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Abstract

The intestinal microbiota of the preterm neonate has become a major research focus, with evidence 

emerging that the microbiota influences both short and long-term health outcomes, in the neonatal 

intensive care unit and beyond. Similar to the term microbiome, the preterm gut microbiome is 

highly influenced by diet, specifically formula and human milk use. This study aims to analyze 

next-generation products including preterm formula, human milk-oligosaccharide term formula, 

and preterm breastmilk. We used a culture-based model to differentially compare the growth 

patterns of individual bacterial strains found in the human intestine. This model probed 24 strains 

of commensal bacteria and 8 pathobiont species which have previously been found to cause sepsis 

in preterm neonates. Remarkable differences between strain growth and culture pH were noted 

after comparing models of formulas and between human milk and formula. Both formula and 

human milk supported the growth of commensal bacteria; however, the formula products but not 

human milk supported the growth of several specific pathogenic strains. Computational analysis 

revealed potential connections between long-chain fatty acid and iron uptake from formula in 

pathobiont organisms. These findings indicate that there is a unique profile of growth in response 

to human milk and formula and shed light into how the infant gut microbiota could be influenced.

Introduction

The infant gut microbiota undergoes significant fluxes in the domains of bacterial 

community structure and function during the first few years of life.1–4 Shortly after birth, 
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the intestine is colonized with facultative anaerobes, like Streptococcus, Enterococcus, 

Enterobacter, and Staphylococcus, which reduce the intestinal oxygen content and pave 

the way for strict anaerobes, like Bifidobacteria, Bacteroides, and Clostridia.5–8 Several 

factors affect the infant microbiota composition, but the dominant influencers are 

gestational age and diet. The gut microbiota of preterm infants (born before 37 weeks 

of gestation) is characterized by limited microbial diversity and delayed colonization.5, 9 

In general, there are decreased levels of commensal, obligate anaerobes and increased 

levels of facultative pathobionts.7, 10–12 Preterm infants are dominated by Enterococci, 

Staphylococci, and Enterbacteriacea (Enterobacter, Escherichia, and Klebsiella spp.) and 

exhibit a wider variation in microbial constituents when compared to term infants.5, 13–18 

Diet is another major driver of the composition of the infant gut microbiota.1 The 

intake of human milk is associated with increased Bifidobacteria abundance, while 

the intake of formula correlates with increased Escherichia, Clostridia, Bacteroides, 

and Enterobacteriaceae.8, 19–25 Although multiple studies have examined the microbial 

communities of infant stool by 16S rRNA sequencing in relationship to diet, these complex 

communities obscure which microbes are responding to milk or formula.26–28

A healthy preterm gut microbiota is supported by maternal milk rather than formula or 

banked donor human milk.27 Human milk is associated with numerous benefits to the 

preterm neonate, including lower risks of necrotizing enterocolitis, less feeding intolerance 

and better lean body mass indices.29 Studies mapping the preterm microbiota development 

are lacking. Large neonatal cohorts characterizing the stool microbiome of infants in the 

neonatal intensive care unit provide evidence of the optimal microbiome diversity and 

make-up,3, 27, 30 but these analyses are unable to draw clear associations between infant 

diet and species growth. This is due, in part, to the frequently changing enteral diet that a 

preterm neonate might receive over a short course of time. For example, an infant might 

receive mother’s own milk, donor pasteurized milk, formula, bovine or human fortification, 

and other supplements all within the course of a few weeks.28, 31, 32 Additionally, the use 

of antibiotics is prevalent. More than 75% of very low birth weight infants admitted to 

neonatal intensive care units in the United States receive antibiotics in the first days of life.33 

The goal of this study was to characterize the growth of select gut microbes present in 

the neonatal gut to determine mechanistic associations between human milk and formula. 

Since alterations in the infant gut microbiota have been linked to childhood health and 

development, understanding how individual bacteria differentially utilize whole human milk 

or formula may provide insights into which microbes are driven by diet-related changes.

Experimental

Consent and Human Milk Preparation

This study was approved by the Medical University of South Carolina Institutional Review 

Board (#103782). Consent was obtained from 3 mothers of preterm infants who were 

admitted to the Shawn Jenkin’s Hospital Neonatal Intensive Care Unit. Maternal details 

are provided in Supplemental Table 1. Mothers were educated about hygienic pumping 

techniques by hospital lactation specialists as part of standard practice. Expressed milk was 

frozen at −20°C and stored in the hospital’s nutrition management center before use, which 

Engevik et al. Page 2

Food Funct. Author manuscript; available in PMC 2023 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



strictly adheres to standard milk-handling protocols.34, 35 To eliminate the impact of natural 

human milk microbes on the experiments in the present study, milk was pasteurized directly 

before use at 72°C for 15 seconds, also known as high-temperature short-time (HTST) 

pasteurization, which also inactivates viruses and milk cells.36–39

Bacterial Culture Conditions

For culturing experiments, Bifidobacteria and Lactobacilli were selected based on their 

isolation in infant feces.40–50 Streptococci can be found in both human milk and feces51–53 

and Enterococcus and Klebsiella have also been identified in infant stool, particularly those 

born preterm.43, 54–57 Bacteria in Table 1 were grown on agar plates (MRS agar for all 

Bifidobacteria and Lactobacillus strains and BHI agar for all Streptococcus, Enterococcus, 

and Klebsiella strains) and then single colonies were used to inoculate rich media (MRS 

for Bifidobacteria and Lactobacillus species and BHI supplemented with 2% yeast extract 

and 0.2% cysteine (BHIS) for all Streptococcus Enterococcus, and Klebsiella species). 

Bacteria were grown in rich media overnight at 37°C in an anaerobic chamber (Anaerobe 

Systems, AS-150, Morgan Hill, CA). After the incubation, all bacteria were examined for 

morphology by light microscopy at 40x (Motic AE 2000, Schertz, TX) and cultures were 

then examined at OD600nm on a Spectronic 200 Spectrophotometer (Carolina Biological 

Supply Company, Burlington, NC). Sub-cultures were generated by inoculating pre-reduced 

chemically defined media (LDM4 for Bifidobacteria and Lactobacillus species and ZMB1 

Streptococcus, Enterococcus, and Klebsiella species) at an OD600nm of 0.1. To test bacterial 

growth in response to whole human milk, milk from 3 mothers of preterm infants was 

pooled, pasteurized at 72°C for 15 seconds, and introduced into bacterial cultures at 

a 1:100 dilution. Preterm formula, (Neosure Similac® 22 kcal/oz) and term formula 

with oligosaccharides (Similac® Pro-Advance with HMO, 2-Fl, 20 kcal/oz) was likewise 

introduced into bacterial cultures at a 1:100 dilution. This dilution was selected because it 

did not interfere with the optical density, yet significantly supported the growth of bacteria 

in media. Nutritional content of both preterm human milk and formula was generated from 

available references (Table 2).58, 59 Growth was monitored after anaerobic incubation at 20 

hr by measuring OD600nm. OD600nm measurements were back-calculated to standard curves 

made from each type of bacteria using the Quantum Tx Bacterial Cell Counter (Logos 

Biosystems, Annandale, VA) (see Supplemental Table 2). Each experiment was performed 

two independent times in triplicate.

pH assay

Bacterial supernatant pH was measured using a UV-Vis absorbance measurement as 

previously described.60 Briefly, a standard curve was generated of ZMB1 or LDM4 at the 

pH values 2–8 in 0.5 increments. These standards were mixed with Dulbecco’s Modified 

Eagle’s Medium (DMEM) at a ratio 1 volume bacterial media: 3 volumes DMEM. DMEM 

contains phenol red which has an isosbestic point of 470 nm (a wavelength where the light 

absorption of an indicator dye is independent of solution pH and a lambda max (λmax) of 

560 nm.) To measure pH, bacterial cultures were centrifuged to pellet bacteria and 1 volume 

of bacterial culture was added to 3 volumes DMEM and the absorbance was measured at 

470 nm and 560 nm. The ratio of these values was back-calculated to the standard curve to 

approximate pH for all cultures.
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Genome Analysis

Glycosyl hydrolase families associated with human milk oligosaccharide consumption from 

human gut microbes were examined using the Carbohydrate-Active enZYmes (CAZy) 

database (www.cazy.org) as previously described.61–64 HMO-related GH’s include: GH33, 

GH2, GH20, GH95, GH29, GH42, GH101, GH89, GH110, GH112, and GH27. Glycosyl 

hydrolase families were examined in Bifidobacteria (179 genomes representing 14 different 

species), Lactobacilli (452 genomes representing 23 different species), Streptococci (526 

genomes representing 19 different species), Enterococcus (228 genomes, representing 9 

different species), and Klebsiella (884 genomes, representing 10 species). We also identified 

bacterial transporters involved in long-chain-fatty acid (LCFA) uptake: fadL (K06076); 

iron uptake: TonB (K03832), exbB (K03561), FeoB (K04759), FeoA (K04758), ECF 

(K16787) and FepA (K19611); as well as phosphate uptake: PiT (K16322) and pstS 

(K02040) using the KEGG database (KEGG: Kyoto Encyclopedia of Genes and Genomes, 

https://www.genome.jp). KEGG IDs were input into the gene search tool of the Integrated 

Microbial Genomes (IMG) database v5.0 (http://img.jgi.doe.gov)65 and genomes were 

binned for analysis as previously described.48 Bacterial transporters were identified in the 

following pathobionts: E. faecalis (416 genomes), E. faecium (488 genomes), Enterococcus 
spp. (16 genomes), K. aerogenes (102 genomes), K. pneumoniae (1,049 genomes), and 

Klebsiella spp. (71 genomes). Bacterial transporters were also identified in the following 

commensals: B. angulatum (4 genomes), B. animalis (37 genomes), B. bifidum (33 

genomes), B. breve (66 genomes), B. dentium (7 genomes), B. longum (126 genomes), B. 
longum subsp infantis (36 genomes), Bifidobacterium spp. (10 genomes), L. acidophilus 
(23 genomes), L. johnsonii (18 genomes), L. paracasei (154 genomes), L. plantarum 
(215 genomes), L. fermentum (42 genomes), L. gasseri (15 genomes), L. delbrueckii 
(48 genomes), L. brevis (54 genomes), Lactobacillus spp. (44 genomes), S. salivarius 
(19 genomes), S. sanguinis (28 genomes), S. parasanguinis (26 genomes), S. pyogenes 
(351 genomes), S. thermophilus (34 genomes), S. mitis (41 genomes), S. pasteurianus (7 

genomes), S. oralis (27 genomes) and Streptococcus spp. (92 genomes).

Statistics

Data are presented as mean ± standard deviation (stdev). Comparisons between groups were 

made with a One-way Analysis of Variance (ANOVA), using the Holm-Sidak post-hoc test 

to determine significance between pairwise comparisons. To determine associations between 

factors, a Pearson correlation was performed and the coefficient (r) was recorded. Graphs 

and statistics were generated using GraphPad (GraphPad Software, Inc., La Jolla, CA). A 

*p < 0.05 value was considered significant as indicated by *, while n is the number of 

experiments performed.

Results

To determine which gastrointestinal microbes responded to human milk and formula, we 

systematically examined the growth of commensal and pathobiont gut and breast milk 

associated microorganisms. We inoculated a chemically defined media, LDM4, with B. 
longum subspecies infantis ATCC 15697, B. breve ATCC 15698, B. bifidum MIMB, B. 
angulatum ATCC 27535, B. animalis Bi-07, B. longum ATCC 55813, B. dentium ATCC 
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27678 and B. gallicum ATCC 20093 at an OD600nm of 0.1 and examined growth after 20 

hr. We observed that all Bifidobacteria spp. had elevated growth in response to pasteurized 

preterm human milk compared to media alone controls (Figure 1A–H). As a comparison, 

we also examined the growth of Bifidobacteria spp. in LDM4 supplemented with preterm 

infant formula or term infant formula with the human milk oligosaccharide (HMO) 2’-

Fucosyllactose (2-FL). We found that preterm formula enhanced the growth of 6 of the 

8 strains: B. infantis, B. breve, B. bifidum B. angulatum, B. animalis, and B. longum 
(Figure 1A–F). Full-term formula containing HMOs only elevated the growth of 5 strains: B. 
infantis, B. breve, B. bifidum, B. angulatum, and B. animalis (Figure 1A–D).

Lactic acid bacteria such as Bifidobacteria are known for their ability to lower the pH and 

pH can serve as a functional output of microbial growth.66 Consistent with our growth 

analysis, we found that all Bifidobacteria spp. grown with preterm milk exhibited significant 

reductions in pH (Figure 2A–H). Similarly, preterm formula was associated with reduced pH 

in 6 of the Bifidobacteria strains and full-term formula with HMOs reduced pH in 3 of the 

strains. These data indicate that the majority of Bifidobacteria spp. can grow with preterm 

milk and formula.

We observed that all Lactobacillus spp. (L. acidophilus ATCC 4796, L. johnsonii ATCC 

33200, L. paracasei ATCC 25302, L. plantarum ATCC 14917, L. fermentum ATCC 14931, 
L. gasseri ATCC 3323, L. delbrueckii ATCC 11842, and L. brevis ATCC 27303) had 

increased growth in the presence of preterm human milk and preterm formula compared 

to media controls (Figure 3A–H). Six of the 8 Lactobacillus strains had elevated growth 

with full-term formula supplemented with HMOs. In the presence of preterm milk, L. 
acidophilus, L. paracasei, L. plantarum, L fermentum, L. gasseri and L. delbrueckii 
significantly reduced the pH compared to media controls (Figure 4A–H). Although we 

observed increased growth in the presence of preterm formula, we found that only 6 of 

the strains (L. paracasei, L. fermentum, L. gasseri and L. delbrueckii) lowered the pH in 

response to preterm milk. Moreover, only 3 strains reduced the pH in media supplemented 

with formula with HMOs. These findings suggest that lactic acid production by Lactobacilli 

is influenced by multiple factors and that formula supplementation does not necessarily 

promote pH reduction.

To assess the effects of preterm milk and formula on Streptococci growth, we grew S. 
salivarius ATCC 13419, S. sanguinis ATCC 49296, S. parasanguinis ATCC 15912, S. 
thermophilus ATCC 491, S. pyogenes CB1, S. mitis ATCC 6249, S. pasteurianus ATCC 

49133, and S. oralis ATCC 35037 in another chemically defined media, ZMB1, and 

examined growth after 20 hr of incubation at OD600nm (Figure 5A–H). We found that only 2 

Streptococcus spp. grew with preterm human milk compared to media controls: S. sanguinis 
and S. parasanguinis (Figure 5B,C). Moreover, 2 strains were suppressed by preterm milk: 

S. salivarius and S. thermophilus (Figure 5A,D). Also, 3 Streptococcus strains could use 

preterm and full-term formula with HMOs to support their growth. Of the Streptococci 

examined, we found that S. pyogenes, S. mitis, S. pasteurianus and S. oralis did not respond 

in terms of growth to any dietary interventions. As members of the lactic acid bacteria 

group, Streptococci can also produce lactic acid and lower the pH.67 When we assessed 

media pH (Figure 6A–H), we found that S. sanguinis and S. parasanguinis, which had 
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improved growth with preterm milk, lowered the pH compared to media controls (Figure 

6B,C). We also found that 3 Streptococcus spp. reduced the pH in the presence of preterm 

formula and 2 strains reduced the pH in presence of full-term formula with HMOs. No 

changes in pH were observed in S. thermophilus, S. mitis, S. pasteurianus or S. oralis 
(Figure 6D,F–H). These data indicate that not all Streptococci can use human milk or 

formula to support their growth.

To address pathobiont species, we grew E. faecalis NCTC 775, E. faecium ATCC 8459, 

E. faecium NCTC 12204, K. aerogenes CB1, K. aerogenes ATCC 35029, K. pneumoniae 
ATCC 700607, K. pneumoniae ATCC 13883, and K. pneumoniae ATCC 35657 in ZMB1 

in the presence of preterm milk or formula (Figure 7A–H). Compared to commensal 

Bifidobacteria, Lactobacilli and Streptococci, the Enterococcus and Klebsiella spp. only 

nominally used preterm milk for growth. All the pathobiont strains exhibited robust growth 

with preterm formula and full-term formula harboring HMOs. The highest OD600nm values 

were largely obtained with preterm formula. Enterococcus spp. are part of the lactic acid 

bacteria group and although these species had only a minimal improvement in growth with 

preterm milk, all 3 Enterococcus spp. significantly reduced the pH in the presence of milk 

(Figure 8A–C). Reduced pH was also found in response to formula and HMO containing 

formula for all Enterococcus spp. In contrast to Enterococcus spp., Klebsiella strains had no 

effect on pH (Figure 8D–H).

Finally, we sought to determine if there was a correlation between diet (formula vs. milk) 

and microbial composition. One unique component of human milk is human milk HMOs 

(see Table 2). To degrade HMOs, bacteria must possess specific glycosyl hydrolases which 

enzymatically cleave HMOs. HMO degrading glycosyl hydrolase families include GH33, 

2, 20, 95, 29, 42, 101, 89, 110, and 27. We profiled HMO-related glycosyl hydrolase 

families using the CAZy database and filtered human gut microbes using the Integrated 

Microbial Genome Database (IMG). We identified 179 Bifidobacteria genomes (14 different 

species), 452 Lactobacilli genomes (23 species), 526 Streptococci genomes (19 species), 

228 Enterococcus genomes (9 species) and 884 Klebsiella genomes (10 species). Genome 

analysis revealed that the majority of Bifidobacteria spp. harbored multiple HMO-related 

glycosyl hydrolases, with B. bifidum and B. longum subspecies infantis exhibiting the 

largest repertoire (Figure 9A). Compared to Bifidobacteria, Lactobacilli had far fewer 

HMO-related glycosyl hydrolases (Figure 9B); although most species had GH2 and GH42. 

Streptococci had varying levels of HMO-related glycosyl hydrolases with species such 

as S. mitis, S. oralis, and S. sanguinis, which harbour the highest number of glycosyl 

hydrolase families (Figure 9C). Enterococcus and Klebsiella genomes had fewer HMO-

related glycosyl hydrolases than Bifidobacteria; with most species possessing GH2 and 

GH42. To assess whether glycosyl hydrolase profiles correlated with growth in response 

to milk or formula, we calculated the total number of HMO-related glycosyl hydrolase 

families (1–11 GHs) and correlated these values with fold change growth compared to 

media alone controls (Figure 9E–J). Regression curves revealed a correlation between 

HMO-related glycosyl hydrolases and commensal growth in human milk (*p = 0.03) 

(Figure 9E). No correlations were identified between preterm or full-term formula and 

HMO-degrading glycosyl hydrolases expression in commensal organisms (Figure 9F,H). 

Additionally, no correlations were found between the HMO-related glycosyl hydrolases in 

Engevik et al. Page 6

Food Funct. Author manuscript; available in PMC 2023 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pathobiont microbes and the consumption of human milk or formula (Figure 9H–J). These 

data indicate that HMOs contribute to the growth of commensal microbes in preterm milk, 

but that other components also are participating in the growth of certain commensal and 

pathobiont organisms.

A comparison between breast milk and formula revealed that formula has significantly 

higher levels of linoleic acid (a long-chain fatty acid), iron and phosphate (Table 2). We 

speculated that these components may be driving the growth enhancement of pathobionts. 

To address this, we examined bacterial transporters involved in the transport of long-chain-

fatty acid (fadL); iron (TonB, exbB, FeoB, FeoA, ECF and FepA) and phosphate (PiT, 

pstS) using the KEGG database and Integrated Microbial Genomes (IMG) database. 

We examined 319 Bifidobacteria genomes, 613 Lactobacilli genomes, 625 Streptococci 

genomes, 920 Enterococci genomes, and 1,222 Klebsiella genomes. We found that almost 

all Klebsiella possessed the long-chain fatty acid transporter fadL, while this gene was 

absent in Bifidobacteria, Lactobacilli, Streptococci and Enterococci (Figure 10A,B). We 

observed a similar trend for iron transporter components TonB and exbB. Some expression 

on iron transporters FeoB, FeoA and ECF were found in the commensal microbes, but in 

general, far more iron transporters were observed in pathobiont Enterococci and Klebsiella. 

No commensal microbes possessed the phosphate transporter PiT, while all K. aerogenes 
and K. pneumoiae harbored this gene. All bacteria were found to have the pstS gene. 

These data suggest that iron uptake in pathobionts may promote the growth of pathogens. 

Correlation analysis revealed a positive correlation between iron uptake related genes in 

pathobionts and growth in formula (*p = 0.03) (Figure 10C). We speculate that iron uptake 

may provide an essential nutrient for pathobiont organisms in the infant gut. Collectively, 

these data provide more targeted information on which microbes respond to human milk and 

formula.

Discussion

In this study, we sought to dissect how individual microbes respond to intact preterm milk 

or formula. We used intact diets because microbial communities do not just encounter 

single compounds in the intestinal milieu. We selected strains based on relevant clinical 

outcomes noted in the literature. We first examined Bifidobacteria; a group which dominates 

the gut of term breastfed infants and is associated with numerous health benefits including 

reducing feeding intolerance, lower rates of necrotizing enterocolitis and a lower the risk of 

asthma.24, 68 Next, we examined Lactobacilli, another lactic acid bacterial group commonly 

found in infants which is associated with decreased NEC in clinical trials.69 Streptococci 

are commonly found in human milk and can make up part of the preterm infant gut 

microbiota.51, 70, 71 This group has been associated with childhood wheezing72 and NEC.73 

The gut microbiota of preterm infants can harbor varying levels of pathobionts linked to 

NEC and late-onset sepsis such Klebsiella and Enterococcus spp.13–18

Using this approach, we found representative infant gut microbes from the genus 

Bifidobacteria and Lactobacilli exhibit robust growth in the presence of whole preterm 

human milk. This phenomenon was not observed with other genera, such as Streptococci, 

Enterococci and Klebsiella, which had minimal growth with human milk. These studies 
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support the dominance of Bifidobacteria and Lactobacilli in breast-fed infants and the high 

levels of Enterococcus and Klebsiella in formula-fed infants.26, 67, 73–75 This work can serve 

as a foundation for more complex interactions with microbial communities and diet.

The composition of breast milk is influenced by multiple factors, including the phase of 

nursing, lactation period, genetic background of the mother, maternal diet, and gestation 

length.51, 76–80 It has been shown that the breast milk from mothers who deliver full 

term infants significantly differs from the milk of mothers whose infants were delivered 

prematurely.81 Preterm human milk is higher in fat, protein, free amino acids, and sodium in 

the first few weeks, but these components decrease over subsequent weeks.81 Additionally, 

calcium is significantly lower in preterm milk than term milk and does not increase with 

time. HMO content is highly variable, but in general preterm human milk contains more 

lacto-N-tetraose and the HMOs are not consistently fucosylated.82, 83 Unfortunately, the 

HMOs of preterm milk do not become more mature over the course of lactation and it has 

been speculated that there is a failure to produce mature HMOs.83 Our data indicates that 

preterm milk is sufficient to increase the growth of all tested Bifidobacteria and Lactobacilli 
strains and does not readily promote the growth of pathobionts when strains were grown 

individually. It is difficult to decipher how these microbes behave as a community and future 

work will be needed to address how representative gut microbes respond to diet in the 

setting of defined communities. Despite these limitations, this work does support the notion 

that preterm human milk can still benefit preterm infants and supports the recommendation 

that preterm infants receive human milk.

It has been speculated that the development of the early gut microbiota is driven by 

specific dietary compounds present in human milk that support selective colonization of 

gut microbes.84 The beneficial role of breast milk on the composition of gut microbiota 

development has largely been attributed to the presence of HMOs.85 We demonstrate that 

HMO degrading glycosyl hydrolase profiles correlate with milk utilization in commensal 

microbes, but we did observe some outliers. For example, B. dentium, which only harbors 

4 HMO-glycosyl hydrolases had robust growth in response to milk, while E. faecalis, which 

also has 4 HMO-glycosyl hydrolases had limited growth in response to milk. These findings 

suggest that other factors in milk influence certain commensal microbes. Human breast milk 

comprises both macronutrients (fat, proteins, and carbohydrates), micronutrients (vitamins, 

minerals, hormones, etc.), cellular compartments, and the milk fat globule membrane 

dispersed between aqueous and colloidal phases.86 Among the macronutrients, breast milk 

contains carbohydrates such as a fructose and maltose87, 88 and we have previously shown 

that B. dentium has robust growth in response to both these carbohydrates in LDM4.89 

Therefore, it is possible that these components may contribute to the growth of B. dentium 
and other minimal HMO degrading microbes.

In this study we compared preterm formula and full-term formula supplemented with the 

HMO 2-FL with preterm human milk. The preterm formula resembled preterm human 

milk in terms of commensal growth. For example, B. infantis, B. breve, B. angulatum, B. 
animalis, B. bifidum, L. acidophilus, L. johnsonii, L. plantarum, L. fermentum, L. paracasei, 
L. gasseri, L. delbrueckii and L. brevis had the same or higher growth with preterm formula 

as they did with preterm human milk. Interestingly, the full-term formula containing 2-FL 
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in our study supported the growth of many but not all Bifidobacteria and Lactobacilli. 

Preterm formula contains higher levels of protein, vitamins, minerals, specifically calcium 

and phosphorous, compared to term infant formula and these factors may be contributing to 

the more robust growth with many of our commensal microbes. A potential issue with both 

the preterm and full-term formula was that it also promoted the growth of Enterococcus and 

Klebsiella; microbes that are associated with a dysbiotic infant gut microbiota and NEC.

A nutrient that may enhance to the growth of pathobionts in this model is iron, which in 

1.5x higher in formula than preterm human milk.90 Iron deficiency anaemia related to cow’s 

milk products and exclusive breastfeeding is prevalent, and this risk is increased due to 

low stores in the preterm infant.91 Iron in human milk is thought be highly bioavailable 

for absorption, and is tightly regulated in low concentrations, regardless of maternal iron 

status or maternal iron intake.91 Yet, iron can also selectively increase pathobiont growth 

and even augment the virulence of pathogenic bacteria such as Klebsiella pneumoniae.92 

Interestingly, iron supplementation is related to slower weight gain and head growth but 

higher psychomotor developmental tasks in a recent meta-analysis of exclusively breastfed 

infants.93 The mechanistic influences of iron on the preterm gut and microbiome are still 

unclear. Deciphering which components of breast milk that promote robust growth of 

commensal microbes -while only nominally promoting the growth of pathobionts- is the 

next step to creating customized preterm diets.

One caveat of this study is that we did not determine the secretory status of these three 

preterm mothers. This may be important because non-secretors lack of Fucosyltransferase 2 

(FUT2) and cannot produce oligosaccharides such as 2’-FL. The proportion of non-secretor 

of population is about 20%. As a result, the chances of having all non-secretary mothers 

representing our sample is <1%. We speculate that 2-Fl and other HMOs are likely present 

in our pooled preterm milk within the reference range values. We were unable to determine 

how much HMO has been added to term formula by the manufacture’s website, but likely 

is within the range of 0.2g/dL-1g/dL per a clinical trial.94‡ Future studies should include 

the secretor status of the mother’s to provide a more robust analysis of microbe-HMO 

interactions.

One of the observations of this study was that human milk resulted in bacterial fermentation 

and reductions in culture pH. Decreased bacterial pH in response to diet has been noted 

with non-structural carbohydrates95 and high concentrate diets.96 Human milk has multiple 

carbohydrates which could be used by bacteria to generate lactic acid, including lactose 

and glucose. Additionally, fermentation and lactic acid production has been demonstrated 

in response to HMOs present in milk and galacto-oligosaccharides that can be present 

in formula.97 Our data indicates that the majority of commensal Bifidobacteria and 

Lactobacillus strains could ferment preterm milk and preterm formula to effectively lower 

the pH. Reductions in pH in the gastrointestinal tract has been speculated to limit pathogen 

colonization98 and thus fermentation of milk or formula may represent an important factor in 

controlling the establishment of subsequent communities.

‡This citation references a commercially-supported study.
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Literature suggests that breast milk can serve as a reservoir for gut microbes. For example, 

Pannaraj et al. found that ~30% of the infant gut microbiota could be traced to their 

mother’s milk.99 This is consistent with other studies which found certain bacteria such 

as Streptococcus, Veillonella, Bifidobacterium, Lactobacillus, and Staphylococcus spp. 

co-occurred in mothers’ milk and their infants’ stool.100–102 These studies indicate that 

breastmilk may transfer commensal microbes and influence the infant gut microbiota 

development. In contrast to full-term infants, preterm infants are often given donor milk that 

has been pasteurized and is therefore missing the contribution of milk-associated microbes. 

In this setting, gut microbes lack the competition of natural human milk microbes and this 

may play a role in limited microbial diversity observed in preterm infants. Co-delivery of 

probiotics and diet (milk or formula) may temper this phenomenon.

The method of pasteurization used in this study simulates commercial pasteurization 

of skim/1%/2% table milk in the dairy industry. High-temperature short time (HTST) 

pasteurization has been shown to better preserve the function of milk including protecting 

bioactive ingredients and protein integrity than Holder pasteurization (62.5°C for 30 

minutes).103 By using the HTST pasteurization method, the approach may optimally have 

simulated the effect of unpasteurized maternal preterm milk on bacteria, but it may not 

necessarily reflect how banked donor milk may affect bacterial growth. Banked donor milk 

uses Holder pasteurization, generally is from mothers of term infants, and has been stored 

for much longer periods than mother’s own milk. Therefore, conclusions of these data 

should not be over-extended to banked donor milk or commercially sterilized human milk 

products.

Conclusion

The establishment of a complex intestinal microbiota during the first 1,000 days of life plays 

a crucial role in the long-term health and well-being of the individual.41, 104, 105 Premature 

infants are at a higher risk of psychomotor and metabolic disorders (obesity, type 2 diabetes, 

cardiovascular diseases) in adulthood compared to full-term infants99–101.106–108 Several 

health factors, including neurodevelopment, have been associated with infant growth rate; 

thereby raising the issue of how best to deliver proper nutrition to premature infants. Human 

milk remains the optimal enteral nutrition, and the many benefits of this “liquid gold” 

are yet to be discovered. The rapidly changing advances in preterm diets necessitate more 

sophisticated models that can simulate effects in the neonatal intestine, as new products are 

introduced. Using our in vitro model, with microbes grown individually and, in the future, 

grown together, we believe we have a tuneable model that has the potential to identify 

new strategies for manipulating bacterial communities to alter developmental trajectories. 

The approach here stands as an alternative to large ‘-omic perspectives, which are useful 

to reveal over-arching patterns of diet on systemic disease, but are unable to offer detailed 

information between specific dietary components and bacterial strains in preterm neonates. 

This study offers a basic model that crystallizes a species-specific mechanistic influence of 

infant diet on the preterm microbiome.
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Figure 1: Bifidobacteria species growth with human milk, preterm and term formula.
Bifidobacteria species A. B. longum subsp. infantis ATCC 15697, B. B. breve ATCC 15698, 

C. B. bifidum MIMB, D. B. angulatum ATCC 27535, E. B. animalis Bi-07, F. B. longum 
ATCC 55813, G. B. dentium ATCC 27678, and H. B. gallicum ATCC 20093 were grown 

anaerobically at 37°C in a chemically-defined media (LDM4) with or without pooled whole 

preterm breast milk (pooled from n=3), preterm formula or full-term formula supplemented 

with HMOs. Growth was monitored at OD600nm after 20 hr. All data are presented as 

mean ± stdev, n=3 replicates, performed 2 independent times. One-way ANOVA, using the 

Holm-Sidak post-hoc test to determine significance between pairwise comparisons; *p < 

0.05.
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Figure 2: Bifidobacteria species acidification in cultures with human milk, preterm and term 
formula.
Bifidobacteria species A. B. longum subsp. infantis ATCC 15697, B. B. breve ATCC 15698, 

C. B. bifidum MIMB, D. B. angulatum ATCC 27535, E. B. animalis Bi-07, F. B. longum 
ATCC 55813, G. B. dentium ATCC 27678, and H. B. gallicum ATCC 20093 were grown 

anaerobically at 37°C in a chemically-defined media (LDM4) with or without pooled whole 

preterm breast milk (pooled from n=3), preterm formula or full-term formula supplemented 

with HMOs. pH was monitored after 20 hr. All data are presented as mean ± stdev, n=3 

replicates, performed 2 independent times. One-way ANOVA using the Holm-Sidak post-

hoc test to determine significance between pairwise comparison; *p < 0.05.
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Figure 3: Lactobacillus species growth with human milk, preterm and term formula.
Lactobacillus species A. L. acidophilus ATCC 4796, B. L. johnsonii ATCC 33200, C. L. 
paracasei ATCC 25302, D. L. plantarum ATCC 14917, E. L. fermentum ATCC 14931, F. 
L. gasseri ATCC 3323, G. L. delbrueckii ATCC 11842, and H. L. brevis ATCC 27303 

were grown anaerobically at 37°C in a chemically-defined media (LDM4) with or without 

pooled whole preterm breast milk (pooled from n=3), preterm formula or full-term formula 

supplemented with HMOs. Growth was monitored at OD600nm after 20 hr. All data are 

presented as mean ± stdev, n=3 replicates, performed 2 independent times. One-way 

ANOVA, using the Holm-Sidak post-hoc test to determine significance between pairwise 

comparisons; *p < 0.05.
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Figure 4: Lactobacillus species acidification in cultures with human milk, preterm and term 
formula.
Lactobacillus species A. L. acidophilus ATCC 4796, B. L. johnsonii ATCC 33200, C. L. 
paracasei ATCC 25302, D. L. plantarum ATCC 14917, E. L. fermentum ATCC 14931, F. 
L. gasseri ATCC 3323, G. L. delbrueckii ATCC 11842, and H. L. brevis ATCC 27303 

were grown anaerobically at 37°C in a chemically-defined media (LDM4) with or without 

pooled whole preterm breast milk (pooled from n=3), preterm formula or full-term formula 

supplemented with HMOs. pH was monitored after 20 hr. All data are presented as mean 

± stdev, n=3 replicates, performed 2 independent times. One-way ANOVA, using the Holm-

Sidak post-hoc test to determine significance between pairwise comparisons; *p< 0.05.
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Figure 5: Streptococcus species growth with human milk, preterm and term formula.
Streptococcus species A. S. salivarius ATCC 13419, B. S. sanguinis ATCC 49296, C. S. 
parasanguinis ATCC 15912, D. S. thermophilus ATCC 491, E. S. pyogenes CB1, F. S. 
mitis ATCC 6249, G. S. pasteurianus ATCC 49133, and H. S. oralis ATCC 35037 were 

grown anaerobically at 37°C in a chemically-defined media (ZMB1) with or pooled whole 

preterm breast milk (pooled from n=3), preterm formula or full-term formula supplemented 

with HMOs. Growth was monitored at OD600nm after 20 hr. All data are presented as 

mean ± stdev, n=3 replicates, performed 2 independent times. One-way ANOVA, using the 

Holm-Sidak post-hoc test to determine significance between pairwise comparisons; *p < 

0.05.
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Figure 6: Streptococcus species acidification in cultures with human milk, preterm and term 
formula.
Streptococcus species A. S. salivarius ATCC 13419, B. S. sanguinis ATCC 49296, C. S. 
parasanguinis ATCC 15912, D. S. thermophilus ATCC 491, E. S. pyogenes CB1, F. S. mitis 
ATCC 6249, G. S. pasteurianus ATCC 49133, and H. S. oralis ATCC 35037 were grown 

anaerobically at 37°C in a chemically-defined media (ZMB1) with or without pooled whole 

preterm breast milk (pooled from n=3), preterm formula or full-term formula supplemented 

with HMOs. Growth was monitored at OD600nm after 20 hr. pH was monitored after 20 

hr. All data are presented as mean ± stdev, n=3 replicates, performed 2 independent times. 

One-way ANOVA using the Holm-Sidak post-hoc test to determine significance between 

pairwise comparisons; *p< 0.05.
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Figure 7: Enterococcus and Klebsiella species growth with human milk, preterm and term 
formula.
Pathobiont species A. Enterococcus faecalis NCTC 775, B. Enterococcus faecium 
ATCC 8459, C. Enterococcus faecium NCTC 12204, D. Klebsiella aerogenes CB1, E. 
Klebsiella aerogenes ATCC 35029, F. Klebsiella pneumoniae ATCC 700607, G. Klebsiella 
pneumoniae ATCC 13883, and H. Klebsiella pneumoniae ATCC 35657 were grown 

anaerobically at 37°C in a chemically-defined media (ZMB1) with or without pooled whole 

preterm breast milk (pooled from n=3), preterm formula or full-term formula supplemented 

with HMOs. Growth was monitored at OD600nm after 20 hr. All data are presented as 

mean ± stdev, n=3 replicates, performed 2 independent times. One-way ANOVA, using the 

Holm-Sidak post-hoc test to determine significance between pairwise comparisons; * p < 

0.05.
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Figure 8: Enterococcus and Klebsiella species acidification in cultures with human milk, preterm 
and term formula.
Pathobiont species A. Enterococcus faecalis NCTC 775, B. Enterococcus faecium 
ATCC 8459, C. Enterococcus faecium NCTC 12204, D. Klebsiella aerogenes CB1, E. 
Klebsiella aerogenes ATCC 35029, F. Klebsiella pneumoniae ATCC 700607, G. Klebsiella 
pneumoniae ATCC 13883, and H. Klebsiella pneumoniae ATCC 35657 were grown 

anaerobically at 37°C in a chemically-defined media (ZMB1) with or without pooled whole 

preterm breast milk (pooled from n=3), preterm formula or full-term formula supplemented 

with HMOs. pH was monitored after 20 hr. All data are presented as mean ± stdev, n=3 

replicates, performed 2 independent times. One-way ANOVA using the Holm-Sidak post-

hoc test to determine significance between pairwise comparisons; *p< 0.05.
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Figure 9. Heat Maps and Correlation between Growth and HMO-related Glycosyl Hydrolase 
Families.
Heat map of the percentage genomes that have a least one gene copy of Human Milk 

Oligosaccharide (HMO)-related Glycosyl hydrolase families. GH profiles were examined in 

A. Bifidobacterium, B. Lactobacillus, C. Streptococcus, and D. Enterococcus and Klebsiella 
species. Correlation analysis of the number of HMO-related GH families with the average 

fold change of growth in commensal Bifidobacterium, Lactobacillus and Streptococcus 
species in the presence of E. pooled preterm human breast milk, F. preterm formula, or G. 

HMO formula. Correlation analysis of the number of HMO-related GH families with the 

fold change of growth in pathobiont Enterococcus and Klebsiella species in the presence of 

H. human breast milk, I. preterm formula, or J. HMO formula. P values are shown in the 

figure.
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Figure 10. Heat Maps and Correlations between Growth and Long-chain Fatty Acid, Iron and 
Phosphate Transporters.
Heat map of the percentage genomes that have a least one gene copy of long-chain 

fatty acid, iron or phosphate transporters. Transporter profiles were examined in A. 

Bifidobacterium, Lactobacillus, and Streptococcus species, or B. Enterococcus and 

Klebsiella species. C. Correlation analysis of the number of iron transporters with the fold 

change of growth in the presence of formula. P values are shown in the figure.
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Table 1:

Bacterial strains and growth conditions used in this study.

Bacteria Designation Rich Media Defined Media

Bifidobacterium bifidum MIMB MRS LDM4

Bifidobacterium longum ATCC 55813 MRS LDM4

Bifidobacterium longum subsp. infantis ATCC 15697 MRS LDM4

Bifidobacterium dentium ATCC 27678 MRS LDM4

Bifidobacterium gallicum ATCC 20093 MRS LDM4

Bifidobacterium angulatum ATCC 27535 MRS LDM4

Bifidobacterium breve ATCC 15698 MRS LDM4

Bifidobacterium animalis Bi-07 MRS LDM4

Lactobacillus brevis ATCC 27303 MRS LDM4

Lactobacillus gasseri ATCC 3323 MRS LDM4

Lactobacillus acidophilus ATCC 4796 MRS LDM4

Lactobacillus plantarum ATCC 14917 MRS LDM4

Lactobacillus johnsonii ATCC 33200 MRS LDM4

Lactobacillus paracasei ATCC 25302 MRS LDM4

Lactobacillus fermentum ATCC 14931 MRS LDM4

Lactobacillus delbrueckii ATCC 11842 MRS LDM4

Streptococcus salvarius ATCC 13419 BHIS ZMB1

Streptococcus sanguinis ATCC 49296 BHIS ZMB1

Streptococcus parasanguinis ATCC 15912 BHIS ZMB1

Streptococcus thermophilus ATCC 491 BHIS ZMB1

Streptococcus mitis ATCC 6249 BHIS ZMB1

Streptococcus pasteurianus ATCC 49133 BHIS ZMB1

Streptococcus oralis ATCC 35037 BHIS ZMB1

Streptococcus pyogenes CB1 BHIS ZMB1

Enterococcus faecalis NCTC 775 BHIS ZMB1

Enterococcus faecium ATCC 8459 BHIS ZMB1

Enterococcus faecium NCTC 12204 BHIS ZMB1

Klebsiella aerogenes CB1 BHIS ZMB1

Klebsiella aerogenes ATCC 35029 BHIS ZMB1

Klebsiella pneumoniae ATCC 700607 BHIS ZMB1

Klebsiella pneumoniae ATCC 13883 BHIS ZMB1

Klebsiella pneumoniae ATCC 35657 BHIS ZMB1
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Table 2.

Nutrient comparison between milk and formula.

Macronutrients & minerals (per 100 mL) Preterm Human Milk* (Ref values51’ 
84)

Preterm formula 
Similac® Neosure®

Similac® ProAdvance with 
HMO, 2-Fl

Calories, kcal 70–80 74 68

Protein, g/dL 2.1–2.7 2.1 1.4

Fat (%) 3–4.1 4.1 3.8

Carbohydrates, g 6.7–8.5 7.5 7.1

IgA, Lactoferrin, Lysozyme g 1.3, 4–5, 3–4 - -

HMOs, g 1.5–2 - Quantity Not reported

Sodium, meq 0.6–1 1 0.7

Potassium, meq 1–1.7 2.7 1.8

Calcium, mg 25 78 53

Magnesium, mg 2–5 6.7 4.1

Chloride, meq 1–2 1.6 1.2

Phosphate, mg 9–18 46 28

Iron, mg 0.7–1.6 1.3 1.2

Zinc, mg 0.1–0.3 0.9 0.5

Manganese, mcg 3–6 7.4 3.4

Copper, mcg 20–40 89 61

Selenium, mcg 1.5–2.5 1.7 1.4

Iodine, mcg 3–17* 11 10

Vitamins (per 100mL) Preterm Human Milk (Ref 

values51, 102¥
)

Preterm formula 
Similac® Neosure®

Similac® ProAdvance with 
HMO, 2-Fl

Vitamin A, IU 100–200 260 203

Vitamin D, IU 0.4–4 52 41

Vitamin E, IU 0.4–1 3 1

Vitamin K, mcg 0.2–0.3 8 5

Thiamin (B1), mcg 22–23 130 68

Riboflavin (B2), mcg 48–58 111 101

Vitamin B6, mcg 13–31 74 41

Vitamin B12, mcg 0.06–0.1 0.3 0.2

Niacin, mcg 180–230 1450 710

Folic Acid (Folacin), m :g 8–13 19 10

Biotin, mcg 0.5 6.7 3.0

Vitamin C, mg 3.8 1 1 6

Choline, mg <0.1 12 16

Inositol, mg 22 26 16

Panthothenic Acid, mc g 250 595 304
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Fatty Acids (Per 100ml) Preterm Human Milk (Ref 
values50, 51)

Preterm formula 
Similac® Neosure®

Similac® ProAdvance with 
HMO, 2-Fl,

Linoleic Acid, mg 400–500 750 676

*
Mature and transitional human milk is defined as 30–60 days in post-partum. Term-gestation infant milk reference values were substituted for 

premature gestation milk for reference values of contents (Fe, Zn, Mn, Cu, Se, vitamins, and linoleic) acid due to lack of available references 
ranges.

**
Highly geographically dependent.

¥
Preterm milk ranges of water-soluble vitamins are highly dependent on stage of lactation, maternal intake and preterm delivery, and term-infant 

ranges were used for B1, B2, B6, B12, Niacin, Folic Acid, Biotin, Vitamin C, and Panthothenic Acid using populations from the Western countries 
and the U.S.A. Formula nutrition is listed on manufacture’s website.

Food Funct. Author manuscript; available in PMC 2023 May 23.


	Abstract
	Introduction
	Experimental
	Consent and Human Milk Preparation
	Bacterial Culture Conditions
	pH assay
	Genome Analysis
	Statistics

	Results
	Discussion
	Conclusion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Figure 8:
	Figure 9.
	Figure 10.
	Table 1:
	Table 2.

