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Background. N7-methylguanosine (m7G) has been implicated in the development of cancer. The role of m7G-related miRNAs in
the survival prediction of UCEC patients has not been investigated. Current research was the first to construct an m7G-related
miRNA model to accurately predict the survival of patients with uterine corpus endometrial carcinoma (UCEC) and to explore
immune cell infiltration and immune activity in the tumor microenvironment. Methods. RNA-seq data and clinical
information of UCEC patients were derived from The Cancer Genome Atlas (TCGA) database. Using the TargetScan online
database, we predicted miRNAs linked to the m7G-related genes and identified miRNAs which were significantly associated
with the survival in UCEC patients and constructed a risk scoring model. The TCGA-UCEC cases were scored according to
the risk model, and the high- and low-risk groups were divided by the median risk value. Gene enrichment analysis and
immune cell infiltration and immune function analysis were performed using “clusterProfiler” and “GSVA” packages in R.
Results. The survival prediction model consisted of 9 miRNAs, namely, hsa-miR-1301, hsa-miR-940, hsa-miR-592, hsa-miR-
3170, hsa-miR-876, hsa-miR-215, hsa-miR-934, hsa-miR-3920, and hsa-miR-216b. Survival of UCEC patients in the high-risk
group was worse than that in the low-risk group (p < 0:001). The receiver operating characteristic (ROC) curve showed that
the model had good predictive performance, and the area under the curve was 0.800, 0.690, and 0.705 for 1-, 3-, and 5-year
survival predictions, respectively. There were differences in the degree of immune cell infiltration and immune activity between
the low-risk and high-risk groups. The expression levels of the identified differentially expressed genes correlated with the
susceptibility to multiple anticancer drugs. Conclusions. The survival prediction model constructed based on 9 m7G-related
miRNAs had good predictive performance.

1. Introduction

Uterine corpus endometrial carcinoma (UCEC) is a com-
mon gynecological malignancy that endangers women’s
health. According to the 2020 global cancer statistics, there
were more than 410,000 new UCEC cases and more than
97,000 new deaths worldwide [1]. In recent years, with the
identification of an increasing number of markers and sig-
naling pathways, rising novel approaches to the treatment
of UCEC have emerged. However, the prognosis prediction
of UCEC patients still needs to be explored.

N7-methylguanosine, or m7G, is a ubiquitous posttran-
scriptional RNA modification [2]. A methyl group is added
to riboguanosine at the N7 position during transcription ini-
tiation [3]. A positively charged modification of RNA results
from the modification of m7G at the 5′ cap catalyzed by
methyltransferase cotranscriptionally [4]. m7G has been
shown to be associated with a variety of biological processes
and is involved in the development of various diseases,
including cancers [5, 6].

In this study, we constructed a model of m7G-related
microRNAs (miRNAs) for predicting survival in UCEC
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patients. Moreover, UCEC patients were divided into high-
and low-risk groups based on risk score results, and differen-
tially expressed genes were analyzed to explore the correla-
tion with immune cell infiltration, immune activity, and
anticancer drug sensitivity. The flow chart of our study is
demonstrated in Figure 1.

2. Materials and Methods

2.1. Data Acquisition. RNA-seq expression data and clinical
data of UCEC were derived from The Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov/). A list of
twenty-eight m7G-related genes was obtained from a previ-
ous literature [7] (Supplementary Table S1).

2.2. Construction of the m7G-Related miRNA Prognosis
Prediction Model in UCEC. The obtained proteins encoded
by 28 m7G-related genes play multiple roles in m7G biolog-
ical processes, which in turn affect cancer progression
[8–11]. It has been demonstrated that miRNAs regulate gene
expression posttranscriptionally [12]. miRNAs can affect
tumor progression by regulating the expression of down-
stream m7G-related genes [13, 14]. Based on this, we
designed and constructed an m7G-related miRNA prognosis
model. Using the TargetScan online database (https://www
.targetscan.org/vert_72/) [15], we predicted miRNAs that
may have regulatory relationships with m7G-related genes
(Supplementary Table S2). Next, based on the transcriptome
data obtained from the TCGA-UCEC cohort, differentially
expressed miRNAs (DEmiRNAs) between tumor samples
and normal samples were obtained by screening with the
“edgeR” package in R [16] according to the following
conditions: FDR < 0:05 and jlog2FCj ≥ 1. To explore the
relationship between the expression of DEmiRNAs and the
survival of UCEC patients, we used the “survival” package in
R to perform the Cox univariate and multivariate analyses
and screened out DEmiRNAs with p value < 0.01. For the
purpose of obtaining a generalized linear model and
reducing error, 1000 Cox LASSO regression calculations and
ten cross-validation cycles were performed with the R
package “glmnet” [17]. The obtained DEmiRNAs significantly
associated with survival were named SDEmiRNAs, and a risk
prognostic model was constructed. Finally, to assess the
sensitivity and specificity of the survival risk assessment
model, we plotted ROC curves using the “timeROC” package
in R for predicting survival at 1-, 3-, and 5-year survival [18].

2.3. Calculation of Risk Score. The specific equation for the
risk score:

Risk score =〠Coef miRNA × log 2 miRNA expression + 1ð Þ:
ð1Þ

We divided the high- and low-risk groups in UCEC
patients by the median risk score.

2.4. Screening of Differentially Expressed Genes. A risk score
was calculated for each TCGA-UCEC case according to the
constructed survival risk model, and the median risk score

was used to distinguish high risk from low risk. Following
this, we identified differentially expressed genes (DEGs)
between the high-risk and low-risk groups by looking at
the transcriptome data in the TCGA-UCEC cohort. Genes
that were differentially expressed between the high-risk and
low-risk groups were found by screening with the “edgeR”
package in R under the following conditions: FDR < 0:05
and jlog2FCj ≥ 1. We named the obtained genes RDEGs.
Next, we collected the immune score data of TCGA-UCEC
from the ESTIMATE database (https://bioinformatics
.mdanderson.org/estimate/disease.html), differentiated the
high score group and the low score group based on median
immune scores, and designated those differentially expressed
genes that met the conditions of FDR < 0:05 and jlog2FCj
≥ 1 as IDEGs. To obtain codifferentially expressed genes
(coDEGs), we took the intersection of RDEGs and IDEGs.

2.5. Gene Enrichment Analysis. We performed functional
and pathway enrichment analysis of Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
on coDEGs using the “clusterProfiler” package in R [19].

2.6. Immune Cell Infiltration and Immune Function Analysis.
We used the “GSVA” package in R to quantify immune cell
infiltration and immune function in the TCGA-UCEC
cohort using the single-sample Gene Set Enrichment Analy-
sis (ssGSEA) algorithm [20]. Subsequently, we analyzed the
correlation between different immune cell infiltrations and
different immune functions. We also explored the associa-
tion between risk scores and immune infiltration, as well as
the correlation between coDEGs and immune infiltration.

2.7. Drug Sensitivity Analysis.We used the GSCA online tool
(http://bioinfo.life.hust.edu.cn/GSCA/#/drug) to explore the
relationship between the expression of coDEGs and the sen-
sitivity of antitumor drugs, including two major modules:
The Cancer Therapeutics Response Portal (CTRP) drug sen-
sitivity analysis and the Genomics of Drug Sensitivity in
Cancer (GDSC) drug sensitivity analysis [21].

2.8. Statistical Analysis. For statistical studies, R software
(version: 4.1.2) was used. To compare the data between
two groups, Student’s t-test was utilized. One-way ANOVA
was employed to analyze multiple groups followed by
Tukey’s post hoc test. All tests were two-sided and statistical
significance was defined as p < 0:05. The “ggplot2” package
in R was used for plotting.

3. Results

3.1. Construction of a Prognostic Model from m7G-Related
miRNAs. We obtained 33 specimens of normal tissue and
546 specimens of tumor tissue from the TCGA-UCEC
cohort. The differentially expressed miRNA analysis results
of the tumor group compared to the normal group showed
91 upregulated DEmiRNAs and 61 downregulated DEmiR-
NAs (Supplementary Table S3). In the heatmap (top 20
DEmiRNAs), the differences in the expression of DEmiRNAs
between the normal group and the tumor group are shown
(Figure 2). Next, we identified 9 SDEmiRNAs that were
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significantly associated with the overall survival in UCEC
patients by the univariate Cox regression analysis and
LASSO regression analysis (Figures 3(a)–3(c)). Hence, we
computed risk scores using the 9 SDEmiRNAs described
above and constructed a multifactorial Cox regression model
(Figure 3(d)). Formula used to calculate risk score: 0:00088 ×

expression level of hsa −miR − 1301 + 0:00850 × expression
level of hsa −miR − 940 + 0:00140 × expression level of hsa −
miR − 592 − 0:02522 × expression level of hsa −miR − 3170 +
0:02871 × expression level of hsa −miR − 876 + 0:00080 ×
expression level of hsa −miR − 215 + 0:00296 × expression
level of hsa −miR − 934 − 0:19298 × expression level of hsa −

RNAseq data and clinical data of 546 UCEC cases
and 33 controls were obtained from the TCGA
database.

Predicting miRNAs with regulatory relationship
with m7G-related genes using Targetscan

Screening for differentially expressed miRNAs

Cox univariate and multivariate analysis

Nine m7G-related miRNAs related to UCEC
prognosis

The m7G-related miRNA prognosis prediction
model

(i)High-risk group
(ii)Low-risk  group

(i)High-risk group
(ii)Low-risk  group

Screening of differentially expressed  genes
between two groups

4054 RDEGs

The immune score data of TCGA-UCEC were
downloaded from the ESTIMATE database

Screening of differentially expressed genes
between two groups

4390 IDEGs

Intersection

1516 coDEGs

(i)Gene enrichment analysis
(ii)Immune cell infiltration and immune function
analysis
(iii)Drug sensitivity analysis

Figure 1: Flowchart of construction of the UCEC prognostic model.
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Figure 2: The differentially expressedmiRNAs in TCGA-UCECwere identified in the tumor group compared with the normal group. (a) Heatmap
of top 20 DEmiRNAs. (b) Volcano plot of all DEmiRNAs.
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Univariate cox regression analysis
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Figure 3: Identification of SDEmiRNAs by univariate and multivariate Cox analyses. (a) The forest plot showed the results of the univariate
analysis. (b) The profile of coefficients in the model was plotted at different levels of penalization using the log ðlambdaÞ sequence. (c) Cross-
validated error tenfold (the first vertical line represents the minimum error, while the second shows the error within a standard deviation).
(d) The forest plot showed the results of the multivariate analysis.
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miR − 3920 + 0:01063 × expression level of hsa −miR − 216b.
The median risk score was used to differentiate between the
high- and low-risk groups (Figure 4(a)). It is clear from
Figures 4(b) and 4(c) that the high-risk group had a
significantly higher mortality rate than the low-risk group and
the low-risk group had better survival. The sensitivity and
specificity of the survival risk assessment model were
evaluated by the ROC curve, and the areas under the curve of
the risk score model were 0.800, 0.690, and 0.705 for the
prediction of 1-year, 3-year, and 5-year survival probability,
respectively (Figure 4(d)).

3.2. Predictive Value of Risk Scoring Models Combined with
Clinical Parameters. We incorporated clinical parameters
(age and FIGO stage) and risk score into univariate and mul-
tivariate Cox regression analyses models and found that the
risk score was an independent factor affecting the survival of
UCEC patients (Figures 5(a) and 5(b)). In addition, we drew

a nomogram for risk assessment combined with clinical param-
eters to predict the 1-, 3-, and 5-year survival rates of UCEC
patients (Figure 5(c)), and the calibration curve showed that
the nomogram had good predictive performance (Figure 5(d)).

3.3. Association of SDEmiRNAs with Survival in UCEC
Patients. Survival analysis was used to explore the correla-
tion between the expression of SDEmiRNAs and the survival
of UCEC patients. In Figure 6, the Kaplan–Meier curves
showed that UCEC patients with high expression of hsa-
miR-876, hsa-miR-934, hsa-miR-940, and hsa-miR-1301
had a significantly lower survival rate than those with low
expression, and the survival rate of UCEC patients with high
expression of hsa-miR-3170 was significantly increased
compared with those with low expression.

3.4. Functional and Pathway Enrichment Analyses. Using
difference analysis, we obtained 4054 RDEGs and 4390
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Figure 4: Nine m7G-related SDEmiRNAs constructed a survival prediction model for UCEC patients. (a) Distribution and median values of
risk scores. (b) Distributions of overall survival and risk scores. (c) Kaplan–Meier curves showed survival for patients in the high-risk and
low-risk groups. (d) The ROC curves showed the performance of the model to predict the 1-, 3-, and 5-year survival of UCEC patients.
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Univariate cox regression analysis
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Figure 5: Continued.
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Figure 5: Construction of a composite model of risk scores combined with clinical parameters. (a, b) The risk score model was an independent
factor affecting the survival of UCEC patients in univariate andmultivariate Cox analyses. (c) Nomogram for model constructed from risk scores
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IDEGs and obtained 1516 coDEGs by taking the intersection
(Figure 7(a)). We performed enrichment analysis of the
obtained coDEGs with KEGG, and the results showed that
the top three pathways were neuroactive ligand-receptor
interaction, cAMP signaling pathway, and oxytocin signal-

ing pathway (Figures 7(b) and 7(c)). An overview of a given
gene’s function is provided by GO, which includes molecular
function (MF), cellular components (CC), and biological
process (BP). In the GO enrichment analysis, BP module’s
results were especially enriched in cell-cell adhesion via

ADAMTS16
LHX1

SPINK1
ZFHX4

FAM110B
GSTA1
LRRN1

NTNG1
CALML3

ADCY8
CLDN18

ENHO
FBXL21P

MGAT4C
OR2B11
CTCFL

GAB4
TEX13B

ALK
MYO3A
KLHL1
GFRA4

TCERG1L
BMP3

OLIG1
KCNJ3

DHRS7C
RHO

PCDH15
HIF3A

DLGAP3
GRID2

Sy
m

bo
l

Correlation between GDSC grug sensitivity and mRNA expression

17
-A

AG

Docet
axe

l

Bleo
myci

n (5
0 u

M)

NG-25

BHG71
2

BMS3
45

54
1

PIK
-93

NPK76
-II

-72
-1

5-F
luorourac

il

GSK
69

06
93

Meth
otre

xat
e

TAK-71
5

GSK
10

70
91

6

THZ-2-
10

2-1

TPCA-1

I-B
ET-76

2

Phen
form

in

Tubast
ati

n A

XMD13
-2

KIN
00

1-1
02

MPS-1
-IN

-1

PHA-79
38

87

TG10
13

48
FK86

6

W
Z31

05

Navi
tocla

x

BX-91
2

OSI-
02

7
AR-42

Vorin
osta

t

Drugs

FDR
< = 0.05
> 0.05

FDR
0.05
0.01
0.001
< = 0.0001

Correlation

–0.5

0.0

0.3

(h)

Figure 8: Immune cell infiltration and immune activity in the tumor microenvironment of UCEC and anticancer drug sensitivity analysis of
coDEGs. (a) Heatmap of immune cell infiltration and immune activity in the TCGA-UCEC cohort. (b) Correlation analysis between various
immune cells. (c) Correlation analysis between various immune functions. (d) Comparison of the degree of infiltration of various immune
cells in the high-risk group and the low-risk group. (e) Comparison of the extent of various immune activities in the high-risk group versus
the low-risk group. (f) Correlation analysis of coDEG expression with immune cell infiltration and immune activity. (g, h) Anticancer drug
sensitivity analysis based on CTRP and GDSC databases for coDEG expression.
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plasma-membrane adhesion molecules, neuropeptide signal-
ing pathway, and spinal cord development; CC module’s
results were enriched in intermediate filament cytoskeleton,
intermediate filament, and postsynaptic membrane; and
MF module’s results were mainly enriched in ion channel
activity, channel activity, and passive transmembrane trans-
porter activity (Figures 7(d) and 7(e)).

3.5. Tumor Microenvironment Immune Infiltration. The
ssGSEA results are represented as a heatmap, and it is likely
that different immune cells have different degrees of infiltra-
tion in UCEC tumor samples, while at the same time, immune
function activities are also different (Figure 8(a)). Then, we
examined the correlations between 16 subtypes of immune
cells, as well as 13 immune functions (Figures 8(b) and 8(c)).
Interestingly, in Figure 8(d), the proportions of CD8+ T cells,
DCs, iDCs, neutrophils, and Th2 cells in the high-risk score
group were significantly lower than those in the low-risk score
group. On the other hand, the proportion of aDCs in the high-
risk score group was significantly higher than that in the low-
risk group. In addition, among various immune functions,
only the degree of parainflammation and type I IFN response
was significantly different between the high-risk score group
and the low-risk score group (Figure 8(e)). Subsequently, we
analyzed the correlation between the expression of coDEGs
and 16 different subtypes of immune cells, as well as the corre-
lation between the expression of coDEGs and 13 immune
functions. The results showed that the expression of most
coDEGs was negatively correlated with the degree of immune
cell infiltration and immune functions, except for IGLV3-24
and IGLV9-49 (Figure 8(f)).

3.6. Drug Sensitivity Analysis. In order to comprehensively
understand the correlation between the expression of
coDEGs and the sensitivity of antitumor drugs, we used
CTRP and GDSC drug data for mining analysis and the
results are shown in Figures 8(g) and 8(h).

4. Discussion

Methylation occurs in biological systems via enzymes. The
process of methylation can control gene expression, RNA
processing, and protein function. In epigenetics, it is consid-
ered a key process. The N7-methylguanosine (m7G) modifi-
cation of RNA has recently gained significant attention.
m7G modifications affect a variety of RNA molecules,
including messenger RNA, ribosomal RNA, microRNA,
and transfer RNA, that participate in biological and patho-
logical functions [6]. It is now clear that m7G plays a critical
role in the development of human diseases, especially can-
cers, and aberrant m7G levels are linked to tumorigenesis
and progression through the regulation of multiple onco-
genes and tumor suppressor genes [22, 23]. Currently, the
molecular mechanisms underlying m7G modification in
UCEC are not well understood. Therefore, we explored
m7G-related miRNA signatures in UCEC and constructed
a risk score model for survival prediction of UCEC patients.

In our study, we identified 9 m7G-related miRNAs asso-
ciated with the survival of UCEC patients by integrated bio-

informatics approach, including: hsa-miR-1301, hsa-miR-
940, hsa-miR-592, hsa-miR-3170, hsa-miR-876, hsa-miR-
215, hsa-miR-934, hsa-miR-3920, and hsa-miR-216b. These
SDEmiRNAs were used to construct a risk scoring model for
the survival prediction of UCEC patients at 1, 3, and 5 years.
Previous studies have shown that these miRNAs are associ-
ated with the phenotype of various malignant tumors.
According to Wang et al., miR-1301 inhibits tumor cell
migration and invasion by regulating the UBE4B-p53 path-
way in multiple human cancer cells [24]. In gastric cancer,
the miR-1301-3p/KIF23 axis inhibits gastric cancer cell pro-
liferation, migration, and invasion by knocking down circ_
0067934 [25]. Guo et al. reported that PVT1 inhibits prolif-
eration and promotes apoptosis in human retinal epithelial
cells by binding to microRNA-1301-3p and activating
KLF7 [26]. In pancreatic cancer, Zhang et al. reported that
miR-1301-3p inhibits epithelial-mesenchymal transition
through targeting RhoA [27]. Wang et al. revealed that
miR-1301-3p directly binds to METTL3 and regulates hepa-
tocellular carcinoma progression. It has been reported that
METTL3 associates with both m7G cap-binding complexes
CBP80 and eIF4E [28]. Researchers found that miR-940
increases proliferation and metastasis in endometrial cancer
by regulating MRVI1 [29]. Through regulating FOXO3,
miR-940 promotes malignant progression of breast cancer
[30]. In esophageal squamous cell carcinoma cells, miR-
940 inhibits cell proliferation and promotes apoptosis, which
may affect the outcome after surgery [31]. By absorbing hsa-
mir-940, hsa_circ_0092339 targets C-MYC indirectly and
plays an important role in castration-resistant prostate can-
cer [32]. It is reported that miR-592 enhances medullary
thyroid cancer tumorigenesis through cyclin-dependent
kinase 8 [33]. MiR-592 suppresses the malignant phenotypes
of thyroid cancer through the regulation of lncRNA NEAT1
and downregulation of NOVA1 [34]. A miR-592-mediated
activation of mTOR (mammalian target of rapamycin),
ERK1/ERK2 signaling, and neuronal differentiation impart
group 4 medulloblastoma characteristics [35]. It has been
found that lncRNA MEF2C-AS1 inhibits cervical cancer by
targeting RSPO1 by suppressing miR-592 [36]. There is no
relevant experimental research literature on miR-3170, but
one literature incorporates miR-3170 into the prognostic
model through bioinformatics analysis and considers it to
be a predictor of UCEC [37]. In a glucose-induced tumor
microenvironment, the HOXC-AS2/miR-876-5p/HKDC1
axis regulates endometrial cancer progression [38]. By acti-
vating the PI3K/AKT signaling pathway, miR-876-5p targets
GNG12 and contributes to glioma progression [39].
Through targeting TMED3, miR-876-3p modulates the
resistance of gastric cancer cells to cisplatin and their stem-
like properties [40]. A study by Liang et al. reported that
hsa_circ_0097922 regulates ACTN4 expression via miR-
876-3p, thus promoting tamoxifen resistance in breast can-
cer cells [41]. miR-215 interferes with cell migration and
invasion by targeting stearoyl-CoA desaturase in colorectal
cancer [42]. Through targeting RB1 and triggering the
Wnt/β-catenin pathway, miR-215 promotes nasopharyngeal
carcinoma progression [43]. By targeting Sox9, miRNA-215-
5p inhibits aggressiveness in breast cancer cells [44]. A
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decrease in miR-215 levels is correlated with an increase in
KDM1B levels in enzalutamide-resistant prostate cancer
cells that promotes AR-dependent AGR2 transcription and
regulates the sensitivity to AR-targeted therapy [45]. In
breast cancer, miR-934 regulates PTEN and the epithelial-
mesenchymal transition [46]. An increase in the expression
of miR-934 has been shown to serve as an independent
prognostic factor in lung cancer and contributes to prolifer-
ation, migration, and invasion in non-small-cell lung cancer
cells [47]. miR-934 derived from colorectal cancer tumors
can induce macrophage polarization toward M2 to promote
liver metastasis [48]. At present, there is no literature report
that miR-3920 is related to tumors, and further research is
needed in the future. miR-216b overexpression enhances
the activation of PI3K/AKT by partially regulating PXN in
gastric cancer cells [49]. Through binding to the 3′-UTR of
HDAC8, miR-216b-5p inhibits proliferation and progres-
sion in breast cancer cells [50]. Inhibition of osteosarcoma
cell proliferation, migration, and invasion is mediated by
miRNA 216b targeting Forkhead box M1 [51].

The tumor microenvironment (TME) is a key factor in the
occurrence and development of tumors. In particular, various
immune cell infiltration and changes in immune activity in
the TME affect the biological properties of tumors. Immuno-
therapy has been known as a promising antitumor regimen in
recent years. To propose an appropriate antitumor regimen, it
is necessary to first understand the specific conditions of
immune cell infiltration and immune activity in the TME.
Our findings showed that in UCEC, the high-risk group had a
lower degree of immune cell infiltration than the low-risk
group. Adaptive immunity is mediated by CD8-positive T cells,
a subgroup of MHC class I-restricted cells. These include cyto-
toxic T cells, which can destroy cancerous or virally infected
cells, and CD8-positive suppressor T cells, which suppress
specific forms of immunity. Cancer is primarily targeted by
CD8+ cytotoxic T lymphocytes (CTLs) [52]. TME-associated
immune-related tolerance and immunosuppression causes
CTL dysfunction and exhaustion during cancer progression,
resulting in adaptive immune resistance [52]. Innate immune
cells known as dendritic cells (DCs) infiltrate tumors and pres-
ent tumor-derived antigens to naïve T cells. Hence, DCs serve
as a major therapeutic target for cancer immunotherapy since
they play a critical role in priming antitumor immunity [53].
As the most dominant immune cell, neutrophils also play a
complex and critical role in cancer. The peripheral blood
counts of neutrophils have been found to be elevated in a
number of cancer studies. Researchers have demonstrated that
the neutrophil-to-lymphocyte ratio can serve as an indepen-
dent prognostic indicator for cancer patients [54]. Th2 cells
have been shown to mediate both pro- and antitumor effects.
Studies showed that Th2 cells are indeed involved in mediat-
ing antitumor immunity, contrary to the traditional view that
type 2 immunity inhibits these responses [55–57]. In addition,
we also found differences in parainflammation and type I IFN
response between the high- and low-risk groups, which may
suggest a potential role in TME.

In addition, we analyzed the correlation between the expres-
sion of coDEGs and immune cell infiltration or immune func-

tion, and the results showed that the negative correlation was
more than the positive correlation. The results of drug sensitiv-
ity analysis showed that the expression of coDEGs was signifi-
cantly correlated with a variety of antitumor drugs, which
provided suggestions for the selection of anticancer drugs.

Currently, several studies have reported prognostic pre-
diction models for UCEC. Ni et al. constructed a prognostic
model composed of 12 miRNAs for UCEC, which can accu-
rately predict the survival of UCEC [58]. Using redox-
related genes, Geng et al. developed a clinical outcome prog-
nostic model [59]. Compared with previous studies, our
study started with m7G-related miRNAs and included only
9 miRNAs, which had better accuracy in 1-year prognosis
prediction. And the downstream genes regulated by miR-
NAs included in the model were related to immune cell infil-
tration in the tumor microenvironment, providing a basis
for antitumor drug selection.

5. Conclusion

In conclusion, we constructed a model of nine m7G-related
miRNAs for predicting survival in UCEC patients. The
TCGA-UCEC samples were divided into high- and low-
risk groups based on the risk model, and the immune cell
infiltration and immune function of each group were
explored. Moreover, we performed functional analysis of
coDEGs and investigated the relationship between their
expression and immune activity, as well as their correlation
with anticancer drug susceptibility.
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