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Abstract

Whole-exome sequencing (WES) enables the detection of copy number variants (CNVs) with high resolution in protein-coding regions.
However, variants in the intergenic or intragenic regions are excluded from studies. Fortunately, many of these samples have been
previously sequenced by other genotyping platforms which are sparse but cover a wide range of genomic regions, such as SNP array.
Moreover, conventional single sample-based methods suffer from a high false discovery rate due to prominent data noise. Therefore,
methods for integrating multiple genotyping platforms and multiple samples are highly demanded for improved copy number variant de-
tection. We developed BMI-CNV, a Bayesian Multisample and Integrative CNV (BMI-CNV) profiling method with data sequenced by both
whole-exome sequencing and microarray. For the multisample integration, we identify the shared copy number variants regions across
samples using a Bayesian probit stick-breaking process model coupled with a Gaussian Mixture model estimation. With extensive simula-
tions, BMI-copy number variant outperformed existing methods with improved accuracy. In the matched data from the 1000 Genomes
Project and HapMap project data, BMI-CNV also accurately detected common variants and significantly enlarged the detection spectrum
of whole-exome sequencing. Further application to the data from The Research of International Cancer of Lung consortium (TRICL)
identified lung cancer risk variant candidates in 17q11.2, 1p36.12, 8q23.1, and 5q22.2 regions.
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Introduction
Copy number variants (CNVs) are a major type of structural var-
iants comprised of deletions and duplications of the genomic seg-
ments. They play an important role in complex diseases, such as

cancer, muscle diseases, and neuropsychiatric diseases (Shlien
and Malkin 2009; Välipakka et al. 2017; Takumi and Tamada

2018). In addition, recurrent and common CNVs have also been
revealed to be risk factors for many diseases, such as autism
spectrum disorders and schizophrenia (Moreno-De-Luca et al.

2010) and cardiovascular disease (Wang et al. 2019).
With the dramatic growth and the accompanying cost drop in

sequencing technologies, massive whole-exome sequencing

(WES) datasets have been generated from large-scale biomedical
studies, which allows for the identification of genomic variants in
functional protein-coding regions (Amos et al. 2017). However,

exons only encompass 1% of the genome, limiting the possibility
to investigate the impact of genetic variations such as CNVs lo-

cated in the noncoding regions (Venter et al. 2001). Therefore, co-
hort projects often used both WES and SNP arrays for a combined
genome-wide scanning and fine exome scanning. For example,

the international Transdisciplinary Research In Cancer of the

Lung (TRICL) consortium genotyped 2,003 subjects with both
WES and SNP array data (Amos et al. 2017), the Alzheimer’s
Disease Genetics Consortium (ADGC) and the Alzheimer’s
Disease Sequencing Project (ADSP) (Karch et al. 2016; Beecham
et al. 2017) have also collected such multiplatform data.
Consequently, the demand for multiplatform (e.g. WES and SNP)
integration methods that accurately study CNV in a full-coverage
manner has dramatically increased but is still unfulfilled.
Another challenge is that WES is subject to the nonuniform cov-
erage of sequence reads in the assembly procedure due to the ex-
istence of short duplications or deletions, resulting in many
dropped-out segments that were originally mapped to the exome.
For example, Fang et al. (2014) found that more than 16% of
the exons cannot be captured by WES experiments, losing the
opportunity to detect short CNVs. Theoretically, integrating the
information from SNP array can overcome this challenge and im-
prove calling accuracy.

Similar efforts, such as iCNV, have been made by Zhou et al.
(2018) for integrative segmentation. In iCNV, data from different
platforms were first normalized and standardized and then
jointly segmented by a Hidden Markov Model (Zhou et al. 2018).
This method presented a significant boost in accuracy compared
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to WES. However, it only used information from a single sample.
As we know, technological and biological factors are prominent
in real data and increase the variations and noise in data intensi-
ties, leading to unreliable findings with single-sample scanning
of CNVs. Consequently, multiple sample strategies previously in-
troduced for detecting common CNVs have great potential to im-
prove the robustness and detection power with noisy data. Such
a direction has been supported by various existing studies (Zhang
et al. 2010; Siegmund et al. 2011; Klambauer et al. 2012; Song et al.
2016), but none has focused on the direction of multiplatform in-
tegration. Moreover, the most widely used WES methods, such as
CODEX2 and EXCAVATOR, are also used for single-sample scan-
ning (Magi et al. 2013; Jiang et al. 2018).

Collectively, the development of a full-spectrum CNV detection
method that can achieve high performance using comprehensive
information from all samples and all platforms is essential. In this
study, we developed BMI-CNV, a Bayesian Multisample and
Integrative CNV calling method, as the first of its kind to enhance
the detection of both intergenic or intragenic and common CNVs.
The significant improvement of BMI-CNV on CNV calling was
demonstrated by simulation studies (Simulations showed superior
performance of BMI-CNV in multiplatform integrative analysis,
Simulations showed superior performance of BMI-CNV in single
platform analysis) as well as the analyses of real datasets from the
HapMap project (Altshuler et al. 2010) and the 1000 Genomes
Project (Application to the 1000 Genomes Project and HapMap
data) (Auton et al. 2015). The further application of BMI-CNV to the
international TRICL dataset identified new lung cancer-associated
CNVs (Integrative CNV detection and association analyses with
TRICL dataset). This new method has a wide scope of applications
and has great potential to be further extended to profile CNVs for
whole-genome sequencing and single-cell sequencing data.

Materials and methods
Our method mainly focuses on CNV detection by integrating the
SNP array and WES data, which can also be naturally applied to
single platform data (Numerical simulations). The overview of
the framework is shown in Fig. 1. First, WES read counts and SNP
array data are integrated using a series of data integration proce-
dures. The main segmentation algorithm consists of 2 stages:
Stage I uses a Bayesian probit stick-breaking process (PSBP)
method (Stage-I: shared CNV inference by Bayesian probit stick-
breaking process model) coupled with a Gaussian mixture
model-based initial data filtering (Supplementary A.2) to identify
shared CNV regions, and Stage II uses the individual CNV calling
procedure to identify sample-specific CNVs (Stage-II: Individual
CNV calling).

Data description and multiplatform integration
First, we performed platform-specific normalization procedures
for the original data. For WES data, with raw read depth data
from test and external negative control samples, we used the
exon mean read count (EMRC; Magi et al. 2013). EXCAVATOR2
median normalization procedure was utilized to mitigate the
effects from 3 observed sources of bias: exon length, GC-content,
and mappability (D’Aurizio et al. 2016). All negative control sam-
ples were pooled by averaging the EMRC on each exon across all
samples and the logarithm between the ratio of test and pooled
control samples was calculated, referred to as the log2R intensi-
ties. These log2R data were then processed by the lowess-scatter
plot procedure to adjust read-depth differences between testing
and control samples and remove coverage-dependent bias. For

array data, PennCNV was used to adjust the genomic wave on
genetic intensities (i.e. Log R ratio [LRR]) (Wang et al. 2007).

To combine the SNP array LRR data and the WES log2R data,
we standardized each dataset via a robust scaling approach
(Rousseeuw and Croux 1993). Compared to the conventional
standardization method, the robust scaling approach used
median and interquartile ranges to mitigate the influence from
potential outliers and signals from double deletions (Details in
Supplementary A.1). The WES and SNP array data were then
merged by chromosomal coordinates for joint segmentation
(details in Supplementary A.1).

Notations and basic model
Let Y denote a n�m data matrix obtained from the precalling
procedures described above, where Yij represented the processed
genetic intensities (e.g. LRR from array or log2R from WES) for the
j—th (j ¼ 1; 2; . . . ;m) marker (e.g. SNPs from array or exons from
WES) in sample i (i ¼ 1; 2; . . . ; n). We assumed a classic normal
kernel for Yij,

Yij � NðYijj/ijÞ:

/ij ¼ ðlij;r
2
ijÞ was an unknown matrix of the underlying mean and

variance. Different values of /ij indicated the existence of differ-
ent copy number states. Five copy number states, including the
deletion of single copy or double copies, diploid, duplication of a
single copy or double copies were assumed in our study. We con-
sidered s to be a change point for sample i if /i;s 6¼ /i;sþ1. The goal
is to estimate the locations of change points, CNV segments can
then be generated by connecting adjacent change points.

To achieve this, we estimate change points shared by all sam-
ples and then identify their individual carriers. We use a 2-stage
method: Stage I with a probit stick-breaking process (PSBP) to
identify shared CNV regions across samples (Stage-I: shared CNV
inference by Bayesian probit stick-breaking process model) and
Stage II calling sample-specific CNVs individually (Stage-II:
Individual CNV calling). We also initially filter samples without
CNVs in Stage I (Supplementary A.2).

Stage-I: shared CNV inference by Bayesian probit
stick-breaking process model
Let Yj ¼ ðY1j;Y2j; . . . ;YnjÞT denote the genetic intensity for the jth
marker (j ¼ 1; 2; . . . ;m) across all samples. The classic normal ker-
nel can be rewritten as

Fig. 1. Analysis workflow of BMI-CNV. BMI-CNV uses 2 inputs: (1) WES raw
read count data from testing and control samples that are computed by
using genotyping tools such as SAMtools; and (2) SNP array intensities.
WES read counts are normalized to correct exon length, GC-content, and
mappability biases. Logarithms of normalized values between testing and
pooled control samples are calculated. SNP array intensities are
normalized to adjust the genomic waves. The WES and SNP array data are
standardized by a robust scaling approach and then integrated. For CNV
calling, BMI-CNV carries out a 2-stage framework to generate CNV calls. In
stage I, an initial data filtering procedure is coupled with a Bayesian PSBP
method to identify shared CNV regions. In stage II, an individual CNV
calling procedure is performed to call CNVs in each sample.
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Yj � NðYjj/jÞ:

/j ¼ ðlj;r
2
j Þ represented the shared mean and variance scalars of

position j across all samples, the parameters in which needed to
be estimated. We modeled the corresponding latent means and
variances using the Bayesian PSBP model (Chung and Dunson
2009; Rodriguez and Dunson 2011). The favorable shrinkage prop-
erty of PSBP allows for efficiently clustering of all /j’s to a small
number of clusters (i.e. copy number states). Moreover, the PSBP
mixture model can capture multimodal and heavy-tailed distri-
bution, which relaxed the normality assumption of the latent
means, providing more flexible scenarios for modeling the com-
plex CNV data. Specifically, we assumed /j followed an unknown
distribution G � PSBPðaG0Þ with centering distribution G0 where
the shape measure a reflected how far away the random distribu-
tion is from the center. Following Rodriguez and Dunson (2011), G
admitted a representation of the form:

/j � Gð:Þ ¼
XL

l¼1

xldhl ð:Þ (1)

where L represented the number of all possible copy number
states (e.g. L¼ 5), hl ¼ ðll;r

2
l Þ were possible distinct mean and var-

iance specific to each copy number state (l ¼ 1; 2; . . . ; L), dhl ð:Þ was
a degenerate distribution at hl, and xl ¼ UðalÞ

Q
r< lð1� UðarÞÞ rep-

resented the probability of assigning hl to each position where
Uð:Þ was the probit function and al � Nðla;r

2
aÞ. Following this

structure, /j was assigned to one of the fhlg based on the ob-
served intensities across all potential carriers of the copy number
state for locus j, where the carriers were initially identified using
a Gaussian mixture model-based strategy described in
Supplementary A.2. To simultaneously implement the variable
selection and clustering procedures for the purpose of CNV detec-
tion, we further reconstructed the PSBP model (George and
McCulloch 1993; Cai and Bandyopadhyay 2017):

/j � cjGl¼0 þ ð1� cjÞGð:Þ (2)

where the Gl¼0 was the underlying distribution of the normal
copy number states with the mean fixed at zero (i.e. diploids).
cj � BernoulliðjÞ was an indicator of /j being in Gl¼0 (i.e. normal
state) or not, which incorporated variable selection of the locus
across samples. Specifically, when cj ¼ 1; /j followed a distribu-
tion Gl¼0; cj ¼ 0 indicated a potential CNV locus following Gð:Þ de-
fined in equation (1). Within this framework, the posterior
probability of /j being Gl¼0 or not was calculated through infer-
ence on cj (Supplementary A.3–A.4). In this way, each shared
change-point is the position such that cst

6¼ cstþ1
and locations of

all shared change-points (i.e. s ¼ fs1; s2; . . . ; sTg) can be identified.
In order to efficiently perform the posterior inference for all the
parameters, we developed a Markov Chain Monte Carlo (MCMC)
algorithm relying on a modification of the Gibbs sampler
(Ishwaran and James 2001). With the proper choices of priors and
hyperpriors, all full conditional distributions of the parameters
can be analytically derived which ensured the computational
speed and the convergence to the true posterior distributions
(Supplementary A.3–A.4).

Stage-II: Individual CNV calling
Note that for shared CNV regions identified in the stage I, only a
proportion of the samples carry the CNV for each region. We then
determined the carriers for each shared CNV, that is, to call CNVs

in each sample. Specifically, using the posterior mean and vari-
ance estimates specific to each copy number state (i.e. l̂ l and
r̂2

l ; l ¼ 1; . . . ; 5), we constructed the interval for each state as
Cl ¼ ½l̂ l � c1lr̂ l; l̂ l þ c2lr̂ l�. The individual segment would be classi-
fied into l—th copy number state if its segmental mean fell within
one specific interval Cl. Here, C3 represented the interval for dip-
loid (i.e. noncarrier). Values of c1 and c2 should be carefully cho-
sen according to empirical evidence about the magnitude of
mean shifts of each CNV state, which may vary by genotyping
platforms. In practice, to provide calibration of c1 and c2 and opti-
mize the performance of our method, we will suggest users to ini-
tiate a pilot study and plot the genotyping signals of CNV
segments identified under different combinations of c1 and c2 for
visualization. True positive rate (TPR) can be calculated for each
combination and the optimal choices for c1 and c2 will achieve
the highest TPR. In our applications (Numerical simulations,
Application to the 1000 Genomes Project and HapMap datasets,
Analysis of the TRICL consortium case-control dataset), c1 ¼ c2 ¼
1:2 were used.

Numerical simulations
To evaluate the performance of our method, we conducted simu-
lations under various settings. Four copy number states were
simulated, including single copy deletion (del.S), double copy de-
letion (del.D), single copy duplication (dup.S), and double copy
duplication (dup.D). The CNV length (i.e. SNPs and exons) varied
from 10–30 markers, 30–60 markers, and 60–100 markers. The
CNV population frequency was 20%, 50%, or 100%, respectively.

First, we evaluated our method when both WES and SNP array
data were available. For WES data, to generate data retaining the
true noise background and exon distribution, we conducted a
spike-in design (Jiang et al. 2018; Zhou et al. 2018). We started with
read-depth data on chromosome 1 in 81 samples from the 1000
Genomes Project (Auton et al. 2015). Exons harboring CNVs identi-
fied by EXCAVATOR2 and CODEX2 and reported in the Database
of Genomic Variants (DGV) were initially removed (MacDonald
et al. 2014; D’Aurizio et al. 2016; Jiang et al. 2018). The read depth
data of the remaining exons were treated as WES random noise
background. We multiplied the background read depth by c=2,
where c was sampled from a normal distribution with mean and
variance provided in Supplementary A.5. For SNP array data, we
utilized the similar strategy used in Xiao et al. (2019) to simulate
intensities, which mimicked the real data from the Altshuler et al.
(2010). 50 dispersed CNV segments of varying length and fre-
quency were then randomly selected and spiked randomly in
coding regions (i.e. exonic CNVs) or noncoding regions (i.e. inter-
genic or intragenic CNVs).

Our method was compared to the only existing multiplatform
integrative method iCNV (Zhou et al. 2018). The performance of
these methods was assessed by precision rate, recall rate, and F1
score (Supplementary A.5). We also evaluated the performance
of our method in the single-platform mode when only WES data
was available. In this scenario, only exonic CNVs were simulated
and our method was compared against 3 commonly used CNV
detection methods CODEX2 (Jiang et al. 2018), EnsembleCNV
(Zhang et al. 2019), and EXCAVATOR2 (D’Aurizio et al. 2016); a
multisample based method, cn. MOPS (Klambauer et al. 2012);
and iCNV in the single-platform mode (Zhou et al. 2018).

Application to the 1000 Genomes Project and
HapMap datasets
We analyzed the same 81 individuals with SNP array and WES
data from the 1000 Genomes Project and the international
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HapMap consortium. A detailed description of the experimental
samples and genotyping platforms was provided in previous liter-
ature (Altshuler et al. 2010; Auton et al. 2015). Raw read counts
and SNP array data were processed and normalized to generate
log2R and LRR intensities. For the WES data, we arbitrarily se-
lected 4 normal samples from the 1000 Genomes Project as nega-
tive controls (details in Supplementary A.6). The posterior
inference of BMI-CNV was based on 2,000 MCMC samples with a
burn-in period of 500 iterations.

Analysis of the TRICL consortium case-control
dataset
We further applied BMI-CNV to the international lung cancer
consortium TRICL (Amos et al. 2017), which consists of 1,163 sam-
ples genotyped by both OncoArray and WES data (i.e. integrative
analysis mode), and 829 samples that only had WES data (i.e.
single platform analysis mode) (details in Supplementary A.6
and A.7).

CNV calls were annotated by known gene regions obtained
from the University of California, Santa Cruz (UCSC) Genome
Browser (Kent et al. 2002). A gene-based association test was per-
formed to investigate the influence of CNVs on lung cancer sus-
ceptibility:

logitðPðdisease ¼ 1ÞÞ ¼ b0 þ bdelDELþ bdupDUPþ bþ b0
X4

i¼1

PCi: (3)

DEL and DUP were 2 indicator variables for deletions and
duplications separately. We adjusted the covariates, including
smoking status (ever/never), age, and gender, ancestry-related
PCs representing the top principal components (Patterson et al.
2006). In addition to studying overall lung cancer risk, we also
performed stratification analyses by histological types of lung
cancer [squamous cell lung cancer (SQC) and lung adenocarci-
noma (LUAD)]. The effects from deletions and duplications were
tested via the Wald test, and all nominal P-values were adjusted
by the Benjamini–Hochberg (BH) procedure (Benjamini and
Hochberg 1995).

Results
Simulations showed superior performance of
BMI-CNV in multiplatform integrative analysis
We first evaluated the performance of BMI-CNV with simulated
data. In various simulation settings including different CNV sizes
and population frequencies, BMI-CNV outperformed iCNV in all
scenarios with higher F1 scores (Fig. 2, Supplementary Table 1).
iCNV tended to be conservative compared to our method, which
maintained a high precision rate, although the recall rate was
compromised. For example, when the simulated CNVs had a
length of 30–60 markers and the population frequency was 20%,
BMI-CNV had a precision at 0.70, a recall rate at 0.83, and an F1
score at 0.76. The corresponding values for iCNV were 0.99, 0.37,
and 0.54, respectively. Moreover, at a fixed CNV size, the perfor-
mance of BMI-CNV was improved when CNV frequencies in-
creased from 20% to 100%, achieving the highest F1 score when
all the samples were carriers, whereas the performance of the
iCNV method was not sensitive to the CNV frequencies.

We further assessed the performance of BMI-CNV to detect
CNVs in different regions as 25% of simulated CNVs were
mainly located in the intergenic or intragenic regions which are
difficult to be detected for methods using WES data alone. By

integrating available SNP array data, BMI-CNV can identify most
of these CNVs, and it still outperformed iCNV in all scenarios
(Supplementary Table 2). For example, when the simulated CNVs
had 60–100 markers and the population frequency was 20%, BMI-
CNV detected 94% of the CNVs, and iCNV only detected 59%. For
computational speed, our method took about 280 min to screen a
chromosome with 90,739 markers from 81 samples based on
2,000 MCMC sampling runs which was 54 min for iCNV, 20 min
for EXCAVATOR2, 70 min for CODEX2, and 30 min for cn. MOPs.
The computation was performed on a regular laptop with an
Intel Core i7 processor and 24.00 GB of RAM.

Simulations showed superior performance of
BMI-CNV in single platform analysis
For single platform analysis, we assessed the performance of
BMI-CNV benchmarking against existing WES methods. As a re-
sult, the performance of our method was superior in detecting
medium and long CNVs reflected by the largest F1 scores (Fig. 3,
Supplementary Table 3). iCNV, cn. MOPS, and EXCAVATOR2
tended to be conservative, as they achieved high precision rates
but with significant sacrifice on recall rates. It is also noteworthy
when the CNV size was fixed, the performance of BMI-CNV and
CODEX2 were both improved with increased CNV frequencies,
achieving the highest F1 scores when all the samples were car-
riers, and cn. MOPS tended to be conservative when CNV fre-
quencies increased. Still, the performance of EXCAVATOR2 and
iCNV were not subject to CNV frequencies, which was expected
as the shared information from multiple samples was not uti-
lized.

In conclusion, the BMI-CNV method, integrating information
from multiple samples, presented evidence of superior perfor-
mance in common CNV detection for both multiplatform integra-
tion and single-platform analyses. By incorporating SNP array
data, BMI-CNV enabled the accurate detection of intergenic or in-
tragenic CNVs for integrative analysis.

Application to the 1000 Genomes Project and
HapMap data
We applied BMI-CNV to the public datasets from the 1000
Genomes Project and HapMap data. In total, 37,213 CNVs were
identified from 81 samples (Fig. 4), 28% of which have been previ-
ously reported by DGV (MacDonald et al. 2014). Most CNVs tended
to be short (<20 markers) and had a frequency of less than 50%.
Supplementary Fig. 1 showed the summary of CNVs, which sug-
gested no significant difference in CNV length and frequency be-
tween deletions and duplications. Moreover, by integrating the
SNP array data, our method retrieved 4,418 CNVs that were lo-
cated in the noncoding regions which were missed by methods
using WES data alone.

A clear pattern of the signal in the shared deletion suggested
high detection accuracy of our method. We illustrated a common
deletion region in Supplementary Fig. 2, suggesting that 27 out of
81 samples were carriers of this variant. Besides, we explored an
alternative data integration strategy that only used intronic SNPs
from the array data. Compared to the main method using all
SNPs, a lower concordance rate with DGV (26% vs 28%) was ob-
served, implying that utilizing information from all SNPs slightly
improved the detection accuracy (Fig. 4, Supplementary Fig. 3).

Integrative CNV detection and association
analyses with TRICL dataset
With the TRICL datasets, we identified 253,183 autosomal CNVs
from 1,992 samples (Fig. 5) in total. Overall, there was no
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significant difference in the size of detected deletions or duplica-
tions (31.46 kb vs 32.51 kb), but the deletions covered more
markers than the duplications (13.46 markers vs 8.72 markers)
(Supplementary Table 4). No significant difference was observed
in the overall proportion of deletions and duplications between
cases and controls (49% vs 51% for deletions and 52% vs 48% for
duplications, respectively).

The identified CNVs were mapped to 3,472 genes. Association
tests in SQC subgroup highlighted the deletion gene LGALS9 in
17q11.2 region (OR¼ 4.14, 95% CI¼ 1.65–10.38, P-value¼ 0.002),
the duplication genes HSPG2 in 1p36.12 region (OR¼ 4.79, 95%
CI¼ 1.75–13.10, P-value¼ 0.002) and EIF3E in 8q23.1 region
(OR¼ 2.19, 95% CI¼ 1.31–3.64, P-value¼ 0.003). Association in
the LUAD subgroup identified the duplication gene YTHDC2 in
5q22.2 region (OR¼ 2.88, 95% CI¼ 1.62–5.12, P-value¼ 0.0003),
which was also identified in the overall lung cancer risk model
by adjusting the histological subtypes as a covariate
(Supplementary Table 5). The intensity plots indicated those
were valid CNV segments that showed distinct data patterns

from other noncarriers and adjacent regions (Supplementary
Fig. 4). Although these genes became not significant after multi-
ple comparison adjustments, they still provided potential evi-
dence for further studies and great insight into revealing the role
of CNVs in lung cancer risk.

Discussion
The importance of CNVs for elucidating the mechanism underly-
ing many diseases has been increasingly remarked upon.
Improving the accuracy of CNV detection is fundamental for
downstream CNV-disease risk association and diagnostic classifi-
cation. In this study, we developed a novel multiple sample-
based method, BMI-CNV, to improve common CNV detection
with WES data, allowing for the integration of available SNP array
data. The simulation results demonstrated the desirable perfor-
mance across different scenarios of CNV sizes and population
frequencies. The improvement for calling long and high-
frequency CNVs was the most substantial. We analyzed the WES

Fig. 2. Performance assessment of BMI-CNV and iCNV on simulated data in the integrative analysis. Simulated CNVs were of frequency 20%, 50%, and
100% and length 10–30 markers (short), 30–60 markers (medium), and 60–100 markers (long). The grey contours are F1 scores calculated as the
harmonic mean of precision and recall rates.

Fig. 3. Performance assessment of BMI-CNV, iCNV, EXCAVATOR2, CODEX2, cn. MOPs and EnsembleCNV on simulated data in WES analysis. Simulated
CNVs are of frequency 20%, 50%, and 100% and length 10–30 markers (short), 30–60 markers (medium), and 60–100 markers (long). The grey contours
are F1 scores calculated as the harmonic mean of precision and recall rates.
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data from the 1000 Genomes Project and SNP array data previ-
ously generated by the HapMap project 3 and demonstrated the
advantage of multiplatform integration over the single-platform
analysis. Finally, our application of BMI-CNV to WES and
OncoArray datasets of the TRICL consortium indicated potential
lung cancer-associated CNVs.

Among the top associations with the TRICL study, the discov-
ered significantly associated gene LGALS9 was previously found
to be a prognostic factor for lung cancer, low expression of which
was correlated with poorer survival outcome (He et al. 2019). The
significant amplification genes HSPG2, EIF3E, and YTHDC2 have
also been extensively found as oncogenes in diverse tumor types,
including lung cancer, gastrointestinal cancers, and breast

cancer (Li et al. 2014; Chen et al. 2018; Kalscheuer et al. 2019). Our
study mainly focuses on identifying germline CNV; however, the
method is also suitable for the detection of somatic aberrations,
where long and recurrent copy number changes are prominent.
Due to the tumor complexity and heterogeneity, it may require
different strategies in data normalization and filtering proce-
dures (Zare et al. 2017).

This report demonstrated the improved performance of inte-
grative CNV detection by utilizing a multisample and multiplat-
form strategy. The advantages of our method in theory lie in 2
aspects. First, utilizing information across samples will dramati-
cally reduce false positives and boost detection power. We
showed that BMI-CNV presented essential advantages over other

Fig. 4. Overview of the application to the 1000 Genomes Project and HapMap data. The figure outlines the study design with a brief description of
quality control (QC) methods. Summary of key results includes the sample size and number of CNVs at various stages of analysis. Left: CNV calling
results using all SNPs and exons; right: CNV calling results using intergenic and intragenic SNPs and exons. Chr, chromosome.

Fig. 5. Overview of the integrative analysis of the TRICL case-control study. The figure outlines the study design with a brief description of quality
control (QC) steps. The summary of the key results includes the sample size and number of CNVs at various stages of analysis. IBD, identical by
descent; KC, kinship coefficient; LRR SD, standard deviation of Log R ratio; Chr, chromosome; PCA, principal component analysis.
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single-sample methods in detecting common variants. The ad-
vantage was previously shown in Song et al. (Song et al. 2016),
which revealed that the underlying statistical power of multi-
sample methods converged to one at a faster rate than single-
sample methods. Second, BMI-CNV integrates available SNP data
to detect CNVs in noncoding regions, allowing for full-spectrum
genomic variants investigation. Indeed, the important role of
CNVs in noncoding regions has been revealed in numerous stud-
ies. For example, Kumaran et al. identified 1,812 breast cancer-
associated CNVs mapping to noncoding regions (Kumaran et al.
2018). Other similar efforts in integrating data from noncoding
regions have been made. EXCAVATOR2 and CopywriteR used
both the targeted reads and the nonspecifically captured off-
target reads (i.e. from the noncoding region) (Kuilman et al. 2015;
D’Aurizio et al. 2016), in which the information is usually biased
and incomplete. Our method utilizes the more complete SNP ar-
ray data from the matched samples and therefore provides a
more reliable and unbiased solution. Besides, iCNV assumes that
those overlapping markers (i.e. exons and SNPs) share the same
copy number and indeed use one platform to validate calls from
the other using a single hidden Markov model (Zhou et al. 2018).
In contrast, BMI-CNV systematically combines data sequences
from multiplatforms and allows heterogenous copy number
states for the overlapping markers.

In this study, we developed a Bayesian statistical framework
that has several essential advantages over other modeling strate-
gies. First, the nonparametric PSBP can relax the restrictive para-
metric assumption and allows flexible modeling of the complex
high-throughput data. A common critique of the Bayesian
method is its computational speed. In our framework, all condi-
tional distributions implemented in the Gibbs sampling algo-
rithm can be analytically derived, which guarantees efficient
sample generation and fast computation. Second, the Bayesian
framework enables great flexibility and possibility to incorporate
prior relevant information such as the documented CNV hotspot
information (Wang et al. 2007). Finally, the PSBP framework can
be easily extended to accommodate the complex data depen-
dence structure by replacing the independent weights with sto-
chastic processes (e.g. Gaussian process) without sacrificing
computational tractability (Rodriguez and Dunson 2011).

Our method presents some limitations. First, it does not detect
rare CNVs, as the power will be attenuated in the existence of a
large proportion of noncarriers. Second, it will have low power to
detect CNVs with similar proportions of duplications and dele-
tions in the samples, which might be less likely for germline var-
iations. Our method may split those CNVs into several smaller
deletions and duplications, as each CNV locus is equally likely to
be assigned to deletion or duplication. Our study primarily fo-
cuses on systematically integrating matched WES and SNP array
data, since there are many unexplored large-scale datasets that
have been previously sequenced by multiple platforms (e.g. SNP
array and WES). As whole genome sequencing is becoming more
affordable nowadays, it is prominent to combine such data with
data generated from other low-resolution platforms. Our pro-
posed method can also be extended in such direction accompa-
nied with the development of appropriate normalization
methods. For future directions, the detection performance of
BMI-CNV can be improved by combining B allele frequency (BAF)
data. One strategy is to construct a composite score using both
total genetic intensities and allele-specific information, similar
effort has been pursued in SNP array data in a previous study of
our team (Xiao et al. 2019). With WES, efficient derivation of
allele-specific information and normalization methods will be

desirable for optimal performance of the method. Moreover, our
method can be extended to integrate other data types (e.g. gene
expression data) and may incorporate case-control status to di-
rectly identify disease-associated CNVs in a single model.

Data availability
WES data from the 1000 Genomes Project were downloaded from
the FTP site hosted at the EBI ftp://ftp.1000genomes.ebi.ac.uk/
vol1/ftp/ (accessed 2022 June 10). SNP array data from the
International HapMap project are available from the FTP site
ftp://ftp.ncbi.nlm.nih.gov/hapmap (accessed 2022 June 10). The
TRICL SNP array and WES data are available at dbGaP with study
accession numbers: phs000877.v2.p1 and phs000878 v2.p1. BMI-
CNV source code is available on GitHub at https://github.com/
FeifeiXiaoUSC/BMI-CNV (accessed 2022 June 10).

Supplemental material is available at GENETICS online.
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