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Objective. Asthma (AS) is a chronic inflammatory disease of the airway, and macrophages contribute to AS remodeling. Our study
aims at screening macrophage-related gene signatures to build a risk prediction model and explore its predictive abilities in AS
diagnosis. Methods. Three microarray datasets were downloaded from the GEO database. The Limma package was used to
screen differentially expressed genes (DEGs) between AS and controls. The ssGSEA algorithm was used to determine immune
cell proportions. The Pearson correlation coefficient was computed to select the macrophage-related DEGs. The LASSO and
RFE algorithms were implemented to filter the macrophage-related DEG signatures to establish a risk prediction model.
Receiver operating characteristic (ROC) curves were used to assess the diagnostic ability of the prediction model. Finally, the
qPCR was used to detect the expression of selected differential genes in sputum from healthy people and asthmatic patients.
Results. We obtained 1,189 DEGs between AS and controls from the combined datasets. By evaluating immune cell
proportions, macrophages showed a significant difference between the two groups, and 439 DEGs were found to be associated
with macrophages. These genes were mainly enriched in the gene ontology-biological process of immune and inflammatory
responses, as well as in the KEGG pathways of cytokine-cytokine receptor interaction and biosynthesis of antibiotics. Finally,
10 macrophage-related DEG signatures (EARS2, ATP2A2, COLGALT1, GART, WNT5A, AK5, ZBTB16, CCL17, ADORA3, and
CXCR4) were screened as an optimized gene set to predict AS diagnosis, and they showed diagnostic abilities with AUCs of
0.968 and 0.875 in ROC curves of combined and validation datasets, respectively. The mRNA expressions of EARS2, ATP2A2,
COLGALT1, and GART in the control group were higher than in AS group, while the expressions of WNT5A, AK5, ZBTB16,
CCL17, ADORA3, and CXCR4 in the control group were lower than that in the AS group. Conclusion. We proposed a
diagnostic model based on 10 macrophage-related genes to predict AS risk.\.

1. Introduction

Asthma (AS) is a respiratory disease that clinically manifests
as airway hyperresponsiveness, inflammation, and mucus
secretion [1]. As a heterogeneous clinical syndrome, AS
affects more than 300 million people worldwide, with an

annually increasing prevalence rate [2]. Environmental fac-
tors, comorbidities, genomic factors, and other social deter-
minants are considered to play a synergistic role in the
etiology of asthma [3]. Studies on the population genetics
of AS have shown that genetic factors contribute to AS path-
ogenesis, with estimates of heritability ranging from 35 to
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95% [4]. Therefore, it is necessary to study the candidate genes
related to AS and AS phenotypes as well as their internal
molecular mechanisms. Airway and alveolar epithelial cells
are the first line of defense of the lung’s immune system, pro-
tecting against invading pathogens and environmental pollut-
ants [5]. AS is characterized by airway inflammation, and
immune cell infiltration and goblet cell proliferation are often
observed in the airways of AS patients [6]. The relationship
between inflammatory response, immune activation, and AS
exacerbation is well established; thus, studies on biomarkers
associated with immune response in AS may help to improve
clinical outcomes of AS by reducing early inflammation.

Macrophages contribute the largest proportion of leuko-
cytes (accounting for approximately 70% of immune cells)
found in alveoli, distal airspaces, and conducting airways
[7, 8]. Macrophages are variously involved in AS inflamma-
tion, including altering the production of anti-inflammatory
cytokines or chemokines and inducing inflammasomes to
regulate cellular processes [9]. Although macrophages are
abundant in lung tissues, their contribution to AS pathology
comes more from functional changes. Studies have reported
that macrophage function depends on the polarization state
of Th1 and Th2 [10]. M1 macrophages are induced by IFN-γ
and lipopolysaccharide and function in driving inflamma-
tion in response to intracellular pathogens, whereas M2
macrophages are involved in anti-inflammation induced by
IL-4 and IL-13 [11]. These findings support the role of mac-
rophages as disease modifiers, biomarkers, and therapeutic
targets in AS. However, studies are still needed to explore
how cellular signaling and gene signature expression influ-
ence the functional response of macrophages.

Therefore, the purpose of this study was to screen differ-
entially expressed genes (DEGs) related to macrophages in
AS through samples sourced from a public database. Then,
macrophage-related DEG signatures were filtered as an opti-
mized gene set to build a risk prediction model. Finally, the
expression of candidate genes and the prediction model’s
efficiency in AS diagnosis and recognition were validated.
The analytical flowchart of this study is summarized in Sup-
plemental Figure 1. This study proposed novel biomarkers
associated with macrophages in AS and provides new
insights into AS therapeutic strategies by highlighting the
potential function of macrophages.

2. Methods

2.1. Data Acquisition. The expression data were obtained
from three microarray datasets in the Gene Expression Omni-
bus (GEO) (https://www.ncbi.nlm.nih.gov/) [12], including
GSE137268, GSE148004, and GSE112260. In detail, 54 AS
and 15 normal samples detected by the Illumina humanRef-
8 v2.0 expression beadchip were collected from GSE63067; 9
AS and 9 normal samples detected by the Agilent-026652
Whole Human GenomeMicroarray 4×44K v2 were obtained
from GSE148004 [13], and 4 AS samples and 4 healthy
controls were obtained from GSE112260 [14] based on the
Affymetrix Human Gene 2.1 ST Array. Among them,
GSE137268 and GSE148004 were utilized for analysis, while
GSE112260 was used for validation.

2.2. Screening for DEGs of AS. Principal component analysis
(PCA) was performed to remove the batch effect of samples
in GSE137268 and GSE148004 using the R3.6.1 sva package
version 3.38.0 [15] (http://www.bioconductor.org/packages/
release/bioc/html/sva.html). After gathering the combined
expression profile data, the R3.6.1 Limma package version
3.34.7 [16] (https://bioconductor.org/packages/release/bioc/
html/limma.html) was used to screen the DEGs of AS with
a standard of fold discovery rate ðFDRÞ < 0:05, and jlog 2
fold change ðFCÞj > 0:263.

2.3. Screening of Macrophage-Related DEGs. To evaluate
immune cell infiltration in the combined samples, immunol-
ogic signature gene sets were downloaded from the Gene Set
Enrichment Analysis website (GSEA, http://software
.broadinstitute.org/gsea/index.jsp). After this, single-sample
gene set enrichment analysis (ssGSEA) [17] was imple-
mented using the gene set variation analysis (GSVA) pack-
age version 1.36.3 [18] (http://www.bioconductor.org/
packages/release/bioc/html/GSVA.html) in R3.6.1, to com-
pare the differences in the proportion of individual immune
cells between AS and normal samples.

The correlation between the DEGs of AS and the pro-
portion of macrophages was assessed using the R3.6.1 cor
function (http://77.66.12.57/R-help/cor.test.html). By calcu-
lating the Pearson correlation coefficient (PCC), DEGs with
P < 0:05 were determined to be significantly associated with
macrophages.

The R package clusterProfiler (http://bioconductor.org/
packages/release/bioc/html/clusterProfiler.html) was used
for analysis of gene ontology biological process (GO-BP)
function and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment of macrophage-related DEGs.
The P adjust less than 0.05 and the count value was greater
than 1 were considered as the threshold screening criterion.

2.4. Construction of Protein-Protein Interaction (PPI)
Network. STRING version 11.0 [19] (http://string-db.org/)
was used to establish the interactions of the coding proteins
of macrophage-related DEGs with a combined score threshold
of 0.6. A PPI network was constructed and visualized using
Cytoscape version 3.6.1 [20] (http://www.cytoscape.org/).
KEGG pathway enrichment analysis of hub genes in the net-
work was then performed using the R package clusterProfiler.

2.5. Screening and Verification of Macrophage-Related Gene
Signatures. Two different algorithms were used to screen
the DEG signatures from hub genes in the PPI network. Spe-
cifically, the lars package version 1.2 [21] (https://cran.r-
project.org/web/packages/lars/index.html) was used for least
absolute shrinkage and selection operator (LASSO) regres-
sion analysis on hub genes, and the caret package version
6.0-76 [22] (https://cran.r-project.org/web/packages/caret)
was used for recursive feature elimination (RFE) to select
candidate genes. The intersection DEGs were then deter-
mined to be macrophage-related DEG signatures.

The expression data of macrophage-related DEG signa-
tures were extracted from the GSE112260 dataset and com-
pared between AS and the controls. The support vector
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machine (SVM) approach [23] was utilized to construct a
disease diagnostic classifier (Core: Sigmoid Kernel; Cross:
100-fold cross-validation) using R3.6.1 e1071 version 1.6-8
(https://cran.r-project.org/web/packages/e1071). The sensi-
tivity and specificity of the receiver operating characteristic
(ROC) curve calculated using R 3.6.1 pROC version 1.12.1
[24] (https://cran.r-project.org/web/packages/pROC/index
.html) were used to evaluate the performance of the diagnos-
tic model in the combined dataset and validation dataset.

The patients with AS admitted to the Huzhou Tradi-
tional Chinese Medicine Hospital and healthy volunteers
from the physical examination center in Huzhou Traditional
Chinese Medicine Hospital were recruited in the study as
subjects. The Ethics Committee of Huzhou Traditional Chi-
nese Medicine Hospital approved this study, and all subjects
provided informed consent (N0.2021-030-A) for approval.
These are the inclusion criteria: subjects were diagnosed with
AS according to National Asthma Education and Prevention
Program Coordinating Committee Expert Panel Working
Group (NAEPP). The exclusion criteria are as follows: sub-
jects with other respiratory diseases, such as allergic rhinitis,
endotracheal disease, bronchial lung cancer, etc. Patients
with other malignant tumors or serious cardiopulmonary
diseases. The patients had taken bronchodilators, glucocorti-
coids, and other asthma medications a week earlier. Sputum
from asthmatic patients was obtained as follows. After inha-
lation of hypertonic saline atomization for 15min, the lungs
were tapped, and sputum was extracted and collected in a
sterile environment. The clinical characteristics of the
patients are shown in Supplemental Table 1.

2.6. qPCR Analysis. TRIzol (Invitrogen; Thermo Fisher
Scientic, Inc) was added to the cells after washing with
PBS. RNA was extracted according to a previously described
method. The quality and concentration of RNA were mea-
sured by an Infinite M100 PRO (Tecan Group Ltd., China).
cDNA was obtained using RRO47A (TAKARA BIO INC,
Japan) according to the protocols. Subsequently, real-time
qPCR (Funglyn Biotech, Inc, Ontario, Canada) was per-
formed at 50°C for 3min, followed by 95°C for 3min, 95°C
for 10 s, and 60°C for 30 s; this was repeated for 40 cycles.
Information on primers is shown in Supplemental Table 2.
The expression levels of miRNAs and genes were measured
using the 2−△△Ct method.

3. Results

3.1. Screening of DEGs between AS Samples and Healthy
Controls. We combined GSE137268 and GSE148004 into
one dataset and removed the batch effect using the SVA algo-
rithm. The expression levels before and after removal of the
batch effect are shown in Supplemental Figure 2. A PCA of
the combined samples was further performed (Figures 1(a)
and 1(b)), and the results indicated that the combined
samples from the two different detection platforms were
indistinguishable after batch effect removal and could be
applied for further analysis. The Limma package was then
used to screen DEGs between AS samples and healthy
controls from the combined dataset, and we obtained 1,189

DEGs in total with the corresponding thresholds, as shown
in Figure 1(c). The heatmap (Figure 1(d)) showed that
DEG expression was significantly different between the AS
and control groups, indicating that the screened DEGs had
expression features in each group.

3.2. Selection of Macrophage-Related DEGs and Functional
Enrichment Analysis. Based on the expression profiling of
the combined samples, we obtained the proportions of 28
types of immune cells using the ssGSEA algorithm. By com-
paring the differences in the proportion of immune cells
between AS samples and healthy controls, we found that
seven immune cell types were significantly different between
the two groups, including macrophages, with a P value of
0.011 (Supplemental Figure 3 and Supplemental Table 3).
By calculating the PCC between DEGs and cell proportion
of macrophages in samples using the cor function in
R3.6.1, 439 macrophage-related DEGs were screened at a P
value < 0.05. We then carried out function and pathway
enrichment analyses on macrophage-related DEGs using the
R package clusterProfiler and filtered 20 biological processes
(Figure 2(a)), including regulation of inflammatory response
as well as 20 KEGG pathways (Figure 2(b)) including
Metabolic pathways, pathways in cancer and cytokine-
cytokine receptor interaction, etc., with statistical significance.

3.3. Establishment and Analysis of PPI Network. The
STRING database was applied to establish the interactions
between the coding proteins of macrophage-related DEGs,
and a total of 515 pairs of interactions were obtained with
combined scores over 0.6. A PPI network comprising 220 gene
nodes was constructed, as shown in Figure 3(a). We also ana-
lyzed the topology properties of nodes in the network and
listed the detailed information of nodes with degrees >10 in
Supplemental Table 4. Furthermore, pathway enrichment
was performed based on 220 macrophage-related DEGs in
the PPI network (Figure 3(b)); nineteen KEGG pathways
were emphasized, including cancer, cytokine-cytokine
receptor interaction, biosynthesis of antibiotics, and purine
metabolism pathways, among others.

3.4. Screening of Macrophage-Related DEG Signatures to
Build a Risk Prediction Model. A total of 77 macrophage-
related DEGs from the PPI network were found to be enriched
in the KEGG pathways, and LASSO and RFE were imple-
mented to further screen out DEG signatures to establish a
diagnostic model with more accurate predictions. The param-
eter diagrams of LASSO and RFE are shown in Figure 4.
Through LASSO regression analysis, 14 DEGs were found to
have significant predictive advantages. Moreover, the RFE
algorithm provided a combination of 20 DEGs as a stable pre-
diction feature. Considering the intersection of the LASSO
regression analysis and RFE algorithm, 10 macrophage-
related DEG signatures (EARS2, ATP2A2, COLGALT1,
GART, WNT5A, AK5, ZBTB16, CCL17, ADORA3, and
CXCR4) were finally selected as an optimized gene set to pre-
dict AS diagnosis. Within the optimized gene set, CXCR4,
ZBTB16, and ADORA3 had relatively higher degrees of con-
nection in the PPI network.
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Figure 1: Continued.
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3.5. Validation of Gene Expression and Prediction Model
Efficacy. The expression data of the 10 macrophage-related
DEG signatures were extracted and compared between AS
samples and healthy controls in both the combined and

GSE112260 datasets. As shown in Figure 5(a), the expression
of all 10 DEG signatures was significantly different between
the two groups in the combined dataset. Meanwhile, in the
GSE112260 dataset (Figure 5(b)), the expression trends of
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Figure 1: Screening of DEGs between AS and normal samples. (a, b) PCA diagrams before and after removing the batch effect on samples
from the two datasets. Black and red dots represent samples in GSE137268 and GSE148004, respectively. (c) The volcano plot showed
1,189 DEGs between AS and the control groups screened from combined samples with the FDR < 0:05 and jlog 2FCj > 0:263 criteria.
The x-axis indicates the value of log2FC, while the y-axis indicates the FDR value. The green and orange dots represent downregulated
and upregulated DEGs, respectively, with statistical significance. (d) Heatmap based on the expression levels of DEGs.
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the 10 macrophage-related DEGs were in accordance with
those in the combined dataset, and the expression differ-
ences of EARS2, ATP2A2, WNT5A, CCL17, ADORA3,
and CXCR4 were significant between the AS and control
groups (P < 0:05).

Based on the 10 macrophage-related DEG signatures,
we constructed a diagnostic model using the combined
dataset and validated model performance using the
GSE112260 dataset. ROC curves showed excellent predic-

tive abilities of diagnostic models with an area under the
curve (AUC) of 0.968 and 0.875 in the combined and
GSE112260 datasets, respectively.

3.6. Verification of 10 Differential Genes by qPCR in Clinical
Samples. The 10 macrophage-related DEG signatures
(EARS2, ATP2A2, COLGALT1, GART, WNT5A, AK5,
ZBTB16, CCL17, ADORA3, and CXCR4) were verified by
qPCR. The results showed that the mRNA expressions of
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EARS2, ATP2A2, COLGALT1, and GART in the control
group (healthy volunteers) were higher than in AS group,
while the expressions of WNT5A, AK5, ZBTB16, CCL17,
ADORA3, and CXCR4 in control group were lower than that
in the AS group (Figure 6).

4. Discussion

AS is a multifaceted disease that affects all age groups, and
genetic factors play an important role in the risk of develop-
ing AS. Although numerous genes, including ORMDL3 and
GSDB at locus 17q21 have been shown to contribute to the
genetic etiology of AS [25, 26], there is a lack of strategies
for integrating risk factors with multiple datasets to establish
relationships among genetics, immunity, and AS. In this
study, we first screened 1,189 DEGs from 63 AS and 24 con-
trol samples from the combined dataset. Macrophages were
found to be significantly different between the two groups,
and 439 macrophage-related DEGs were further screened
after establishing the relationship between DEGs and the
abundance of macrophage immune infiltration. These
macrophage-related DEGs were mainly enriched in the
GO-BP of immune and inflammatory responses as well as
KEGG pathways of cytokine-cytokine receptor interaction
and biosynthesis of antibiotics. By applying the LASSO
and RFE algorithms, we finally screened 10 macrophage-
related DEG signatures to establish a risk prediction model,
which was shown to have excellent AS diagnostic abilities
with AUCs of 0.968 and 0.875 in the ROC curves of the
combined and GSE112260 datasets, respectively. Our find-
ings propose significant biomarkers for AS diagnosis driven
by macrophages.

AS is known to be associated with immune system acti-
vation, and both innate and adaptive immunity play roles in
the immune mechanism of AS [27]. In this study, we found
seven types of immune cells (including macrophages, natu-

ral killer cells, and immature dendritic cells, among others)
that were significantly different between AS samples and
healthy controls using a ssGSEA algorithm. Studies have
shown that polarized M1/M2 macrophages function as
antigen-presenting cells that may effectively activate Th1,
Th2, Th17, or Treg cells in AS [28]. Moreover, a related
study pointed out that the role of natural killer cells in the
regression of peribronchial cell infiltration in AS may be to
inhibit antigen-specific Th17 and Th1 immunity [29]. Addi-
tionally, dendritic cells are the most potent antigen-
presenting cells in the immune system and play a central
role in the allergen-driven Th2 immune response in AS
[30]. This may explain the possible regulatory mechanism
of macrophages with the combined action of natural killer
cells and dendritic cells in activating Th1, Th2, and Th17
immune responses in AS attacks.

By evaluating the relationship between DEGs in AS and
the proportion of macrophages, we obtained 439
macrophage-related DEGs that were mainly enriched in the
biological processes of immune and inflammatory responses.
Saradna et al. concluded that the regulation process of mac-
rophages contained intricate interactions among various
cytokines, chemokines, transcription factors, and immuno-
modulatory cells [11]; our results provide potential targets
for such a complex interplay in macrophages and related
inflammatory responses in AS. These macrophage-related
DEGs were also enriched in the KEGG pathways of
cytokine-cytokine receptor interactions. Zhao et al. found
that the genes expressed in macrophages under hypoxic
conditions were enriched in the cytokine-cytokine receptor
interaction pathway [31]. Moreover, upregulated DEGs in
acute respiratory distress syndrome were also determined
to be associated with cytokine-cytokine receptor interac-
tions [32]. Combined with the above findings, we hypoth-
esized that dyspnea and hypoxia caused by asthma attacks
might induce differential expression of these macrophage-
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Figure 5: Expression validation of macrophage-related DEG signatures and performance validation of the diagnostic model. (a, b)
Expression differences of 10 macrophage-related DEG signatures between the AS and control groups in the combined dataset and
GSE112260. The x-axis indicates the 10 DEG signatures, and the y-axis indicates the expression level. ∗P < 0:05, 0:005 < ∗∗P < 0:05, ∗∗∗P
< 0:005. (c, d) ROC curves showing the abilities of diagnostic models in the combined dataset and GSE112260 with AUCs of 0.968 and
0.875, respectively. The x-axis indicates the value of specificity, and the y-axis indicates the value of sensitivity.
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related genes, which are closely related to the inflamma-
tory and immune responses and cytokine-cytokine recep-
tor interaction.

In the present study, LASSO and RFE algorithms were
applied to establish a diagnostic model with more accurate
predictions. LASSO analysis is a high-dimensional predictive
regression method that integrates multiple biomarkers into a
single model to enhance their predictive value [33]. In their
prediction of miRNA-mRNA relationships in prostate can-
cer, Lu et al. identified LASSO as an informative tool in con-
structing diagnostic models with considerable advantages in
sensitivity and specificity [34]. Kim SM and Kim Y also pro-
posed that the prediction performance of LASSO regression
for disease diagnosis was higher than that of stepwise logistic
regression [35]. Additionally, SVM-RFE has been identified
as an effective feature selection algorithm for feature screen-
ing in complex high-dimensional biological data and has
been widely used in disease research and drug development
[36]. Furthermore, Sanz et al. stated that in biomedical data
analysis, RFE could accurately select variables and assess the
direction and strength of associations [37]. The high speci-
ficity and sensitivity of the ROC curves in this study indi-
cated that LASSO and RFE algorithms are superior in
screening gene signatures to predict AS risk.

By taking the intersection of LASSO and RFE, we finally
obtained 10 macrophage-related DEG signatures to predict
AS risk and identify disease diagnostic performance. Among
these candidate genes, the expression of EARS2, ATP2A2,
WNT5A, CCL17, ADORA3, and CXCR4 was further vali-
dated in both the combined and GSE112260 datasets. Dur-
ing the construction of a mouse model with conditional
loss of function, Li et al. demonstrated that differentiation
and migration of myofibroblasts were the main effects of
WNT5A inactivation on alveolar formation [38]. Smooth

muscle-derived WNT5A enhanced Th2 inflammation in
AS, leading to increased airway wall inflammation and
remodeling [39]. Moreover, Williams et al. reported that
mice with human rhinovirus-induced AS could upregulate
the expression of CCL17 by activating lung STAT6 [40].
However, Yuan et al. found that the deficiency of integrin
β4 was involved in the Th2 response in allergic AS by down-
regulating the CCL17 pathway in airway epithelial cells [41].
The key roles of these feature genes in AS have been eluci-
dated, but the molecular mechanism by which they mediate
AS inflammation through macrophages is still unclear.

In this study, we screened gene signatures associated
with macrophages and investigated their role in the diagno-
sis of AS. It is not only important for the diagnosis of asthma
but also necessary to study the mechanism of asthma. It is
important to further study the expression of these genes sig-
natures in peripheral blood samples and tissue samples.

Although we found several interesting macrophage-
related gene signatures and explored their roles in AS diag-
nosis, the inability to define the relationship between candi-
date genes and the severity and clinical AS phenotype
caused by the lack of clinical information on samples was
one of the limitations of the present study. In addition,
the lack of multicenter large sample verification is also the
deficiency of this study. In future studies, more solid tumor
samples should be collected to verify the differences in the
expression of these candidate genes and further explore
their regulatory mechanisms in the inflammatory response
and immune activation of AS.

5. Conclusion

Here, we obtained 439 DEGs in AS associated with macro-
phages, which also significantly differed in cell proportion

EARS2

ATP2A
2

COLGALT1
GART

W
NT5A AK5

ZBTB16
CCL17

ADORA3

CXCR4
0

1

2

3

4

Re
la

tiv
e

ex
pr

es
sio

n
of

m
RN

A

Control group
AS group

⁎⁎⁎⁎

⁎⁎⁎⁎

⁎⁎⁎⁎

⁎⁎⁎⁎

⁎⁎⁎⁎

⁎⁎⁎ ⁎⁎⁎

⁎⁎⁎

⁎⁎

⁎

Figure 6: Verification of 10 differential genes by qPCR in clinical samples. The 10 macrophage-related DEG signatures (EARS2, ATP2A2,
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between AS and the controls. LASSO and RFE algorithms
that can effectively identify and screen disease characteristic
variables were then employed, and 10 macrophage-related
DEG signatures were ultimately screened to establish a risk
prediction model of AS by considering the intersection of
relevant results. This prediction model showed excellent
AS diagnostic abilities, with high sensitivity and specificity.
Our findings may help to better understand the mechanisms
of macrophage-mediated regulation in the pathogenesis of
AS and provide potential diagnostic biomarkers for patients
with AS.
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involved in the inflammation response of AS. (2) Macro-
phages showed significant differences in cell proportion
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to select gene signatures for building a risk prediction model.
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