculin (VCL) (1:800) and rabbit monoclonal antibodies for integrin a5 (ITGa5;

1:200), phosphorylated focal adhesion kinase (pFAK; 1:500), and phosphorylated myosin light chain

(pMLC; 1:1000). We also used the following antibodies as markers for our regions of interest: rabbit mono-

clonal antibody for MAFB (1:1000), mouse monoclonal antibody for SALL1 (1:200), and GFP (1:200). To

reduce autofluorescence by red blood cells, slides were incubated for 5 min in TrueVIEW Autofluorescence

Quenching Kit. Immunostaining was visualized using Alexa Fluor 488, Alexa Fluor 546, and Alexa Flour 647

(1:200). Nuclei was marked using Hoechst33342 (1:1000).

For immunocytochemical staining, cells were fixed in 4% PFA/PBS for 10 min, washed with PBS and per-

meabilized with 0.5% Triton X-. Slides were then incubated with the monoclonal antibodies targeting

VCL (1:1000) and pMLC (1:1000). The cells were fluorescently labeled at a 1:300 dilution and counterstained

with Hoechst 33,342 (1:2000) prior to visualization.

All sections were viewed using an Olympus BX51 microscope and processed with Cell Sans Standard (v1.6,

Olympus). Confocal fluorescence images were taken using the ZEISS LSM 900 with Airyscan 2 (Carl Zeiss).

The images then were processed using the ZEN 2012 SP1 v8.1 software (black edition, Carl Zeiss). Live im-

aging videos were taken using ZEISS LSM 900 with Airyscan 2 equipped with an incubation chamber under

5% CO2 and 37�C.

Chromatin immunoprecipitation (ChIP) assay and ChIP-Seq analysis

The proximal and ventral portions of 30 eExG samples were dissected from E16.5 male ICR mice and

homogenized in lysis buffer containing 10 mM HEPES-KOH (pH 7.3), 10 mM KCl, 5 mM MgCl2, 0.5 mM

dithiothreitol, 0.2 mM phenylmethylsulfonyl fluoride, and protease inhibitor cocktail. The chromatin was

cross-linked for 30 min with 2 mM ethylene glycol bis(succinimidyl succinate) (EGS) (Thermo Fisher Scien-

tific, Inc) then with 1% formaldehyde for 5 min at RT. The resulting chromatin was digested using MNase

(Takara) prior to being sonicated in SDS lysis buffer (50 mM Tris-HCl [pH8.1], 10 mM EDTA, 1%SDS). For

the antibody reaction, 50 mg of DNA was immunoprecipitated with a specific antibody for MAFB (2.0 mg)

at 4�C overnight. The immunoprecipitation buffer constituted of 16.7 mM Tris-HCl (pH8.1), 1.2 mM

EDTA, 1.1% Triton X-, 0.01% SDS, 167 mMNaCl, 0.2 mM PMSF, and protease inhibitor cocktail. Dynabeads

with Protein G (Life Technologies) were added to isolate protein-DNA complexes. Cross-linking was

reversed at 65�C for 8 h. DNA fragments were purified by a QIAquick PCR Purification kit (QIAGEN). Poly-

merase chain reaction (PCR) was performed under the following conditions: 5 min at 95�C then 95�C for 10s,

55�C for 30s, 72�C for 1 min, and 72�C for 10 min for 40 cycles. The primer used for Mmp11 is listed in

Table S2. Rabbit immunoglobulin (Dako) was used as a control.

Primary cell migration assay and culture

The biMs of E15.5 male ICR embryos were dissected, and the cells were separated using the gentleMACS

Octo Dissociator (Miltenyl Biotec) according to the manufacturer’s instructions. Briefly, the dissected

tissues were placed inside gentleMACS C tubes with 1.1 mL of serum-free DMEM and the enzyme mix pro-

vided by the manufacturer. The tissues were processed at room temperature for 30 min. The resulting sin-

gle-cell suspension was precipitated and resuspended in charcoal-filtered FBS- and DHT-supplemented

media. For substrate migration assay, polydimethylsiloxane (PDMS) sheets81 were trimmed, submerged

in 30 ng/cm2 ColVI (Corning) or 30 ng/cm2 FN (Sigma), and placed on a culture dish. The plates were

incubated at 37�C for at least 20 min prior to use. Primary cells were cultured at a density of 50,000 cells

and allowed to attach for 24 h before removing the PDMS sheets and imaging. For protein expression
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analysis, the cells were plated at 100 cells/mL on an 8-well chamber slide coated with either 30 ng/cm2 ColVI

(Corning) or 30 ng/cm2 FN (Sigma) for 24 h before fixation and staining. (N R 3)

Mmp11 overexpression, eExG slice culture, and exogenous collagen 6 assays

HEK293 cells were thawed and cultured until confluent in DMEM supplemented with FBS and 1% penicillin-

streptomycin. The cells were harvested and a MMP11-myc-DDK-tagged plasmid vector (OriGene) was

electroporated into the cells. A control set-up was electroporated with a pCMV6-Entry vector. The cells

were allowed to recover for 24 h in serum-free DMEM, then cultured in 10% charcoal FBS-supplemented

DMEM for an additional 48 h. The conditioned media was collected and used as culture medium for

eExG slices (described below). After 24 h of culture, the tissue slices were collected, fixed, and analyzed.

The media from both set-ups were collected to confirm MMP11 overexpression using Western blotting.

The proteins were separated using SDS-PAGE then blotted onto an Immobilon-P PVDF (polyvinylidene

difluoride) membrane (Milipore). The membrane was blocked with 1% skim milk (BD Difco) in 1X TBST

for 1 h, RT, prior to incubation with anti-FLAG antibody (1:1000) diluted in Signal Enhancer HIKARI for West-

ern Blotting and ELISA Solution A (Nacalai Tesque) at 4�C, overnight. The membrane was then washed and

incubated in the Signal Enhancer HIKARI Solution B (Nacalai Tesque) with HRP goat-conjugated anti-rabbit

IgG (H + L) (Invitrogen) antibody. The signal was visualized using Chemi-Lumi One L (Nacalai Tesque) under

the ChemiDoc XRS + system (BioRad Laboratories).

The eExG slice culture system was performed according to.5 The eExG of E15.5 mice were dissected and

embedded in 4% low-melting point agarose in PBS. The tissues were sliced to a thickness of 140 mm using a

7000smz vibratome (Campden Instruments). The Z-deflection was adjusted to 0.03 mm or lower to reduce

tissue damage. For Mmp11 overexpression assay, the slices from female eExG were placed on a Millicell

Culture Insert (EMD Millipore) and cultured with either the conditioned or control media. For the exoge-

nous ColVI assay, the slices were cultured on top of 1.5% agarose blocks that were supplemented with

or without 10% ColVI (Corning), surrounded by DMEM supplemented with 10% charcoal-treated FBS,

1% penicillin-streptomycin, and 10�8 M DHT. The slices were kept for 24 h under 37�C and 5% CO2 before

fixation and analysis.

RNA sequencing and qPCR analysis

The biMs from the eExG of both male and female ICR mice (E13.5 and E16.5), along with the MafB KO and

control (MafBGFP/+), was collected (n R 3 per group). Total RNA was isolated using ISOGEN II (Nippon

Gene Co., Ltd.) and reverse transcribed with PrimeScript RT Master Mix (Perfect Real-time, Takara Bio)

following the manufacturer’s instructions. The preparation of the RNA libraries were entrusted to

Novogene Japan K.K., and sequencing was performed using the Illumina HiSeq 4000. The data has

been deposited in GEO under the accession number GSE185966. qPCR was performed using the

StepOnePlus Real-Time PCR System (Applied Biosystems) with SYBR Premix Ex Taq II (TIi RNAseH Plus,

Takara Bio) in triplicate. At least three biological replicates were analyzed. GADPH was used as internal

control. Primer information is listed in Table S2.

QUANTIFICATION AND STATISTICAL ANALYSIS

qPCR data is presented as mean relative expression GSEM Statistical significance was assessed through

t-test using Microsoft Excel. A p value of less than 0.05 was considered as statistically significant difference.

All experiments were performed with at least three biological replicates.
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