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SUMMARY

Cerebral cavernous malformation (CCM) is caused by loss-of-function mutations
in CCM1, CCM2, or CCM3 genes of endothelial cells. It is characterized by
pericyte deficiency. However, the role of pericytes in CCMs is not yet clarified.
We found pericytes in Cdh5CreERT2;Ccm1fl/fl (Ccm1ECKO) mice had a high expres-
sion of PDGFRb. The inhibition of pericyte function by CP-673451 aggravated the
CCM lesion development. RNA-sequencing analysis revealed the molecular traits
of pericytes, such as highly expressed ECM-related genes, especially Fn1.
Furthermore, KLF4 coupled with phosphorylated SMAD3 (pSMAD3) promoted
the transcription of fibronectin in the pericytes of CCM lesions. RGDS peptide,
an inhibitor of fibronectin, decreased the lesion area in the cerebella and retinas
of Ccm1ECKO mice. Also, human CCM lesions had abundant fibronectin deposi-
tion, and pSMAD3- and KLF4-positive pericytes. These findings indicate that peri-
cytes are essential for CCM lesion development, and fibronectin interventionmay
provide a novel target for therapeutic intervention in such patients.
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INTRODUCTION

Cerebral cavernous malformation (CCM) affects 0.5% of the world’s population.1 Approximately 80% of

cases are sporadic, and 20% of cases are familial; about 5% of familial CCM patients also suffer from retinal

CCM lesions. The loss-of-function mutations in CCM1, CCM2, or CCM3 genes of endothelial cells (ECs)

result in CCM lesions.1–3

CCM is characterized by reduced pericyte coverage and impaired endothelial-pericyte interaction.4–6

Notably, increased pericyte coverage and normalization of EC-pericyte interaction rescue the CCMpheno-

type.4,5,7 A recent study shows that platelet-derived growth factor receptor beta (PDGFRb) signaling

mediates the EC-pericyte interaction during angiogenesis.8,9 Knockout or blockage of PDGFRb caused

a loss of pericytes and dysfunction in the tight junction of ECs,10,11 enlarged the capillaries, and decreased

the vessel branching points.12 The decrease in pericytes also promotes the development of arteriovenous

malformation.13 However, whether inhibition of pericyte function aggravates CCM lesions is yet to be

elucidated.

Fibronectin (FN) is a critical regulator of vascular remodeling and angiogenesis.14–16 Its expression is barely

detectable in normal adult vasculature,17 whereas the fibronectin-rich matrix is found in immature or

impaired vessels.15,18–20 Overexpressed fibronectin induces capillary dilation,21–23 whereas fibronectin

antagonist significantly decreases the lumen volume.16 In addition, pericytes are a major source of fibro-

nectin.24,25 The increased deposition of fibronectin was detected in CCM lesions.18,23,26 Therefore, fibro-

nectin secreted by pericytes might contribute to the pathology of CCMs.

In addition, fibronectin produced by perivascular cells is regulated through transforming growth factor-

beta (TGF-b) signaling.27,28 The activated TGF-b phosphorates Smad2 and Smad3. Phosphorylated

Smad2 (pSmad2) and pSmad3 form a compound that regulates the transcription of target genes (including

Fn1) via interaction with other transcription factors.29,30 Krüppel-like factor 4 (KLF4) is a vital transcription

factor that induces the expression of fibronectin.31–33 Klf4-knockout in perivascular cells decreases fibro-

nectin production.32 Of interest, KLF4 might act as a co-transcription factor with pSmad2/3 in pericytes
iScience 25, 105642, December 22, 2022 ª 2022 The Authors.
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to promote the transcription of fibronectin. TGF-b/Smad34 and KLF435 are highly expressed in the ECs of

CCM lesions. However, data showing the expression levels and interaction between Smad3 and KLF4 in

pericytes of CCM lesions are insufficient.

Therefore, we hypothesized that inhibition of pericyte function could aggravate CCM lesions, KLF4 could

interact with TGF-b/Smad signaling pathway to regulate the production of fibronectin in CCM pericytes,

and disrupted fibronectin function could rescue CCM diseases. The present study aimed to identify the

essential role of pericytes in the development of CCMs. These findings could improve our understanding

of the disease pathobiology and yield a novel treatment for CCMs.
RESULTS

Relative expression of PDGFRb was increased in CCM1ECKO mice

The CCM lesions consisted of dilated and irregular structures of microvessels, poorly covered by pericytes.

The unaffected blood vessels adjacent to CCM lesions had a normal appearance and were covered by peri-

cytes similar to those in control animals (Figure 1A). The quantification of immunofluorescence (IF) staining

showed that the vascular area of CCM lesions was increased (Figure 1B), accompanied with the upregula-

tion of PDGFRb (Figure 1C) in CCM1ECKO mice at age P14. Western blot (WB) analysis revealed that the

relative expression of PDGFRb in cerebellar microvessels with a diameter less than 10 mm was higher in

Ccm1ECKO mice than in Ccm1fl/fl mice at age P14 (Figures 1D and 1E). These results suggested that

PDGFRb was highly expressed in pericytes to partially compensate for the loss of pericytes in CCM lesions.
Structural remodeling of pericytes in CCM lesions

The immunostaining results showed more complex processes of pericytes were in CCM lesions (Fig-

ure S1A), which became mesh or ensheathed (Figure S1B). Conversely, the non-affected perivascular cells

adjacent to CCM lesions had a thin-strand appearance and were distributed along the vessel axis, similar to

those in control animals (Figures S1A and S1B). These findings suggested that pericytes might remodel

their shape in CCM lesions.
Interrupting pericyte function exacerbated CCM lesions

To investigate the function of pericytes in CCM lesions, mice were administered CP-673451 (a specific in-

hibitor of pan-PDGFRb)36,37 (Figure S2A). The expression of PDGFRb was downregulated in the cerebellar

microvessels of CP-673451-treated mice (Figures S2B–S2D), whereas the level of PDGFRa was not down-

regulated (Figures S2B, S2E, and S2F). In addition, the expression of desmin, another marker of pericyte,

also decreased in retinal vessels of CP-673451-treated mice (Figures S2G and S2H).

Subsequently, we found the cerebellar CCM lesions were increased in CP-673451-treated CCM1ECKO mice

at age P14 (Figures 2A and 2B). The histological quantification of cerebellar lesions demonstrated that

lesion numbers and areas increased significantly in CP-673451-treated Ccm1ECKO mice (Figure 2C). Specif-

ically, CCM lesions were classified into 3 categories based on the area of < 5000 mm2, 5000–10000 mm2,

or > 10000 mm2.38 Quantification results showed that the lesion numbers increased in area < 5000 mm2,

and enlarged lesions were mainly focused in area >10000 mm2 (Figure 2C). In addition, the whole-mount

staining of mouse retinas revealed that the area of lesions increased markedly in CP-673451-treated

Ccm1ECKO mice at age P14 (Figures 2D and 2E). These data indicated that interrupting the function of peri-

cytes exacerbated CCM lesions in both cerebella and retinas, and pericytes were involved in CCM

development.
Gene ontology (GO) and Kyoto Encyclopedia of genes and genomes (KEGG) pathway

enrichment analysis of pericytes in Ccm1ECKO mice

To investigate the genetic profiles of pericytes in CCMs, we isolated pericytes fromCcm1ECKO andCcm1fl/fl

mice for RNA sequencing (RNA-seq). The real-time quantitative polymerase chain reaction (RT-qPCR)

results showed that enriched pericytes had good purity and had not contamination from other cells

(Figure S3). The RNA-seq analysis identified 2277 differentially expressed genes (DEGs), including 1557 up-

regulated and 720 downregulated DEGs. A heatmap was utilized to display the top DEGs, including 42 up-

regulated genes and 24 downregulated genes ranked by P-value (Figure 3A). These DEGs were subjected

to GO enrichment and KEGG pathway analyses.
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Figure 1. Reduced pericyte coverage in Ccm1ECKO mice

(A) Representative IF images of PECAM and PDGFRb in the cerebella of Ccm1ECKO and Ccm1fl/fl mice at different time

points. Cerebral cavernous malformations (CCMs) were enlarged vascular lesions (asterisks). The white box regions

represented ECs covered by pericytes, whereas the purple box regions showed the ECs without pericyte coverage. Scale

bar: 50 mm, 10 mm in higher-magnification images.

(B) Quantification of vascular area as shown in (A) at different time points.

(C) Quantification of the expression of PDGFRb as shown in (A) at different time points.

(D and E) WB analysis showed that the level of PDGFRb increased significantly in cerebellar microvessels of Ccm1ECKO

mice at P14. n = 3 or 4 mice per group. Data are presented as mean G SD. *P < 0.05, **P < 0.01, ***P < 0.001, one-way

ANOVA with Tukey’s post-hoc test for B and C, unpaired Student’s t-test for E.
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Figure 2. Interruption of pericyte function exacerbated lesion burden in the cerebella and retinas of Ccm1ECKO mice

(A and B) Stereomicroscopic images and hematoxylin-eosin (H&E) staining showed abundant CCM lesions in the cerebella of CP-673451-treated Ccm1ECKO

mice. Representative images of CCM lesions (asterisks) were shown in (B).

(C) Semiquantitative results of cerebellar CCM lesions as shown in (B).

(D) Representative confocal microscopy images of retina inCcm1fl/fl andCcm1ECKOmice treated with vehicle or CP-673451. The whole-mount staining of the

mouse retina was performed with isolectin B4. The white dotted line marked CCM lesions.

(E) Large and complicated CCM lesion area in retinas of Ccm1ECKO mice treated with CP-673451. n = 4 or 5 mice per group. Data are presented as mean G

SD. Scale bar: 1 mm in A; 200 mm in B; 500 mm in D. *P < 0.05, **P < 0.01, ****P < 0.001, unpaired Student’s t-test for upper panels of C and E, one-way ANOVA

with Tukey’s post-hoc test for bottom panels of C.
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The analysis of 2277 distinct DEGs for the enrichment in GO database revealed the top 20 GO enriched

pathways with the lowest adjusted P-values according to biological process (BP), cell component (CC),

and molecular function (MF). The GO enrichment analysis of BP was related to the regulation of cell-cell

adhesion, positive regulation of cell adhesion, and negative regulation of the immune system (Figure 3B).

In the CC group, the upregulated genes were enriched in the lytic vacuole, lysosome, and actin cytoskel-

eton (Figure 3C). The additional GO enrichment analysis of MF revealed that the enzyme activator activity,

small GTPase binding, and actin-binding were significantly enriched in pericytes purified from Ccm1ECKO

mice (Figure 3D). KEGG analysis identified PI3K-Akt signaling, cytokine-cytokine receptor interaction, and
4 iScience 25, 105642, December 22, 2022
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Figure 3. Bulk RNA-seq analysis of pericytes in Ccm1ECKO mice

(A) The heatmap displayed the top DEGs in pericytes of Ccm1fl/fl and Ccm1ECKO mice. Each block represented a single gene. The red block indicated the

upregulated genes, and the blue block implied the downregulated genes.

(B–D) The top 20 GO enrichment analyses related to BP, CC, and MF. The cyan dotted box marked the pathway related to ECM.

(E) Top 20 KEGG pathways. The cyan dotted box displayed the pathway related to ECM-receptor interaction.
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human cytomegalovirus infection pathways (Figure 3E). Notably, both GO and KEGG pathway enrichment

analyses were associated with extracellular matrix (ECM) for highly expressed genes (Figures 3C–3E).

Therefore, it could be inferred that ECM produced by pericytes might contribute to the pathogenesis of

CCM lesions.

Ligand/receptor interactions between pericytes and ECs in CCM lesions

The expression data of the brain microvascular ECs from Ccm1 conditional knockout mice and Ccm1fl/fl

mice, accessible through GEO: GSE12396839 and GEO: GSE85657,40 were integrated into the analysis

with our expression data of pericytes (GEO: GSE213244). The current analysis results demonstrated that

515 ligand/receptor complexes, including TGFb-TGFbR, Dll/Jag-Notch, and ECM-integrin were involved

in the crosstalk between pericytes and ECs in CCM lesions (Table S1). Typically, the interactions of

ligand/receptor complexes included 268 ‘‘EC_ligand and pericyte_receptor’’ (145 cell adhesion interac-

tions, 47 secreted protein-to-receptor interactions, 36 cytokine-cytokine receptor interactions, 33 ECM-

to-receptor interactions, and 7 secreted protein-to-ECM interactions) and 299 ‘‘pericyte_ligand and EC_re-

ceptor’’ (132 cell adhesion interactions, 52 secreted protein-to-receptor interactions, 44 cytokine-cytokine

receptor interactions, 69 ECM-to-receptor interactions, and 2 secreted protein-to-ECM interactions)

(Figures S4A-S4C). Notably, the chord diagram showed fibronectin was a critical communication molecule

between pericytes and ECs (Figure S4D).

Pericytes increased fibronectin deposition in CCM lesions

High-resolution transmission electron microscopy (TEM) was performed to further investigate the ECM

structure in CCMs. The most notable characteristic was significant basal membrane (BM) thickness for

CCM lesions (Figure 4A). The quantification revealed that BM was thicker in CCM lesions than that in

normal vessels at different time points (Figure 4B). RNA-seq analysis indicated that ECM-related genes

were upregulated in pericytes of Ccm1ECKO mice (Figure 4C). The pericytes synthesize various ECM pro-

teins, such as fibronectin, versican, aggrecan, andmany collagens.41 Fibronectin is expressed during devel-

opment, especially in vascular morphogenesis, and vascular injury.42–44 Pericytes are expressed ten times

more fibronectin than ECs.45 Furthermore, RNA-seq analysis results revealed that the fibronectin mRNA

level was upregulated in pericytes and downregulated in Ccm1 conditional knockout ECs (Table 1). RT-

qPCR assays showed that the expression levels of Fn1 were upregulated in pericytes both in vivo and

in vitro (Figures 4D and 4E). The immunostaining results demonstrated that fibronectin was abundant in

CCM lesions, and most of it was colocalized with pericytes. Conversely, the non-affected blood vessels

adjacent to CCM lesions had minimal deposition of fibronectin, which was similar to the control vessels

(Figures 4F and 4G). These data suggested that pericytes increased the deposition of fibronectin in

CCM lesions.

Anti-fibronectin restricted the development of CCM lesions

Accumulated fibronectin has a potential role in producing vascular malformation.22,23 The inhibition of fibro-

nectin through RGDS peptide (a special fibronectin inhibitor) decreases angiogenesis.46,47 Therefore, the

inhibition of fibronectin might have therapeutic effects on patients with CCMs by disrupting angiogenesis.

In RGDS peptide-treated Ccm1ECKO mice (Figure S5A), the reduced CCM lesion burden was observed on

the surface of the cerebella and retinas (Figures S5B and S5C). The histological quantification of cerebellar

lesions demonstrated that RGDS peptide decreases the lesion areas, mainly focusing on area > 10000 mm2,

but did not reduce the number of lesions (Figures 5A and 5B). Furthermore, CCM lesions could be sorted

into two stages in H&E staining: Stage I represented the lesions with only an enlarged vascular cavity; and

stage II was cavernous lesions comprising a thrombus. Immunohistochemistry assays identified key molec-

ular signatures of thrombus such as fibrinogen and CD41. We found that fibrinogen and CD41 positive clots

could be seen in stage II lesions, whereas stage I lesions lacked fibrinogen and CD41 positive clots (Fig-

ure 5A). The distribution analysis of cerebellar lesions showed that the number and areas of stage II lesions

in RGDS peptide-treated mice decreased significantly (Figure 5C). Moreover, the RGDS peptide reduced

the number of retinal filopodia and vascular junction density in Ccm1ECKO mice at age P8 (Figures S5D
6 iScience 25, 105642, December 22, 2022
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Figure 4. Abnormal deposition of fibronectin in CCM lesions

(A) Representative TEM images of cerebellar vessels inCcm1fl/fl andCcm1ECKOmice. ECs were labeled in red. Pericytes were labeled in green. The basement

membrane was labeled in blue. Large amounts of erythrocytes were stacked in CCM lesions (arrowheads). Scale bar: 1 mm.

(B) Quantification of basal membrane thickness in normal vessels and CCM lesions in (A).

(C) Heatmap of DEGs related to ECM in pericytes of Ccm1ECKO and Ccm1fl/fl mice. Upregulated and downregulated genes were marked in red and blue,

respectively.

(D) Relative mRNA expression levels (fold-change) of Fn1 in pericytes isolated from Ccm1ECKO and Ccm1fl/fl mice.

(E) Relative expression levels (fold change) of FN1 in HBVPs co-cultured with shCCM1 HUVECs.

(F) Representative IF images of fibronectin. Abundant fibronectin was deposited in CCM lesions (asterisks), most of which were merged with PDGFRb

compared to the controls. Scale bar: 50 mm.

(G) Quantification of fibronectin expression in (F). n = 3–5 mice per group. Data are presented as meanG SD. *P < 0.05, **P < 0.01, unpaired Student’s t-test

for B, D, E, and G.
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and S5F) and the lesion areas of retinas at age P14 (Figures 5D and 5E). Nonetheless, no significant differ-

ence was observed in the retinal outgrowth between Ccm1fl/fl and Ccm1ECKO mice treated with or without

RGDS peptide (Figures S5E and S5G). Taken together, these data suggested that inhibition of fibronectin

restricted the development of CCMs possibly through the anti-angiogenic effect.

Fibronectin also induces epithelial-mesenchymal transition (EMT),48–50 and intervention of fibronectin at-

tenuates EMT.48,51 EMT is closely related to endothelial-to-mesenchymal transition (EndMT) with highly

similar mechanisms.52 EndMT plays a critical role in the onset and progression of CCMs.34,53 Therefore,

we attempted to explore whether inhibition of fibronectin prohibited CCM development via

prevention of EndMT processes of ECs. The current results revealed that RGDS peptide treatment

partially downregulated the levels of Snail1 and N-cadherin in the conditional CCM1 knockdown

HUVECs that are markers of EndMT (Figures S5H and S5I). In summary, this study preliminarily demon-

strated that the inhibition of fibronectin rescued CCM development, possibly via the prohibition of

EndMT processes.
KLF4 interacted with pSMAD3 to promote the production of fibronectin in the pericytes of

CCM lesions

CCM1-silenced ECs overexpressed TGF-b (Figures S6A and S6B), which could act on perivascular cells.8

The results also showed that pSMAD3 was detected in large numbers of pericytes of CCM lesions,

whereas only a small number of pSMAD3-positive pericytes were detected in the normal vessels (Fig-

ure 6A). The quantification of IF staining demonstrated a high proportion of pSMAD3-positive pericytes

in CCM lesions (Figure 6B). The accumulating evidence implied that SMAD3 was activated in pericytes of

CCM lesions.

KLF4 plays a critical role in CCM pathogenesis.54 The relative expression of Klf4 was upregulated in peri-

cytes purified from Ccm1ECKO mice (Figure 6C). KLF4-positive pericytes were observed in blood vessels of

CCM lesions, but rarely detected in the non-affected blood vessels adjacent to CCM lesions and in control

vessels (Figures 6D and 6E).

TGF-b-treated HBVPs remarkably increased the expression levels of pSMAD3 and KLF4 (Figures 6F, 6G,

and S6C–S6F). Moreover, the co-IP results revealed that pSMAD3 could be pulled down by KLF4, and

KLF4 could be pulled down by pSMAD3 (Figures 6H and 6I). In addition, HBVPs expressed remarkable

fibronectin after stimulation with TGF-b (Figures 6F and 6G) or transfection with pCDH-SMAD3 lentivirus

(Figures 6J and 6K). Taken together, these findings suggested that KLF4 interacted with pSMAD3 to pro-

mote the transcription of fibronectin in the pericytes of CCM lesions.
Table 1. Log2 fold-change (Log2FC) of Fn1 expression in pericytes and ECs

Cell type Log2FC P-value

Pericyte 2.02 <0.001

EC_1a -0.95 0.022

EC_2b -0.94 <0.001

aData are accessible through GEO series accession number GSE123968,39 and
bData are accessible from GSE85657.40
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Figure 5. Blockage of fibronectin could rescue CCM lesions

(A) Representative images of H&E and immunohistochemistry (IHC) staining of Ccm1fl/fl and Ccm1ECKO mice at age P14 treated with vehicle or RGDS

peptide. The cyan boxes marked the staining of fibrinogen and CD41 which were negative in cerebellum of Ccm1fl/fl mice. The blue boxes marked CCM

lesions with thrombus which was fibrinogen and CD41 positive; the black boxes indicated CCM lesions without thrombus which was fibrinogen and CD41

negative. Scale bar: 200 mm.

(B and C) The semiquantitative results of total CCM lesion number and area of cerebella in (A). The number and area of CCM lesions were quantified

according to the area of < 5000 mm2, 5000–10000 mm2, or > 10000 mm2 (B), and according to CCM lesions with (stage II) or without thrombus (stage I) (C).

(D) Representative confocal microscopy images of the retina in Ccm1ECKO and Ccm1fl/fl mice. The whole-mount staining of retinas was performed using

isolectin B4. The white dotted line marked CCM lesions. Scale bar: 500 mm.

(E) Quantification of retinal lesion area in Ccm1ECKO mice treated with or without RGDS peptide. n = 4 or 5 mice per group. Data are presented as

mean G SD. *P < 0.05, **P < 0.01, unpaired Student’s t-test for upper panels of B, C, and E, one-way ANOVA with Tukey’s post-hoc test for bottom

panels of B.
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Human CCM lesions had abundant fibronectin and pSMAD3- and KLF4-positive pericytes

Next, we detected the expression levels of fibronectin, KLF4, and pSMAD3 in lesions surgically excised

from human CCMs (Figure 7A) and control subjects. In control subjects, almost all vessels had intact peri-

cyte coverage but were structurally defective with decreased pericyte coverage in human CCM lesions (Fig-

ure 7B). In human CCM lesions, pericytes became amorphous and had a high expression of fibronectin,

which was rare in the microvessels of control subjects (Figure 7C). We also confirmed the presence of

pSMAD3-positive pericytes (Figures 7D and 7E) and KLF4-positive pericytes (Figures 7F and 7G) in human
iScience 25, 105642, December 22, 2022 9
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Figure 6. KLF4 cooperated with pSMAD3 to promote the production of fibronectin

(A) Representative IF images of PDGFRb and pSMAD3. White boxed regions in the upper panels represented the typical regions shown at high

magnifications on the lower panels. Arrowhead labeled the pericyte cell bodies. Scale bar: 50 mm, 10 mm in higher-magnification images.

(B) The quantitative results showed that PDGFRb and pSMAD3-positive pericytes increased in CCM lesions (n = 3 mice).

(C) Relative expression levels (fold change) of Klf4 in pericytes of Ccm1ECKO and Ccm1fl/fl mice at P14.

(D) Representative IF images of PDGFRb and KLF4.White boxed regions in the upper panels represented the typical regions shown at highmagnifications on

the lower panels. Arrowhead labeled the pericyte cell bodies. Scale bar: 50 mm, 10 mm in higher-magnification images.

(E) The quantitative results showed increased PDGFRb- and KLF4-positive pericytes in CCM lesions (n = 4 mice).

(F and G) WB analysis of pSMAD3, KLF4, and fibronectin in human brain vessel pericytes treated with vehicle or 10 ng/mL TGF-b for 4 hours. The expression

levels of pSMAD3, KLF4, and fibronectin increased.

(H and I) HBVPs were treated with 10 ng/mL TGF-b for 4 hours. Cell lysates were immunoprecipitated with anti-KLF4 (H) or anti-SMAD3 (I) as indicated. The

precipitates were analyzed by WB.

(J and K) WB analysis showed that SMAD3 and fibronectin expression was upregulated in pericytes after transfection with pCDH-SMAD3 lentivirus for 48 h.

n = 3 per group. Data are presented as mean G SD. *P < 0.05, **P < 0.01, chi-square test for B and E, unpaired Student’s t-test for C, G and K.
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CCM lesions. Overall, these data suggested that the deposition of abundant fibronectin and abnormal

pericytes expressed KLF4 and pSMAD3 as a common pathological mechanism of CCMs.
DISCUSSION

PDGFRb is used to identify pericytes, but also labels fibroblasts and vascular smooth muscle cells

(vSMCs).8 Pericytes are located in microvessels with a diameter less than 10 mm, whereas fibroblasts

and vSMCs are distributed in larger vessels with a diameter more than 10 mm.8,55 Based on the vascular

size, we could easily identify PDGFRb expression in pericytes, rather than in fibroblasts and vSMCs in

large vessels. In this study, we found that PDGFRb was significantly upregulated in cerebellar microves-

sels of Ccm1ECKO mice, indicating that increased PDGFRb was derived from pericytes rather than fibro-

blasts and vSMCs.

Pericytes in CCM lesions became mesh or ensheathed, accompanied by the generation of complex

processes. The neighboring pericytes might offset the pericyte loss and promote pericyte-EC communi-

cation.56 Supposedly, pericytes in the CCM lesions remodel the conformation, analogous to the structural

remodeling of pericytes in other cerebrovascular diseases.57,58 As a result of structural remodeling, the

expression of PDGFRb increased progressively.58 Together, Yildirim et al.59 and our results demonstrated

that PDGFRb expression was higher in CCM lesions than in normal vessels. However, we also found that

partial ECs lacked pericyte coverage in CCM lesions, which could be attributed to the significantly

increased lesion vascular areas caused by proliferation and clonal expansion of ECs.60 These data indi-

cate that increased expression of PDGFRb and remodeling of processes partially improve the pericyte

coverage.4,56,61 Therefore, pericytes might play a critical role in the pathogenesis of CCM.

Previous studies demonstrated that CP-673451 reduced the pericyte coverage by blocking the function of

PDGFRb, which in turn induces a substantial depletion of pericytes or make pericytes detach from the mi-

crovessels.62,63 In this study, we showed that CP-673451 significantly downregulated the expression of

PDGFRb and desmin, but did not decrease the level of PDGFRa expressed by fibroblasts and oligodendro-

cyte progenitor cells. Furthermore, the cerebellar and retinal CCM lesions were increased in CP-673451-

treated Ccm1ECKO mice. Thus, the current findings revealed that the inhibition of pericyte function by

PDGFRb inhibitor caused pericyte loss that exacerbated the development of CCMs.

The current and previous results18,23,26 demonstrated that CCM lesions had increased deposition of fibro-

nectin. Specifically, CCM-deficient ECs produce less fibronectin,64 whereas pericytes produce more fibro-

nectin in CCM lesions. Furthermore, after specific deletion of CCM3 in mural cells, pericytes could also

produce abundant fibronectin.26 Therefore, pericytes in CCM lesions might be the primary source of

fibronectin.

Fibronectin could be upregulated by stimulated SMAD3 and KLF4.31,32,65 Either loss of Smad365 or condi-

tional ablation of KLF432 reduces the level of fibronectin. These data suggested that pSMAD3 and KLF4

could play a synergistic role in the production of fibronectin. The in vivo results showed that pericytes

were pSMAD3- and KLF4-positive in CCM lesions. Furthermore, the in vitro results revealed that KLF4 in-

teracted with pSMAD3 and the complex regulated the expression of fibronectin in pericytes. Therefore, we

speculated that fibronectin produced in pericytes of CCM lesions is co-regulated by pSMAD3 and KLF4.
iScience 25, 105642, December 22, 2022 11
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Figure 7. Human CCM lesions had abundant fibronectin, and KLF4- and pSMAD3-positive pericytes

(A) Representative T1-weighted (left panel) and T2-weighted (right panel) magnetic resonance images of human CCM lesions (n = 2).

(B) Representative IF images of CD31 and PDGFRb in control subjects and human CCMs.

(C) Representative IF images of fibronectin and PDGFRb. Abundant fibronectin accumulated in human CCMs.

(D and E) Representative IF images of PDGFRb and pSMAD3. Human CCM lesions had predominant pSMAD3-positive pericytes (n = 2). White box regions in

the left panels represent the typical regions at high magnifications on the right.

(F and G) Representative IF images show KLF4-positive pericytes in human CCM lesions (n = 2). White box regions in the left panels represent the typical

regions at high magnifications on the right. Data are presented as mean G SD. Scale bar: 10 mm in B-D, and F.
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Fibronectin is a critical matrix component associated with sprouting angiogenesis.66 It is essential for tip

cell migration67 and filopodia formation.68 Blocking fibronectin disrupts angiogenesis.69 CCM is a vascular

malformation characterized by excessive branching angiogenic sprouts70 and abundant fibronectin. Thus,

we hypothesized whether fibronectin contributed to the pathogenesis of CCMs and whether anti-fibro-

nectin therapy might rescue the development of CCMs. RGDS peptide is a specific tetrapeptide contained

in the fibronectin sequence but not in the vitronectin, collagen, or laminin, and a specific inhibitor of fibro-

nectin.71–74 Reportedly, synthetic RGDS peptide can inhibit integrin by competing with fibronectin.75 In our

study, RGDS peptide disrupted filopodia formation, decreased the vascular junction density of Ccm1ECKO

mice, limited the cerebellar and retinal CCM lesion development, and suppressed EndMT. In addition, the

downregulation of integrin b1, a fibronectin receptor, rescues the phenotypes caused by genetic mutations

in CCM-1 or CCM-2.23,76 Taken together, the intervention of fibronectin inhibited angiogenesis and alle-

viated EndMT process possibly via disrupted interaction between fibronectin and integrin, thus rescuing

the development of CCMs.

Furthermore, the local organization of thrombi promotes the development of CCMdiseases.77 Reportedly,

the inhibition of fibronectin prevents thrombus formation.78,79 We also demonstrated that the numbers and

areas of thrombus-containing CCM lesions were decreased in RGDS peptide-treated Ccm1ECKO mice.

Hence, the inhibition of fibronectin rescues CCM disease progression via its antithrombotic activity. Local

thrombi also resulted in repeated microhemorrhages in CCM diseases.77 Conversely, antithrombotic ther-

apy could benefit patients with CCMs by decreasing the risk of intracranial hemorrhage and focal neuro-

logical deficit.80

In conclusion, the current study revealed that the inhibition of pericyte function by blocking PDGFRb signif-

icantly exacerbates CCMprogression inCcm1ECKOmice. Fibronectin produced in pericytes of CCM lesions

could be co-regulated by pSMAD3 and KLF4. Then, the intervention of fibronectin rescued the develop-

ment of CCM via anti-angiogenic effect and alleviation of EndMT process in the conditional CCM1 knock-

down ECs. Thus, our findings of fibronectin intervention, including RGDS peptide, may provide a novel

target for therapeutic intervention in patients with CCMs.

Limitations of the study

The CCM lesions are dilated vascular malformations. Therefore, using the method to isolate the proposed

microvessels might lose a part of CCM lesional vasculatures, mainly in the larger lesions. It might affect the

assessment of CCM vasculatures. Furthermore, CCM is considered a hyperpermeability disease. However,

we did not analyze the change in hyperpermeability inCcm1ECKOmousemodel after inhibiting the function

of pericytes. In addition, the role of RGDS peptide-mediated signals in anti-angiogenesis and anti-EndMT

remains to be explored.
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isolectin B4 Vector Laboratories Cat# DL-1207; RRID: AB_2336415

rat anti-PDGFRb-biotin Thermo Fisher Scientific Cat# 14-1402-82; RRID: AB_467493

rabbit anti-Fibrinogen ABclonal Cat# A19685

rabbit anti-CD41 ABclonal Cat# A11490; RRID: AB_2861582

Bacterial and virus strains

pCDH-CMV-MCS-EF1-Puro Provided by Dr. Yupeng Cheng (Tianjin

Medical University, China)

N/A

short hairpin RNAs of CCM1 Provided by Dr. Yuzheng Zhang (Shanghai East

Hospital, Tongji University School of Medicine,

China)

N/A

non-specific short hairpin RNAs Provided by Dr. Yuzheng Zhang (Shanghai East

Hospital, Tongji University School of Medicine,

China)

N/A

Biological samples

Human brain CCM tissues First Affiliated Hospital of Harbin Medical

University

N/A

Human brain epilepsy tissues First Affiliated Hospital of Harbin Medical

University

N/A

Chemicals, peptides, and recombinant proteins

CP-673451 Selleck Cat# S1536

RGDS peptide MCE Cat# HY-12290

Human TGF-b1 Absin Cat# abs04204

Deposited data

Raw and analyzed data This paper GEO: GSE213244

Experimental models: Cell lines

Human umbilical vein endothelial cells Provided by Dr. Xiaohong Wang (Tianjin

Medical University, China)

N/A

Human brain vascular pericytes ScienCell Cat# 1200

Experimental models: Organisms/strains

Cdh5CreERT2/+ Dr. Xiangjian Zheng, Tianjin Medical University N/A

Ccm1fl/fl Dr. Xiangjian Zheng, Tianjin Medical University N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Oligonucleotides

FN1 Forward: GTCCCCTGGGGTCACCTAT Tsingke Biotechnology Co., Ltd. N/A

FN1 Reverse: TCCTGTTATCTGGGCCCGA Tsingke Biotechnology Co., Ltd. N/A

Fn1 Forward: TTGAGAACCTGAATCCTGGCC Tsingke Biotechnology Co., Ltd. N/A

Fn1 Reverse: TATTCTGTCCCAGGCAGGAGA Tsingke Biotechnology Co., Ltd. N/A

Klf4 Forward: GTGCCCCGACTAACCGTTG Tsingke Biotechnology Co., Ltd. N/A

Klf4 Reverse: GTCGTTGAACTCCTCGGTCT. Tsingke Biotechnology Co., Ltd. N/A

Recombinant DNA

pCDH-CMV-MCS-SMAD3-EF1-Puro This paper N/A

short hairpin RNAs of CCM1 This paper N/A

non-specific short hairpin RNAs This paper N/A

Software and algorithms

Image J ImageJ Software https://imagej.nih.gov/ij/download.html

GraphPad Prism 8.0.2 GraphPad https://www.graphpad.com/scientific-

software/

SPSS 20.0 IBM Co. https://www.ibm.com
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Dr. Changbin Shi (changbinshi@hotmail.com).
Materials availability

This study did not generate new unique reagents.

Data and code availability

d Bulk RNA-seq data have been deposited at GEO and are publicly available as of the date of publication.

Accession numbers are listed in the key resources table.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAIL

Patients

This study included 2 patients with CCMs and 2 with epilepsy as control, undergoing surgical excision of CCM

and epilepsy lesions to identify the clinical indications unrelated to this study. The diagnosis of CCM was es-

tablished based on the evidence of typical histopathological criteria in every case. Clinical information for

CCM and epilepsy patients were as follows: patient 1, female, 55 years old, CCM; patient 2, female, 43 years

old, CCM; patient 3, female, 33 years old, epilepsy, and patient 4, male, 22 years old, epilepsy. The study was

approved by the first affiliated hospital of HarbinMedical University Institutional ReviewBoard. All participants

gave informed consent for the processing of a portion of their surgical specimens for research purpose.
Experimental animals

All mice experiments were conducted in compliance with animal procedure protocols and approved by the

Institutional Animal Care and Use Committees of the Harbin Medical University and Tianjin Medical Univer-

sity, China.
iScience 25, 105642, December 22, 2022 19

mailto:changbinshi@hotmail.com
https://imagej.nih.gov/ij/download.html
https://www.graphpad.com/scientific-software/
https://www.graphpad.com/scientific-software/
https://www.ibm.com


ll
OPEN ACCESS

iScience
Article
Cdh5CreERT2 transgenic mice and Ccm1fl/fl mice have been described previously.34,81 Briefly, newborn

offspring from a Cdh5CreERT2; Ccm1fl/fl (Ccm1ECKO) 3 Ccm1fl/fl intercross were injected with 75 mL of

4-hydroxy tamoxifen (Sigma-Aldrich, H6278; 0.5 mg/mL solubilized in 5% ethanol-corn oil mixture) by intra-

peritoneal injection at postnatal day 2 (P2) to induce Cre activity. The phenotypes of Ccm1ECKO mice were

analyzed at P7, P14, or P28, respectively. Among all the genetic experiments, tamoxifen-injected littermate

animals were used as control, and both male and female animals were used. Mice aged P14 were used in all

the experiments unless indicated otherwise.

Ccm1fl/fl or Ccm1ECKO mice were injected either vehicle control or PDGFRb inhibitor CP-673451 (30 mg/kg

body weight, Selleck, S1536) intraperitoneally from P5–P7 daily and P9–P13 every alternate day. Subse-

quently, mice were harvested at P14. Ccm1fl/fl or Ccm1ECKO mice were also intraperitoneally injected

with vehicle control or a specific fibronectin inhibitor RGDS peptide (5 mg/kg body weight, MCE, HY-

12290) from P5–P7 daily and P9–P13 every alternate day. Then, the mice were collected at P8 or P14.

All mice used in this study weremaintained on a C57BL/6 background. A total of 123 animals were enrolled.

Mice of both sexes were randomized and assigned to each group. Raw data, including exact animal

numbers in each group (for different experiments), were included in the Table S2.
Cell culture

Human umbilical vein endothelial cells (HUVECs) were cultured in an endothelial cell medium (ScienCell,

1001) containing 5% fetal bovine serum (FBS) (ScienCell, 0025). Human brain vascular pericytes (HBVPs)

(ScienCell, 1200) were grown in pericyte media (ScienCell, 1201) supplemented with 2% FBS. The cells

were incubated in humidified air containing 5% CO2 at 37
�C and used between P4 and P8.
METHOD DETAILS

H&E staining

The brain samples of mice were fixed with 4% paraformaldehyde (PFA) and embedded in paraffin or opti-

mum cutting temperature (OCT) compound. Next, the paraffin-embedded or OCT-embedded tissue

blocks were serially cut into 8-mm-thick sections. The brain sections were stained by H&E according to

the manufacturer’s instructions (Biosharp, BL700A, BL700B). The images were acquired using a Nikon mi-

croscope (Nikon, DS-Ri2).
IF and IHC staining

Antigen retrieval was performed by heating the tissue sections (8-mm-thick sections) in an improved cit-

rate antigen retrieval solution (pH 6.0) (Beyotime, P0083) for 15 minutes (min). The non-special antigen

was blocked by 1% (w/v) bovine serum albumin (BSA), 10% (v/v) normal donkey serum (Jackson

ImmunoResearch Inc., 017-000-121), and 0.3% Triton X-100 (Solarbio, T8200) in phosphate-buffered sa-

line containing 0.1% Tween 20 (PBST) at room temperature for 2 hours. Subsequently, the tissue sections

were incubated with primary antibodies at 4 �C overnight. For IF staining, the sections were incubated

with species-specific Alexa Fluor-conjugated secondary antibodies (1:500). The tissue sections were re-

washed in PBST at room temperature (5 min/time, four times). Then, the slides were mounted using

an antifade solution containing 40,6-diamidino-2-phenylindole (DAPI) (Vector Laboratories, H-2000). For

IHC staining, the sections were incubated with horseradish peroxidase-conjugated secondary anti-

bodies, then developed by 3,30-Diaminobenzidine (DAB) tablet (Sigma-Aldrich, D5905), and counter-

stained with hematoxylin.

The immunostaining was performed in triplicate. IF staining was performed with littermate tissues pro-

cessed simultaneously under the same conditions. The images were acquired with a Nikon microscope (Ni-

kon, DS-Ri2). The following primary antibodies were used for IF staining: goat-anti-PECAM (1:200, R&D sys-

tems, AF3628), rabbit anti-CD31 (1:100, Abcam, ab28364), rabbit anti-PDGFRb (1:100, Abcam, ab69506),

goat anti-PDGFRb (1:100, R&D systems, AF1042), goat anti-PDGFRa (1:100, R&D systems, AF1062), rabbit

anti-Fibronectin (1:100, Abcam, ab268020), rabbit anti-Smad3 (phospho S423+S425) (1:100, Abcam,

ab52903), goat anti-KLF4 (1:100, R&D systems, AF3158), rabbit anti-Desmin (1:100, Abcam, ab15200), rab-

bit anti-Fibrinogen (1:100, ABclonal, A19685), rabbit anti-CD41 (1:100, ABclonal, A11490).
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Retinal whole-mount IF staining

The fixation of eyes, dissection, and staining of retinas in mice has been described previously.82 Briefly, the

mouse eyes were fixed in 2% PFA at 4 �C overnight. On the following day, the eyes were washed four times

in PBS for 5min each. The retinas were dissected into four quadrants and blocked/permeabilized in 1% BSA

with 0.3% Triton X-100 at 4 �C overnight. After washing four times for 5 min each in Pblec buffer (1% Triton

X-100, 1 mMCaCl2, 1 mMMgCl2, and 0.1 mMMnCl2 in PBS; pH 6.8), the retinas were incubated overnight in

biotinylated isolectin B4 (1:50, Vector Laboratories, DL1207) with or without rabbit anti-desmin (1:100, Ab-

cam, ab15200). On the next day, the retinas were washed and incubated with suitable species-specific

Alexa Fluor-conjugated secondary antibodies (1:500) at room temperature for 1.5 hours. Then, the retinas

were washed and mounted onto microscope glass slides with Dako fluorescence mounting medium (Dako,

S3023).

Immunostaining was performed in triplicate. All IF staining was performed on littermate tissues processed

simultaneously under the same conditions. The images were acquired using a confocal microscope (Carl

Zeiss, Axio-Imager LSM-800).

Isolated cerebellar microvasculature and purified pericytes

We isolated cerebellar microvessels with a diameter less than 10 mmusing sucrose solution and by gradient

certification according to the methods described previously.83 Briefly, P14 cerebella were homogenized by

a tissue scissor and a loose-fitting pestle Dounce homogenizer in cold sucrose buffer (0.3 M sucrose, 5 mM

HEPES, pH 7.4). The supernatant and the layer of myelin on the top of the pellet were collected by centri-

fugation of the cerebellar homogenate at 1000 3g twice at 4 �C for 10 min each and discarded. The pellet

was resuspended in sucrose buffer, and the large vasculature was separated from microvessels by centri-

fugation at 40 3g at 4 �C for 5 min. The supernatant was clarified by centrifugation at 350 3g at 4 �C for

10 min. Finally, the micro-vasculatures were enriched in the pellets (Figures S7A and S7B).

The microvascular pellets were digested into single-cell suspension by 1 mg/mL collagenase/dispase

(Roche, 10269638001) and 0.5 mL/mL benzonase (MerckMillipore, E1014) in Dulbecco’s modified eagle me-

dium (DMEM) (Corning, 10-017-CV) at 37 �C for 5–10 min. After erythrocytes were lysed on ice for 5 min, the

single cell suspension was incubated with a complex of anti-biotin microbeads (Miltenyi Biotec, 130-090-

485) and conjugated with rat anti-PDGFRb-biotin antibody (Thermo Fisher Scientific, 14-1402-82) at 4 �C
for 45 min. Then, the supernatant containing pericyte-PDGFRb antibody-magnetic microbead complexes

was passed through MS column (Miltenyi Biotec, 130-042-201) to collect the pericytes. Finally, the purified

pericytes were performed RNA-seq analysis.

RNA-seq and data analysis

Total RNAwas extracted from pericytes using TRIzol� reagent (Thermo Fisher Scientific, 15596018) accord-

ing to the manufacturer’s instructions, and genomic DNA was digested using DNase I (TaKaRa). The RNA

quality was determined on a 2100 Bioanalyzer (Agilent) and quantified using the ND-2000 (NanoDrop Tech-

nologies). Only high-quality RNA sample (OD260/280 = 1.8–2.2, OD260/230 R 2.0, RIN R 6.5, 28S:18S R

1.0, >10 mg) was used to construct the sequencing library. The RNA purification, reverse transcription, li-

brary construction, and sequencing were performed at Majorbio Biopharm Biotechnology Co., Ltd

(Shanghai, China) using Illumina HiSeq 10X (Illumina, San Diego, CA, USA) according to the manufacturer’s

instructions.

The distinct DEGs were analyzed on the free Majorbio Cloud Platform (www.cloud.majorbio.com). DEGs

with |log2FC| >1 and P-value %0.05(DESeq284 / EdgeR85 with Q-value %0.05 and DEGs with |log2FC| >1

and Q value %0.05 (DESeq2 or EdgeR) / Q-value %0.001(DEGseq) were considered to be significantly ex-

pressed genes. The heatmaps for DEGs were constructed using pheatmap package of R language, and the

clustering distance in heatmap was based on the method proposed by Minkowski.86 In addition, GO

enrichment analysis was performed to identify the significantly enriched DEGs at Bonferroni-corrected

P-value %0.05 compared to the whole-transcriptome background. GO functional enrichment and KEGG

pathways were analyzed using the clusterProfiler package of R language.87

The bulk RNA-seq data of brain microvascular ECs in Ccm1fl/fl and Ccm1,conditional knockout mice were

obtained from the Gene Expression Omnibus (GEO) data with accession number GEO: GSE12396839 and

GEO: GSE85657.40 The expression file of pericytes was accessible through GEO: GSE213244. We
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conducted an integrative analysis of RNA-seq data of pericytes and ECs in CCM lesions to infer pericyte-EC

communication from their transcriptomic data. The ligand-receptor pairs88 were used to infer pericyte-EC

communication from their transcriptomic data. A chord diagram was utilized to display the ligand and re-

ceptor genes of pericyte-EC interaction ranked by |log2FC| >1. The chord diagram was visualized using

circlize package of R language.89

TEM

Mice were perfused with PBS and 4% PFA under deep anesthesia. The cerebella were pre-fixed in electron

microscopy fixative (2% PFA, 2,5% glutaraldehyde (Sigma-Aldrich, 1042390250), 2% sucrose, 2 mmol/L

CaCl2 in PBS (pH 7.4) at 4 �C for 4–6 hours and sliced into 1 mm 3 1 mm 3 1 mm sections under the ste-

reomicroscope. These cubes were post-fixed in new electron microscopy fixative at 4 �C overnight. Then,

the tissues were dehydrated in graded acetone (30%, 50%, 70%, and 95% acetone in water) at 4 �C for

15 min each, followed by that in 100% acetone at twice for 10 min each at room temperature. Subsequently,

the dehydrated tissues were embedded in the epoxy resin overnight, and the blocks were polymerized at

70 �C. The sections were cut into 70-nm-thick slices on a vibrating blademicrotome (Leica, EMUC6), placed

on copper grids, and stained with uranyl acetate for 15 min and lead citrate for 10 min. The images were

captured by TEM (Hitachi, H-7650).

Plasmid construction, lentivirus production, and transduction of HBVPs

The coding sequences of human SMAD3 were synthesized and inserted into the lentiviral vector pCDH-

CMV-MCS-EF1-Puro. Briefly, the vector particles were transfected into HEK293T cells together with help-

er plasmid psPAX2 and pMD2.G by polyethyleneimine (PEI) (Sigma-Aldrich, 919012) and Opti-

MEM (Gibco, A4124802), according to the manufacturer’s instructions. After 6 hours of incubation,

the medium was replaced. The supernatant was collected after 48 hours, sterilized through a 0.45-mm

filter, mixed with PEG 8000 solution, incubated at 4 �C overnight, and concentrated by centrifugation

at 3330 3g for 1 hour. The concentrated lentivirus particles were resuspended in PBS and stored at

�80 �C.

HBVPs were seeded in 6-well plates and cultured in pericyte media containing 2% FBS. At 70% confluency,

HBVPs were transfected with pCDH-CMV-MCS-SMAD3-EF1-Puro (pCDH-SMAD3) lentivirus or mock lenti-

virus. After 6 hours of incubation, the transfection mixture was replaced with fresh pericyte media contain-

ing 2% FBS. The experiments were conducted 48 hours after lentivirus transfection.

HUVECs treated by RGDS peptide

HUVECs transfected with specific short hairpin RNAs ofCCM1 (shCCM1) or non-specific short hairpin RNAs

(shCon) were incubated in an endothelial cell medium containing RGDS peptide (250 mg/mL) or PBS for 24

hours. The experiments were performed 24 hours after treatment with RGDS peptide.

HBVPs treated with TGF-b

HBVPs were seeded in 6-well plates and cultured using pericyte media containing 2% FBS. At 70% conflu-

ency, HBVPs were incubated in a serum-free medium for 24 hours, followed by treatment with recombinant

TGF-b1 (Absin, abs04204) or PBS. The experiments were performed at different time points after treatment

with TGF-b.

Construction of HUVECs and HBVPs co-culture model

The co-culture model was established as described previously.90 Briefly, about 23 104 HBVPs were seeded

in pericyte media on the surface of the membrane of the inverted hanging insert (Merck Millipore,

MCHT06H48). After incubation for 6 hours, the hanging inserts were reverted on the 6-well plate and incu-

bated in pericyte media containing 2% FBS at 37�C Overnight. The following day, about 1.53105 shCCM1

or shCon-transfected HUVECs were plated on the inside of inserts. The day that HUVECs were plated in the

insert was defined as day 0. The RT-qPCR analysis of FN1 was performed on day 5.

RT-qPCR analysis

Total RNA was extracted using TRIzol� Reagent (Thermo Fisher Scientific, 15596018). Complementary

DNA (cDNA) was synthesized using the StarScript II First-strand cDNA Synthesis Kit (GenStar, A212-02), ac-

cording to the manufacturer’s instructions. Then, RT-qPCR was performed using ChamQ Universal SYBR
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qPCRMaster Mix (Vazyme Biotech Co, Q711-02/03) in the LightCycler rapid thermal cycler system (Applied

Biosystems). All RT-qPCRs were performed in triplicate. The relative mRNA expression level was calculated

as follows: relative mRNA expression = 2^[-(OCtsample-OCtcontrol)].

The primers were as follows: FN1 Forward: GTCCCCTGGGGTCACCTAT; FN1 Reverse: TCCTGTTATCT

GGGCCCGA; Fn1 Forward: TTGAGAACCTGAATCCTGGCC; Fn1 Reverse: TATTCTGTCCCAGGCAG

GAGA; Klf4 Forward: GTGCCCCGACTAACCGTTG; Klf4 Reverse: GTCGTTGAACTCCTCGGTCT.
Co-immunoprecipitation (co-IP)

Co-IP was performed as described previously.91 HBVPs were cultured in 10-cm dish with serum-free

medium for 24 hours before treatment with 10 ng/mL of TGF-b for 4 hours. The cells were lysed in RIPA

buffer (1% (v/v) NP-40, 50mM Tris (pH=8.0), and 150mMNaCl in distilled water) consisting of 13 proteinase

inhibitor and 13 phosphatase inhibitor (Roche, 04906837001) on ice for 30 min. The supernatants were

collected by centrifugation of cells lysates at 13523 3g at 4 �C for 20 min and incubated with anti-KLF4

or anti-SMAD3 antibodies at 4 �C overnight. On the following day, Protein G beads (Thermo Fisher Scien-

tific, 10003D) were added to cell supernatants to crosslink the antibody-protein complexes at 4 �C for 6

hours. The bead-antibody-protein complexes were washed four times (4 �C, 10 min/each) with RIPA buffer

consisting of 13 proteinase and phosphatase inhibitors. The bead-antibody-protein complexes were

pulled down with a magnet (Thermo Fisher Scientific, 12321D). The bead-antibody-protein complexes

were mixed with 100 mL of 13 loading buffer and boiled at 95 �C for 10 min. The eluted protein fraction

was analyzed by WB.
WB analysis

Samples of cerebellar microvascular pellets or cells were lysed with RIPA buffer containing 13 proteinase

inhibitors (Roche, 04693116001). The proteins were separated by 8–12% sodium dodecyl sulfate-polyacryl-

amide gel electrophoresis (SDS-PAGE) gels and transferred to nitrocellulose (NC) membrane. Then, the

membrane was blocked with 10% skimmed milk-PBST, probed with primary antibodies at 4 �C overnight,

and subsequently incubated with horseradish peroxide-conjugated secondary antibody. Finally, the blots

were developed with enhanced chemiluminescence (ECL) (NCM Biotech, P10300), and the signals were ac-

quired on a MiniChemi610 imaging system (Beijing Sage Creation Science Co., Ltd).

The following primary antibodies were used: rabbit anti-PDGFRb (1:1000, CST, 3169), goat anti-PDGFRa

(1:100, R&D systems, AF1062), rabbit anti-TGFb (1:1000, KleanAB, p100446), rabbit anti-Smad3 (phospho

S423+s425) (1:1000, Abcam, ab52903), rabbit anti-Smad3 (1:1000, CST, 9513), rabbit anti-Fibronectin

(1:1000, Abcam, ab268020), rabbit anti-KLF4 (1:1000, CST, 12173), and rabbit anti-b-Actin (1:1000, ABclonal,

AC026).
QUANTIFICATION AND STATISTICAL ANALYSIS

Imaging analysis and quantification

Quantitative analysis was performed using Image J software (https://imagej.nih.gov/ij/download.html). At

least three brain tissue slices were selected from each animal for quantification of staining images, and the

interval of slices was 100 mm, and at least threemice in each group were taken. We defined areas containing

the non-affected blood vessels adjacent to CCM lesions as no lesion area and areas containing CCM le-

sions as lesion areas. Vascular area per field was calculated by the area of PECAM-positive staining divided

by the tissue area of the brain section per high-power field. The intensity of PDGFRb or fibronectin was

measured as the area of PDGFRb or fibronectin-positive staining divided by the tissue area of the brain sec-

tion per high-power field. The number of KLF4-positive or pSMAD3-positive pericytes was determined by

counting the KLF4-positive or pSMAD3-positive nuclei in PDGFRb-positive cells. The proportion of KLF4-

positive or pSMAD3-positive fraction of pericytes was determined by counting the number of KLF4-positive

or pSMAD3-positive pericytes present in PDGFRb-positive cells. The number of filopodia was normalized

to the standard length (100 mm) of the angiogenic front.92 The retinal lesion area is expressed as the per-

centage of lesion area against the total area of the retinal vasculature. The relative quantification of WB

films was reflected as the ratio of the mean gray value of the target band over the mean gray value of

b-actin.
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Statistical analysis

Data analysis was performed using GraphPad Prism 8.0.2 (GraphPad Software, Inc., La Jolla, CA, USA) and

SPSS 20.0 (IBM Co., Armonk, NY, USA) software. The data are expressed as mean G standard deviation

(SD). The statistical significance was assessed by two-tailed Student’s t-test between two groups. One

way analysis of variance (ANOVA) was performed for the multiple groups. Tukey’s method was used for

pairwise comparisons between groups. The comparison of proportion was performed using chi-square

test and Bonferroni’s method. P-values < 0.05 indicated statistical significance.
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