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ABSTRACT

Long-read sequencers, such as Pacific Biosciences
(PacBio) and Oxford Nanopore Technologies (ONT)
sequencers, have improved their read length and ac-
curacy, thereby opening up unprecedented research.
Many tools and algorithms have been developed to
analyze long reads, and rapid progress in PacBio
and ONT has further accelerated their development.
Together with the development of high-throughput
sequencing technologies and their analysis tools,
many read simulators have been developed and ef-
fectively utilized. PBSIM is one of the popular long-
read simulators. In this study, we developed PB-
SIM3 with three new functions: error models for long
reads, multi-pass sequencing for high-fidelity read
simulation and transcriptome sequencing simula-
tion. Therefore, PBSIM3 is now able to meet a wide
range of long-read simulation requirements.

INTRODUCTION

Long reads, such as Pacific Biosciences (PacBio) and Ox-
ford Nanopore Technologies (ONT), have made it possible
to detect structural variants, phase haplotypes and assem-
ble genomes at high resolution (1,2). Typical read lengths
range from 10 to 50 kb for PacBio continuous long reads
(CLRs), from 12 to 24 kb for PacBio high-fidelity (HiFi)
reads and from 10 to 100 kb for ONT reads. The ONT ultra-
long reads exceed 100 kb. The long reads span most repeat
structures of the genomes, and ultralong reads, in particu-
lar, enable highly continuous genome assembly. In the anal-
ysis of variable number tandem repeats (VNTRs), the long

reads can directly determine the total length of the VNTRs,
which enables more accurate studies (3). Transcriptome se-
quencing (TS) using long reads has enabled the detection
of differences in exon composition and the splicing of com-
plex RNAs, which could improve the identification accu-
racy of isoforms (4,5). Long reads have a much higher error
rate (typically 10–15%) than short reads (typically 0.1%),
but their weaknesses have been quickly overcome by the de-
velopment of tools and algorithms. In genome assembly, hy-
brid error correction has been performed using high-quality
short reads to achieve a genome assembly with an error rate
of 0.1% or less (6). After this, similar or improved accu-
racy was achieved through error correction using only long
reads (7). PacBio’s recent HiFi reads achieved an accuracy
of 99.9% through multi-pass sequencing, and long and ac-
curate reads are expected to enable unprecedented analyses
(8,9).

Many tools and algorithms have been developed to an-
alyze long reads, and rapid progress in PacBio and ONT
technologies has further accelerated their development (10–
12). Fast algorithms for read mapping tools have been de-
veloped for short reads, and various other tools such as vari-
ant callers have also been developed. For the long reads that
followed the short reads, tools and algorithms for utilizing
long reads have been developed in a wide range of fields to
deal with their high error rate. Together with the develop-
ment of high-throughput sequencing technologies and their
analytical tools, many read simulators have been developed
and effectively utilized (13,14). In the development of tools
and algorithms for long-read sequencers, it is generally dif-
ficult to evaluate them using real data. This is because real
data that meet the necessary conditions cannot always be
prepared. Additionally, the true error information of real
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data is not easy to obtain. Therefore, simulators that gen-
erate reads with error information, such as alignments be-
tween reads and reference sequences, are useful for evaluat-
ing new tools and algorithms.

PBSIM (15) is an early developed PacBio read simula-
tor. PBSIM simulates reads based on the random error
of PacBio reads. PacBio sequencing errors are considered
stochastic (16); thus, PBSIM randomly picks a quality score
for each position in a simulated read from a frequency ta-
ble of quality scores and determines the presence and type
of error according to both the quality score and the user-
specified error ratio (substitution:insertion:deletion rates).
The nucleotide sequences are ignored in this error intro-
duction process. However, it has been reported that PacBio
reads also have error biases (or context-specific errors), al-
though they are weaker biases than that of short reads
(17,18). To simulate the error biases of PacBio reads, many
simulators have been developed to determine error patterns
from alignments between long reads and their reference
genomes. If the reference genome is identical to the genome
from which the reads are sequenced, and if we can ob-
tain accurate alignments, we should have a complete picture
of how errors occur during the sequencing process. Using
the alignments, LongLSLND (19), PaSS (20) and Badread
(21) constructed context-dependent error models to simu-
late PacBio reads, and SNaReSim (22) also simulated ONT
reads using a similar approach. It should, however, be noted
that a perfect alignment is not yet possible and the algo-
rithm and performance of the alignment tool will affect the
estimated error models, producing additional bias (20).

To perform accurate genome assembly and variant call-
ing using long reads, it is important to understand their
error biases. To develop tools and algorithms that analyze
long reads, data with accurately simulated error biases are
required. Context-dependent error models can accurately
capture the error biases, but differences in error biases be-
tween sample data were observed. In contrast, randomness-
based PBSIM cannot simulate context-dependent error bi-
ases, but the simplicity thereof makes it possible to simu-
late typical long reads. PBSIM2 (the next version of PB-
SIM) (23) also did not implement a context-dependent er-
ror model but introduced a simulation of the nonuniformity
of quality scores, which we consider to be just as important.

PBSIM3 implements the following three functions: The
first is the hidden Markov model (HMM) for errors (called
the ‘error model’), which simulates long reads, similar to the
quality score model of PBSIM2. The second is a multi-pass
sequencing simulation for PacBio Sequel HiFi reads. The
third is a simulation of TS. PBSIM2 can simulate whole-
genome sequencing (WGS) of PacBio RS II CLR and ONT
reads. PBSIM3 can simulate WGS and TS of PacBio RS II
CLR, PacBio Sequel CLR, PacBio Sequel HiFi and ONT
reads. PBSIM3 can now meet a wide range of long-read sim-
ulation requirements.

MATERIALS AND METHODS

Datasets of real long reads

We used two PacBio RS II CLR, three PacBio Sequel CLR
and four ONT real datasets (24) to develop the error models
(Supplementary Table S1).

We also used two PacBio Sequel HiFi real datasets to
characterize the HiFi reads (25) (Supplementary Table S1).
HiFi reads have a median accuracy exceeding 99.9% (1,9).
To obtain reliable error statistics of such highly accurate
HiFi reads from alignments between the reads and their ref-
erence genomes, the following errors must be removed: (i)
errors due to the difference in the cell line between reads and
their reference genome, such errors or mutations are regis-
tered in public databases such as the Genome in a Bottle
Consortium (GIAB) (26); (ii) the difference between haplo-
types, to overcome this, a haplotype-resolved assembly and
an accurate estimate of which haplotype it came from are
required; (iii) errors due to incorrect assembly of repetitive
sequences, which are difficult to accurately assemble. The
Homo sapiens CHM13 cell line has an almost homozygous
genome. The genome of this cell line was assembled by com-
bining PacBio HiFi reads and ONT ultralong reads (25).
Ultralong reads can span most repetitive sequences in the
genome, which results in high-resolution repetitive sequence
assembly. Therefore, H. sapiens CHM13 reference genomes
and reads are expected to be largely unaffected by the er-
rors described above. For other HiFi data, Escherichia coli
is a haploid, and the reference genome and reads used here
were sequenced from the same strain, E. coli K12. In addi-
tion, long reads span most repeats of the bacterial genome
(27). Therefore, the sample should be unaffected.

To characterize TS using long reads, we used two datasets
of PacBio Iso-seq HiFi reads, three datasets of ONT direct
RNA reads and two datasets of ONT direct complementary
DNA (cDNA) reads (28,29) (Supplementary Table S2).

Read alignment

To characterize the long reads of WGS, we conducted lo-
cal alignments of real reads to their reference genomes,
calculated error rates and examined error biases from the
alignment results (Supplementary Table S3). These local
alignments were executed using LAST version 1111 (30),
and the alignments were filtered using last-split (31).
lastal was executed using the score matrix trained by
last-train (32). The parameter settings are presented in
Supplementary Table S4.

To characterize the long reads of TS, we conducted lo-
cal alignments of real reads to the human transcriptome
(Ensembl GRCh38 release-104 cDNA and ncRNA (33))
(Supplementary Table S5). To accurately examine the se-
quencing bias of the transcript, we only used alignments
with >95% read coverage. If a read mapped onto multi-
ple isoforms with the same score, the isoforms were treated
equally. These local alignments were executed using Min-
imap2, version 2.17-r941 (34). The parameter settings are
presented in Supplementary Table S4.

To evaluate the simulation performance, we also con-
ducted local alignments of simulated reads, as described
above, and compared their characteristics with those of real
reads.

Generative model for errors

To construct a generative model for errors, we used an
HMM that generates observed data from hidden states that
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follow the Markov model. The error model was built us-
ing FIC-HMM (HMM with factorized information crite-
ria (35)) in the same manner as building the quality score
model of PBSIM2 (23). The training data of FIC-HMM are
alignments between long reads and their reference genomes.
By converting the match, substitution, insertion and dele-
tion on the alignment to 0, 1, 2, 3, respectively, we created
sequences of numbers and used them as training data. By
using a more accurate alignment as training data, a bet-
ter model can be constructed. However, there are several
causes of uncertainties in alignments, such as merging an
insertion and its adjacent deletion into a match or substitu-
tion, or the inability to determine the true locations of in-
sertions and deletions (INDELs) within homopolymers. In
this study, INDELs in a homopolymer were randomly rear-
ranged to reduce the bias caused by the habits of the aligner.
In our HMM, the emission probability distributions from
each hidden state are provided by a categorical distribution
whose output is a match or error type. It should be em-
phasized that the parameters in the categorical distribution
with hidden states differ from each other. In a conventional
HMM, the number of hidden states must be provided be-
forehand. This method is theoretically sound, enabling us
to train not only the parameters in the HMM but also the
number of hidden states (36). In this study, we adopted a
model whose (lower bound of) FIC is maximum among five
trials with different initial parameters because FIC-HMM
affects local optimal solutions in their training. The mod-
els were trained for individual read accuracy of each sam-
ple dataset (e.g. for 80% accuracy, training data comprised a
read group with an accuracy of 79.5–80.4%). For read accu-
racy with insufficient training data, constant-quality scores
that matched the accuracy were used.

Execution of simulators

We conducted various simulations using PBSIM3 and eval-
uated the simulated reads from various aspects. The pa-
rameter settings are presented in Supplementary Table S4.
In the multi-pass sequencing simulation, the parameter'-
-pass-numnumber of passes'was specified. Read length,
error rate and error ratio were adjusted to the values of the
real reads. The error ratio could be specified for the qual-
ity score model but not for the error model. The error ratio
could not be changed as it was built into the error model.

We also conducted simulations using Badread version
v0.2.0 and NanoSim version v3.0.0 (37) for comparison
with PBSIM3. Although both simulators offer functions for
building an error model for each real dataset, we used their
built-in models.

Nonuniformity of error

Long reads have a regional bias of error distribution within
the reads, and very low-quality regions are sometimes ob-
served (e.g. Myers’ report, https://dazzlerblog.wordpress.
com/2015/11/06/). One of the main causes is the nonuni-
formity of errors; therefore, we developed the quality score
models of PBSIM2 and showed that the models can accu-
rately simulate the nonuniformity of quality scores but not
the errors (23). In this study, we evaluated the error model of
PBSIM3 to simulate the nonuniformity of errors (Figure 1).

To measure the similarity of the nonuniformity of errors,
we used the Kullback–Leibler (KL) divergence between the
real and simulated reads (Supplementary Figure S4). For P
(real distribution) and Q (simulated distribution), the KL
divergence from Q to P is defined as

DKL(P||Q) =
∑

i

P(i ) log2
P(i )
Q(i )

.

Error bias in homopolymers

To measure the error bias in homopolymers, the homopoly-
mer length of each site in the genome was first determined.
If a site is in a region where N identical bases are continu-
ous, it is designated as N. Then, for each of the homopoly-
mer lengths, the number of errors was counted. The number
of sites with homopolymer lengths of 1–3 was overwhelm-
ingly large, and most errors occured at these sites. However,
in terms of error rate, it was found in HiFi and ONT reads
that the longer the homopolymer length, the higher the er-
ror rate (Supplementary Figures S6–S9).

Generation of consensus reads (HiFi read)

Multi-pass sequencing of subreads was simulated using PB-
SIM3. Using the PacBio BAM format data generated by
PBSIM3 as an input, ccs (version 6.0.0, https://github.com/
PacificBiosciences/ccs) was executed with default parame-
ters to generate consensus reads (HiFi reads).

RESULTS

Simulation by a generative model of errors

The quality score model used in PBSIM2 simulates the
quality scores and introduces errors based on the quality
scores. This model does not distinguish between error types
(substitution, insertion and deletion). So, it allows the users
to simulate with any ratio of error types; however, the model
cannot accurately simulate the characteristics of error types.
K-mer profiles have been widely used to simulate the char-
acteristics of error types. These profiles consist of error pat-
terns and probabilities for each k-mer, and are created from
the alignments between real reads and the reference se-
quences thereof. LongISLND (19), PaSS (20) and Badread
(21) have adopted this approach. These tools learned real
reads to create a model that included the k-mer profile and
then simulated reads using the model. Nevertheless, PB-
SIM3 adopted FIC-HMM, which was also used in PB-
SIM2, without using k-mer profiles. Our error model is se-
quence independent, whereas the k-mer profile is sequence
dependent. Several sequence-dependent errors in long reads
have been reported. For example, in ONT, there are many
INDELs in homopolymers, and the ratio of A-G/G-A in
the substitution pattern is predominant (38,39). These er-
rors are commonly observed in many ONT datasets, but
there are other dataset-specific k-mer profile characteristics
(data not shown). Therefore, a k-mer profile should be cre-
ated for each dataset as many simulators do. We prioritized
usability and took a sequence-independent approach that
could be easily used for many reference genomes but added

https://dazzlerblog.wordpress.com/2015/11/06/
https://github.com/PacificBiosciences/ccs
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Figure 1. Nonuniformity of errors for real and simulated reads. After grouping reads by their accuracy, they were segmented into 800 bp disjoint intervals,
and accuracy of each interval was computed from alignments between the reads and their reference genomes. Each graph shows the distribution of the
averaged accuracy of 800 bp intervals, where the color of the plotted lines represents read groups (e.g. Acc.78 refers to a read group with an accuracy of
77.5–78.4%). The random model randomly generates errors according to an error rate and error ratio.

the option of introducing the homopolymer bias of deletion
into the ONT reads. This is because the deletion bias is still
observed in the R10.3 chemistry (Figure 2), even though the
homopolymer bias has been improved in both the sequencer
and basecaller (40).

Nonuniformity of errors was observed in the long reads.
PBSIM2 makes it possible to simulate the nonuniformity
of quality scores but not the errors by introducing a qual-
ity score model (23). Quality scores and errors are well cor-
related; therefore, it is likely that the quality score model
can also simulate the nonuniformity of errors. In PBSIM3,
we developed error models that directly simulate the er-
rors and evaluated them for the simulation performance of
the nonuniformity of errors, as well as the quality score
models. Supplementary Figures S10 and S11 show the

emission and transition probability matrices of the error
models.

The simulation performance of each type of long read
was evaluated in terms of the nonuniformity of errors, IN-
DEL size and homopolymer bias. In all the simulations, the
total number of bases in the simulated reads was approxi-
mately 100 million. The read length and error rate were the
default values in the NanoSim simulation. In the other sim-
ulations, we set the average read length to 15 kb, the stan-
dard deviation to 15 kb and the error rate to 15%, in ref-
erence to the real read values in Supplementary Table S1.
Most of the real read error rates obtained from the align-
ment were <15%, but the error rate of alignment tended to
be lower than the true error rate (Supplementary Table S6).
Therefore, the error rate was set slightly higher.
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Figure 2. The error bias in homopolymers of ONT R10.3 reads for E. coli O127. If a site is contained in a genomic region where N identical bases are
continuous, homopolymer length is designated as N. Then, for each of the homopolymer lengths, the number of errors was counted and the error rate
calculated. ONT reads were simulated using the quality score model, error model, Badread and NanoSim. The error and quality score model were executed
with the parameter ‘--hp-del-bias 6’. The error rates were calculated from alignments between the reads and their reference genomes.

First, PacBio RS II CLR reads were simulated using the
random, quality score and error models. The nonunifor-
mity of errors was compared between the simulated and
real reads. The ‘random model’ randomly generated errors
according to the error rate and error ratio. The error ratio
was built into the error model. For the other models, the
error ratio was 6:55:39. In previous studies, the simulation
of quality score nonuniformity with the quality score model
showed a slightly worse performance at a low accuracy of
78–80% (23). Similarly, in the simulation of nonuniformity
of errors, the performance of the quality score model was
worse at a low accuracy of 82% or less (Figure 1A, Supple-
mentary Figures S1 and S4A). In contrast, the error model
exhibited a high performance for all accuracies. In the dis-
tribution of INDEL size, the quality score model can sim-
ulate real reads correctly, but the error model is slightly
larger than real reads (Supplementary Figure S5A). No ho-
mopolymer bias was observed in RS II CLR reads (Supple-
mentary Figure S6).

Second, the PacBio Sequel CLR reads were simulated us-
ing the error model and Badread, and the nonuniformity
of errors was compared between these simulated and real
reads. The error ratio was built into the error model and
Badread. Badread is a simulator that uses a k-mer profile
and shows high performance for all accuracies (Figure 1B;
Supplementary Figures S2 and S4B). The error model also
showed high performance and was comparable to Badread.
In the distribution of INDEL size, the error model can sim-
ulate a real read correctly (Supplementary Figure S5B). No
homopolymer bias was observed in Sequel CLR reads (Sup-
plementary Figure S7).

Finally, the ONT reads were simulated with the quality
score model, error model, Badread and NanoSim, and the
nonuniformity of errors was compared between these sim-
ulated and real reads. The error ratio was built into the er-
ror model, Badread and NanoSim. The quality score model
was 39:24:36. NanoSim uses an alignment-based trained
model that does not use a k-mer profile. The PBSIM3 error
model approach is similar to that of NanoSim except for the
learning method. The quality score model, error model and
Badread can accurately simulate the nonuniformity of er-
rors in all accuracies (Figure 1C, Supplementary Figures S3
and S4C). NanoSim has a narrow range of accuracy for gen-
erated reads, which is different from that of real reads. In the
distribution of INDEL size, the error model can simulate
real reads correctly, but the quality score model is slightly
smaller than real reads (Supplementary Figure S5C). ONT

reads have a deletion homopolymer bias in which the longer
homopolymer length results in a higher deletion rate (Fig-
ure 2 and Supplementary Figure S8). Badread can simulate
the bias correctly, most likely because of the k-mer profile.
NanoSim does not use the k-mer profile, but the parameter
‘-k 6’ allows the bias to be simulated. Both PBSIM3 mod-
els are sequence independent; therefore, homopolymer bias
cannot be simulated, but the parameter ‘-hp-del-bias
6’ allows the deletion homopolymer bias to be simulated
(Figure 2 and Supplementary Figure S8C). The parame-
ter specifies a deletion rate at 10-mer, where the deletion
rate at 1-mer is 1. The bias intensity from 1- to 10-mer is
proportional to the length of the homopolymer. However,
the error model can only slightly simulates the bias. In the
quality score model, the deletion rate can be changed flexi-
bly; however, in the error model, the error ratio is built into
the model, so the change is limited. When simulating ho-
mopolymer bias, a quality score model should be used.

Simulation of multi-pass sequencing

Compared with single-pass reads, there are only a few simu-
lators for multi-pass reads. PBSIM uses the random model
of errors to simulate multi-pass sequencing (15). However,
PBSIM only resembles the read length and accuracy dis-
tribution and does not incorporate the characteristics of
multi-pass sequencing. Another software, SimLoRD (41)
implements an error model that incorporates the charac-
teristics of multi-pass sequencing. HI.SIM (https:// github.
com/thegenemyers/HI.SIM) and Sim-it (42) directly simu-
late HiFi reads using sequence-dependent k-mer models.
We determined that PBSIM3 does not directly simulate
HiFi reads but only simulates the generation of CLR reads
by multi-pass sequencing. The output of PBSIM3 simula-
tion was directly input into ccs software, which generated
consensus reads. It is reasonable to expect that a better sim-
ulation of HiFi reads can be achieved by using the real con-
sensus read generation process.

Similar to CLR reads generated by single-pass sequenc-
ing, CLR reads generated by multi-pass sequencing are er-
ror prone. The error-prone reads are processed using ccs
software to generate HiFi reads with very few errors. The
simulated HiFi read must have the same error character-
istics as the real HiFi reads, namely error rate, error ratio
and high error rate in homopolymers, which have been fre-
quently reported (1,43). The error rates obtained from the
real reads and genomic sequence alignment were 0.22 and

https://%20github.com/thegenemyers/HI.SIM
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Figure 3. The error bias in homopolymers of PacBio HiFi reads. If a site is
contained in a genomic region where N identical bases are continuous, ho-
mopolymer length is designated as N. Then, for each of the homopolymer
lengths, the number of errors was counted and error rate was calculated.
The simulated reads were generated by ccs software as consensus sequences
from PacBio CLR reads simulated using the PBSIM3 quality score model.
The CLR error rate was 15%.

0.25% (Supplementary Table S3), which are consistent with
the reported error rate (1). The substitution rate was partic-
ularly low and the insertion and deletion rates were similar.

PacBio Sequel CLR reads were simulated using the ran-
dom, quality score and two error models. The number of
passes was 10. Three CLR error rates were tested: 10%,
15% and 20%. The error ratio was 22:45:33 for all data. The
length of all the reads was 15 kb. In single-pass sequenc-
ing, PBSIM3 uses a gamma distribution for read length,
whereas in multi-pass sequencing, it uses a constant length.

Table 1 and Supplementary Table S7 show that when the
number of passes is 10, CLR error rates of 10–15% can be
used to simulate HiFi reads with an error rate similar to
that of real HiFi reads. Compared to the error rate of real
HiFi reads, the deletion rate was higher for all four sim-
ulation methods. In particular, the deletion rate was high
in the two error models. For homopolymer error bias, sim-
ulated HiFi reads showed the same characteristics as real
HiFi reads, with longer homopolymer lengths resulting in
the higher error rates. However, the rate of increase in the
deletion rate of simulated HiFi reads was greater than that
of real HiFi reads (Figure 3 and Supplementary Figure S9).
HiFi read simulation was tested with numbers of passes of
5, 15 and 20, using the quality score model (Supplemen-
tary Table S8). In the simulation with five passes, the error
rate was high (0.99% for H. sapiens CHM13); notably, the

Table 1. Simulation of HiFi reads (H. sapiens CHM13)

Real or simulators CLR error Sub. Ins. Del. Total
Rate Rate Rate Rate

Real reads 0.02% 0.10% 0.13% 0.25%
Random model 10% 0.01% 0.08% 0.11% 0.20%

15% 0.02% 0.17% 0.24% 0.43%
20% 0.03% 0.31% 0.45% 0.80%

Quality score model 10% 0.01% 0.06% 0.09% 0.16%
(RS II) 15% 0.01% 0.12% 0.20% 0.34%

20% 0.03% 0.21% 0.37% 0.60%
Error model 10% 0.01% 0.12% 0.14% 0.27%
(RS II) 15% 0.01% 0.24% 0.39% 0.64%

20% 0.02% 0.48% 0.83% 1.34%
Error model 10% 0.01% 0.06% 0.17% 0.24%
(Sequel) 15% 0.01% 0.12% 0.40% 0.53%

20% 0.03% 0.17% 0.98% 1.18%

The reference genome is H. sapiens CHM13. Simulated HiFi reads were
generated by ccs software as consensus sequences from simulated CLR
reads. CLR reads were simulated with the random, quality score and er-
ror models. The error rates were obtained from the alignments between the
reads and their reference genomes.

yield rate of the consensus sequence from ccs was very low
(23.73% and 98.27% after 10 passes). The number of passes
must be changed depending on the CLR error rate, error
ratio and error rate of the HiFi read selected.

Simulation of transcriptome sequencing

There are only a few simulators for the TS. simlady is a simu-
lator for long-read RNA sequencing (44). simlady incorpo-
rates the process of 5’ RNA degradation into the simulation
of TS. Trans-NanoSim is an extension of NanoSim to TS
(45). From real reads and the alignment of real reads with
their reference genome and transcriptome, Trans-NanoSim
learns read characteristics such as read length distribution
and error profile, while simultaneously creating the expres-
sion profile. Using these as inputs, Trans-NanoSim simu-
lates the TS of ONT.

Long-read TS can generate full-length isoform reads,
which are not always possible because of cDNA or RNA
degradation or fragmentation in sample preparation (46).
The TS process from library preparation to sequencing is
complicated and remains unknown. To simulate the TS pro-
cess, we adopted a simple TS model that determines the po-
sition and length of reads on their template transcripts from
which the reads were sequenced. We conducted alignments
between real TS reads and their reference transcriptomes
(Supplementary Table S5) and observed the read start posi-
tions on their template (Figure 4A) and read length distri-
bution to template length (Figure 5A).

It has been reported that all current long-read TS are bi-
ased toward shorter reads (5) and that the read length is
considerably shorter than that of the template (4). The real
read length of the TS in Supplementary Table S2 and the
read length distribution in Figure 5A are consistent with
these previous reports. The read lengths of PacBio CLR
and ONT in WGS follow a gamma distribution (23). By
comparing the read length with the length of the templates,
the read lengths still follow the gamma distribution, as long
as the reads are sufficiently shorter than their templates
(Figure 5A, and Supplementary Figures S13A, S15A and
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Figure 4. Read start positions on their template transcripts. Reads were grouped by 1 kb by their template length. Each graph shows the distribution
of the read start positions, where colors of plotted lines represent read groups (e.g. 1 kb refers to a read group with their template length of 1–1000 bp).
The horizontal axis indicates the position of the read start positions in the total length of their templates, which was calculated by dividing the read start
position by the total length of the template; the graph is plotted in 5% increments, with the left edge of the graph showing the percentage of reads starting
exactly at the 5’ end of the template. PacBio Iso-seq (CLR read), ONT direct RNA and ONT direct cDNA were simulated using the PBSIM3 quality score
models. The Iso-seq (HiFi read) was generated by ccs software as consensus sequences from PBSIM3 outputs. The template transcript from which each
read was most likely sequenced and the read start position was obtained from alignments between the reads and their reference transcriptomes.

S17A). To simulate the read length distribution of TS, as
with WGS, read lengths are determined according to the
gamma distribution; reaching the 3’ end of the template ter-
minates the simulation.

In terms of the position of the reads on their templates,
it has reported that percentage of 5’ degraded transcript
sequenced by Iso-seq was high (47), and that in ONT di-
rect RNA sequencing, 5’ end truncations by the sequencer
can make it difficult to define transcription start sites (4).
ONT direct RNA sequencing proceeds from the 3’ end to
the 5’ end of the template, leading to biased coverage to-
ward the 3’ end of the template (12). The real read start po-
sitions on their templates in Figure 4A are consistent with
previous reports. The mismatch at the 5’ ends between reads
and templates is considered to be largely caused by cDNA
or RNA degradation and fragmentation. We adopted
Pareto distribution as the distribution of the read start
positions.

We implemented the novel TS model in PBSIM3, where
the user has to input the sequencing templates, that is, the
transcript sequences and their expression profiles, into PB-
SIM3. This information is uploaded to PBSIM3 as a tab-
delimited file. The file has a one-line-one-transcript format,
the items have a transcript ID, and the number of expres-
sions (sense), number of expressions (antisense) and nu-
cleotide sequences are provided. PBSIM3 uses the TS model
to generate a user-specified number of reads for each tem-
plate transcript.

The quality score and error models for TS are the same
as those for WGS. PacBio Iso-seq (CLR read), ONT direct
RNA and ONT direct cDNA were simulated using the qual-
ity score model. Iso-seq (HiFi read) was generated using the
ccs software as consensus sequences from the PBSIM3 out-
puts. The CLR and ONT error rates were set to 15% in all
these simulations. For PacBio Iso-seq, the number of passes
was 10 and the error ratio was 22:45:33. The average read
length was 3.6 kb and the standard deviation was 1.6 kb.
The read length in multi-pass sequencing is a constant value
in WGS, but a gamma distribution is adopted in TS. For
ONT direct RNA and cDNA, the error ratio was 39:24:36.
The average read length was 2.4 kb and the standard de-
viation was 1 kb. As shown in Figures 4 and 5, and Sup-
plementary Figures S12–S17, PBSIM3 simulated both the
read start position and the length distribution well. How-
ever, the read length distributions of ONT direct RNA and
cDNA were less accurate than that of PacBio Iso-seq. The
TS model was developed based on the estimation of tem-
plate isoforms; however, the isoform estimation is still chal-
lenging and in the process of improvement (48,49). We aim
to improve the TS model using improved isoform estima-
tion.

DISCUSSION

With the introduction of the error model, PBSIM3 can now
simulate the PacBio Sequel CLR reads. The error model
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Figure 5. Read length distribution of TS. Reads were grouped by 1 kb by their template length. Each graph shows the distribution of the read length,
where colors of plotted lines represent read groups (e.g. 1 kb refers to a read group with their template accuracy of 1–1000 bp). PacBio Iso-seq (CLR read),
ONT direct RNA and ONT direct cDNA were simulated using the PBSIM3 quality score models. The Iso-seq (HiFi read) was generated by ccs software
as consensus sequences from PBSIM3 outputs. The template transcript from which each read was most likely sequenced was obtained from alignments
between the reads and their reference genomes.

performed better than the quality score model in the PacBio
RS II CLR read simulation. However, the performance of
the quality score model is satisfactory, and the error ratio
can be changed as desired; therefore, it is more flexible than
the error model.

To simulate PacBio Sequel HiFi read, we adopted the ap-
proach of combining PBSIM3 and ccs. This approach suc-
ceeded in generating reads with the characteristics of real
reads. The advantage of this approach is that ccs version
upgrades can easily be reflected in PBSIM3. The disad-
vantage is that it requires much greater computational re-
sources than the PBSIM Sequel CLR or ONT read simula-
tion. PBSIM3 generates a large number of CLR reads as in-
termediate data by multi-pass sequencing, and the compu-
tational resources of consensus sequence generation by ccs
are added. The three models provided by PBSIM3 are ca-
pable of achieving the real error rate and error ratio of HiFi
reads. The deletion rate tends to be simulated a bit higher,
but one can simulate the desired HiFi reads by adjusting the
CLR error rate, error ratio and number of passes. The com-
bination of PBSIM3 and ccs can simulate the homopoly-
mer bias observed in HiFi reads. Furthermore, HiFi reads
are reported to have another bias at the end of dinucleotide
and trinucleotide satellites, and HI.SIM includes this bias in
its error model (https://github.com/thegenemyers/HI.SIM).
Because the analysis of repetitive sequences with long
reads has become increasingly popular (50), understand-
ing the effect of repetitive sequences on long-read sequenc-
ing is necessary. In the future, we would like to incorpo-

rate knowledge on the effects of repetitive sequences into
PBSIM3.

We created a TS model and implemented it in PBSIM3.
In this model, the read start position on the templates and
read length are determined from the template length. PB-
SIM3 can accurately simulate the real TS using this model.
However, this model does not precisely simulate the real TS
process but mimics the appearance of real TS reads. Sim-
ulation of the real TS process is a future challenge. Biases
in RNA-seq library preparation have also been reported
(51). This could affect long-read TS, and simulations of
these factors should be incorporated into PBSIM in the
future.

CONCLUSION

In this study, PBSIM3 implements three new functions.
First, we implemented error models for long reads. Error
models were constructed using FIC-HMM as well as qual-
ity score models. The error models showed a high perfor-
mance in the simulation of PacBio CLR and ONT reads.
Second, multi-pass sequencing for HiFi read simulation was
implemented. Using the CLR reads generated by PBSIM3
as input, ccs can simulate reads with the characteristics of
real HiFi reads. Third, a TS simulation was implemented.
We developed a novel TS model comprising two parts. The
first part is the determination of where to set the read start
position in a given template transcript. The second part is
the determination of read length. PBSIM3 can accurately

https://github.com/thegenemyers/HI.SIM
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simulate TS for both the read start position and read length
distribution. PBSIM3 can now meet a wide range of long-
read simulation requirements.
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