
Chen et al. 
BMC Pharmacology and Toxicology           (2022) 23:90  
https://doi.org/10.1186/s40360-022-00633-y

RESEARCH

Celecoxib activates autophagy by inhibiting 
the mTOR signaling pathway and prevents 
apoptosis in nucleus pulposus cells
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Libo Jiang1* and Hong Lin1,3* 

Abstract 

Background:  Intervertebral disc degeneration results from a variety of etiologies, including inflammation and aging. 
Degenerated intervertebral discs feature down-regulated extracellular matrix synthesis, resulting in losing their ability 
to retain water and absorb compression. Celecoxib is a well-known selective cyclooxygenase-2 inhibitor for treating 
arthritis and relieving pain. Nevertheless, the mechanism of Celecoxib for treating inflammation-related intervertebral 
disc degeneration has not yet been clarified.

Method:  Protein synthesis was analyzed by western blot. Fluorescent probes DCFH-DA and MitoSox Red detected 
reactive oxygen species and were measured by flow cytometry. The activity of the kinase pathway was evaluated by 
protein phosphorylation. Autophagy was monitored by mRFP-GFP-LC3 transfection and LC3 analysis. Mitochondrial 
apoptotic proteins were analyzed by western blot and cell membrane integrity was measured by flow cytometry. The 
autophagic gene was silenced by siRNA.

Results:  In this study, interleukin-1β stimulation reduced the synthesis of aggrecan, type I and II collagen and caused 
excessive production of reactive oxygen species. We looked for a therapeutic window of Celecoxib for nucleus pul-
posus cells to regain extracellular matrix synthesis and reduce oxidative stress. To look into nucleus pulposus cells in 
response to stimuli, enhancement of autophagy was achieved by Celecoxib, confirmed by mRFP-GFP-LC3 transfection 
and LC3 analysis. The mammalian target of rapamycin and a panel of downstream proteins responded to Celecoxib 
and propelled autophagy machinery to stabilize homeostasis. Ultimately, inhibition of autophagy by silencing 
autophagy protein 5 disrupted the protective effects of Celecoxib, culminating in apoptosis.

Conclusion:  In summary, we have demonstrated a new use for the old drug Celecoxib that treats intervertebral disc 
degeneration by enhancing autophagy in nucleus pulposus cells and opening a door for treating other degenerative 
diseases.
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Background
Intervertebral disc degeneration (IDD) is a condition 
affecting a vast population in aging societies globally. It 
is estimated to affect more than 40% of the population 
in the United States and causes 20–33% of patients to be 
unable to work [1], which costs about $100 billion every 
year due to productivity loss [2]. More importantly, IDD 

Open Access

†Weisin Chen, Miersalijiang Yasen and Hanquan Wang contributed equally to 
this work.

*Correspondence:  jiang.libo@zs-hospital.sh.cn; lin.hong1@zs-hospital.sh.cn

1 Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 
Fenglin Road/1609 Xietu Road, 200032 Shanghai, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40360-022-00633-y&domain=pdf


Page 2 of 14Chen et al. BMC Pharmacology and Toxicology           (2022) 23:90 

is closely related to other spinal diseases and contributes 
to low back pain [3].

Intervertebral discs as joints not only provide flexibility 
and mobility but also act as a cushion to bear bodyweight 
and withstand forces from outside of the body. Being able 
to absorb pressure, intervertebral discs are made of gel-
like material, which are the extracellular matrix (ECM) 
and nucleus pulposus cells (NPCs), and exchange sub-
stances only through capillaries in endplates. Aggrecan 
is the major component of proteoglycan, which com-
prises the ECM, and possesses negatively charged groups 
with the ability to retain water [4]. These physiological 
features underscore the nucleus pulposus as a pivot to 
treating intervertebral disc degneration. What’s more, 
understanding the mechanism by which NPCs respond 
to pathological circumstances is key to the treatment of 
IDD.

Normally, water-rich elastic nucleus pulposus remain 
unaffected by pressure under normal conditions. How-
ever, there are various factors that contribute to IDD, in 
which inflammation plays a major role and leads to cell 
death [5, 6]. A research has found that pro-inflamma-
tory cytokine interleukin 1β (IL-1β) expressed higher in 
degenerative intervertebral discs, and the expression of 
other members of the IL-1 family also alters in degenera-
tive discs [7]. Gorth, et al. even considered IL-1β, known 
as a major inflammatory cytokine, a hallmark of IDD [8]. 
IL-1β induces more cyclooxygenase-2 (COX-2) expres-
sion, thus forming a vicious cycle and exacerbates disc 
degeneration [9]. In patients with severe IDD and osteo-
arthritis, more than 20-fold of COX-2 expresses in carti-
lage, and subsequent prostaglandin E2 (PGE2) production 
decreased proteoglycan synthesis [10]. In addition, IL-1β 
and other inflammatory cytokines stimulate reactive oxy-
gen species (ROS) production, and COX-2 also gener-
ates ROS in the course of arachidonic peroxidation [11, 
12]. Many studies have found the links between exces-
sive ROS and disruption of biological processes, such as 
protein misfolding, malfunction of transporters on the 
cell membrane, DNA damage [13], which further led to 
apoptosis [14]. Such oxidative stress and biological effects 
contribute to the development of IDD.

So far, few agreements have been made on the treat-
ment of IDD, and the treatment is usually surgery to 
relieve symtoms. However, surgery is not a definitive 
treatment. Besides, the financial burden, and the compli-
cations should also be taken into account. Moreover, sur-
gery is not a preventive measure at the early stage of IDD. 
In a few reports, encountering inflammation by corti-
costeroids in treating degeneration was not effective and 
conclusive [15]. Remarkably, non-steroidal anti-inflam-
matory drugs are promising in treating IDD. Vaudreuil 
et  al. successfully delayed IDD progression caused by 

puncture with indomethacin [15, 16]. In addition, Su 
et al. treated porcine chondrocytes with Celecoxib (CXB) 
and found it enriched ECM components [17]. CXB has 
been widely used in treating inflammatory diseases due 
to selectively inhibiting COX-2, thus have fewer side 
effects than COX-1 inhibitors and corticosteroids while 
relieving pain [18, 19]. These findings point to selective 
COX-2 inhibitors as a novel approach. Nevertheless, 
whether and how CXB postpones the progression of IDD 
have not been studied.

Autophagy has gained attention as it is implicated in a 
plethora of diseases, such as autoimmune disease, neu-
rodegenerative disease, and cancer [20]. Autophagosome 
stabilizes the intracellular environment by degrading dys-
functional organelles and misfolded proteins in response 
to stimuli [21]. The importance of normal autophagy and 
the related proteins were found in other disease models, 
as the impaired autophagy resulted from autophagy pro-
tein 5 (Atg5) knockdown lead to protein aggregates and 
caused neurodegeneration [22]. Altogether, CXB could 
be a promising agent and autophagy should be the key to 
IDD treatment.

In this study, we investigated the pathology of IDD 
from several aspects, including ECM synthesis, ROS 
production, autophagy, and apoptosis. We hypothesize 
that CXB increases ECM components and reduces ROS 
production caused by inflammation. CXB also enhances 
autophagy via the mammalian target of the rapamycin 
(mTOR) pathway, thus preventing apoptosis.

Materials and methods
NPCs isolation and culture
The process of primary cell isolation was verified by the 
Animal Care and Use Committee of Fudan University 
(Research Ethics Committee Reference Number: 2020-
023). NPCs were harvested according to the protocol 
from Bratsman et  al. [23]. Briefly, 8-week old Sprague-
Dawley rats were euthanized with an intraperitoneal 
injection of pentobarbital. Rat vertebrae were dissected, 
and muscles were scraped off until intervertebral discs 
were exposed. After cutting open intervertebral discs, 
nucleus pulposus tissues surrounded by annulus fibrosis 
were isolated with tweezers and digested with 0.25% col-
lagenase P for at least 4  h. Primary cells in tissue mass 
were planted with high glucose DMEM containing 10% 
FBS and cultured in an incubator at 37˚C, 1% O2. Once 
cell culture reached 80% of confluency, passaging was 
performed, and passages one to three were used for the 
following experiments.

Cytotoxicity assay
For the exclusion of cell toxicity originating from CXB, a 
cytotoxicity assay was performed in advance to determine 
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proper working concentration. NPCs were seeded in a 
96-well plate and treated with agents on the next day for 
24 h. Cell Counting Kit (Yeason) was used and optical den-
sity (OD) was measured with a plate reader (FlexStation).

Western blot
Grew in 6-well plates at a density of 5 × 105, NPCs were 
subjected to treatments of IL-1β (recombinant from 
human biological source, SRP3083, Sigma) or CXB (alad-
din, c129279, approved by the manufacturer for pub-
lication). A monolayer of cell culture was treated with 
RIPA buffer supplemented with PMF and phosphatase 
inhibitors prior to protein harvest. Cell lysates were col-
lected and denatured with loading buffer (Beyotime). 
The protein of interest was separated by SDS-PAGE and 
transferred to the PVDF membrane (Merck Millipore). 
Following blocking with 5% milk, PVDF membranes were 
cropped then incubated with primary antibodies sepa-
rately for each blot at 4˚C overnight. On the second day, 
PVDF membranes were washed by TBST and incubated 
with HRP-conjugated secondary antibodies at RT for one 
hour, then washed again by TBST. ECL Western blot sub-
strate (Epizyme) was added to a PVDF membrane, and 
the signal was detected by Clinx ChemiCapture 6000. 
Protein expressions were semi-quantified by ImageJ 1.53c, 
which is free & open-source software and can be down-
loaded at https://​imagej.​nih.​gov/​ij/. The protein of interest 
amount was normalized to GAPDH for analysis [24]. The 
relative amount of LC3-I and LC3-II serves as an indica-
tor for autophagic flux, and Bafilomycin A1 (Baf A1) was 
applied to inhibit autolysosome formation for unmasking 
faster LC3-II degradation with autophagy [25]. All anti-
bodies were applied at a final concentration of 1/1000. 
More information about antibodies used are as follows: 
β-Actin (AF5003), Bcl-2 (AF6285), LC3B (AL221), Bec-
lin-1 (AF5123) from Beyotime. HRP-conjugated Affin-
ipure Goat Anti-Rabbit IgG (H + L) (Proteintech Cat# 
SA00001-2, RRID:AB_2722564), GAPDH (Proteintech 
Cat# 10494-1-AP, RRID:AB_2263076), Collagen Type 
I(Proteintech Cat# 14695-1-AP, RRID:AB_2082037), 
Collagen Type II (Proteintech Cat# 28459-1-AP, 
RRID:AB_2881147), Aggrecan (Proteintech Cat# 13880-
1-AP, RRID:AB_2722780), ATG5 (Proteintech Cat# 
66744-1-Ig, RRID:AB_2882092). Phospho-mTOR (Cell 
Signaling Technology Cat# 2971, RRID:AB_330970), 
mTOR (Cell Signaling Technology Cat# 2983, 
RRID:AB_2105622), Phospho-Akt (Cell Signaling Tech-
nology Cat# 4060, RRID:AB_2315049), Akt (pan) (Cell 
Signaling Technology Cat# 4691, RRID:AB_915783), 
Phspho-S6 Ribosomal Protein (Cell Signaling Technol-
ogy Cat# 4858, RRID:AB_916156), S6 Ribosomal Protein 
(Cell Signaling Technology Cat# 2217, RRID:AB_331355), 
Phospho-4E-BP1 (Cell Signaling Technology Cat# 2855, 

RRID:AB_560835), 4E-BP1 (Cell Signaling Technology 
Cat# 9452, RRID:AB_331692), Caspase-9 (Cell Signal-
ing Technology Cat# 9508, RRID:AB_2068620), Bax (Cell 
Signaling Technology Cat# 5023, RRID:AB_10557411).

Intracellular and mitochondrial ROS assay by Microscopy 
and Flow Cytometry
After removal of culture medium and washing with PBS, 
NPCs were labeled with DCFH-DA (Sigma) and incu-
bated at 37˚C, which is oxidized to DCF intracellularly 
and emits fluorescence. Morphology and intensity of fluo-
rescence correspond to hydroxyl, peroxyl, and other reac-
tive oxygen species activity in cells. Images of cells were 
taken by Olympus DP74. The technique for staining intra-
cellular ROS for cytometry analysis is the same as fluores-
cence microscopy. After labeling, NPCs were trypsinized 
and resuspended in Falcon round-bottom tubes at a den-
sity of 3 × 106. Ten thousand events were collected for 
each sample, and the mean fluorescence intensity (MFI) 
was calculated by Flowjo X for further analysis.

siRNA transfection
NPCs were seeded in a 6-well plate the day before trans-
fection. On the next day, Lipofectamine 3000 transfec-
tion reagent (Thermofisher) and Opti-MEM Reduced 
Serum Medium (Thermofisher) were used following the 
manufacturer’s protocol. NPCs were transfected with 
autophagy protein 5 (Atg5) siRNA purchased from Ribo-
Bio company at a concentration of 50nM or negative con-
trol for 24 h. After transfection, NPCs were subjected to 
different treatments for further analysis. The efficiency 
of siRNA interference and exclusion of off-target effects 
were confirmed with one scrambled and two targeting 
sequences by western blot [26].

Autophagy tandem sensor mRFP‑GFP‑LC3 transfection
NPCs were seeded in a 24-well plate at a density of 
3 × 105 the day before transfection. When confluency 
reached 50%, Autophagy Tandem Sensor mRFP-GFP-
GFP (HANBIO) were added to each well at 50 multiplic-
ity of infection (MOI), which was optimized by titration. 
After transfection, NPCs were subjected to different 
treatments for 24 h. Green/red puncta were viewed, and 
images were captured by Olympus DP72. Images were 
analyzed and merged with ImageJ 1.53c.

YO‑PRO‑1/PI apoptosis assay
NPCs were seeded in 12-well plates and subjected to the 
indicated treatments. The culture medium was removed 
and stained with YO-PRO-1 and Propidium iodide (Beyo-
time) at 37˚C for 30  min. Staining buffer was removed, 
then NPCs were washed with PBS twice, disassociated with 
trypsin-EDTA, then collected in round-bottom tubes. Next, 

https://imagej.nih.gov/ij/
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NPCs were centrifuged and washed, then resuspended in 
PBS with 5% FBS. Ten thousand events were recorded for 
each sample, and data were analyzed by Flowjo X.

Statistical analysis
All the experiments were performed at least three times. 
The data were presented as mean with standard devia-
tion. Graphs were made by GraphPad Prism 9. The 
symmetry and shape of histogram and boxplot and Shap-
iro-Wilk test were used to assess the normal distribution. 
Statistical significance was determined by either Stu-
dent’s t-test or ANOVA with Tukey-Kramer’s post hoc 
test. Statistical analysis was performed with SPSS 28.0.1. 
The P-value less than 0.05 was considered significant.

Results
CXB restored ECM synthesis suppressed by IL‑1β in dosage 
and timely manner
Before studying the effects of IL-1β and CXB (Fig.  1  A) 
on ECM synthesis, we screened various concentrations 
for proper ones (Fig.  1B). The cytotoxicity of IL-1β was 
non-significant below 10 (ng/ml). The cytotoxicity of 
CXB increased slightly at higher concentrations, but it 
was bearable to NPCs at lower concentrations. Increas-
ing IL-1β concentrations were associated with a reduction 
in aggrecan, type I and II collagen, which are major com-
ponents of ECM. At 10 (ng/ml) of IL-1β, ECM decreased 
by more than 50% (Fig.  1  C, D). Next, we counteracted 
inflammation by applying various concentrations of CXB 
combined with 10 ng/ml of IL-1β to see how it affected 
protein synthesis. The adverse effects on NPCs were 
relieved, as aggrecan, type I and II collagen expressions 
improved (Fig. 1E, F). The effects on NPCs were studied 
by treating them for 24 to 72 h with 10 µM of CXB. As the 
treatment duration increased, ECM synthesized by NPCs 
also increased (Fig. 1G, H). We found that type II collagen 
was affected more by IL-1β stimulation and CXB inter-
vention. However, the ECM synthesis returned to a low 
level if the concentration of CXB was way too high.

Intracellular and mitochondrial ROS generation 
was induced by IL‑1β and suppressed by CXB
To distinguish the source and composition of ROS, we chose 
DCFH-DA as it is transformed by esterase and reacts with a 

variety of ROS. We also utilized a novel probe MitoSOX Red 
which only detects superoxide in mitochondria [27]. After 
different treatments of IL-1β and CXB, we examined intra-
cellular and mitochondrial oxidative stress simultaneously by 
DCFH-DA and MitoSOX Red. As CXB was added to IL-1β 
treated NPCs, the green fluorescence brightness decreased, 
as did the red fluorescence produced by MitoSOX Red 
(Fig. 2 A). Flow cytometry was used to find out whether CXB 
alleviated oxidative stress by measuring the intensity of more 
cells at once. The results of flow cytometry for treating NPCs 
with different concentrations of CXB were consistent with 
fluorescence microscopy (Fig. 2B, C). Since ROS balance is 
dynamic progress rather than a fixed value, we treated NPCs 
with CXB for different periods. Interestingly, CXB demon-
strated ROS suppressing effect that reached its peak at 24 h 
(Fig. 2D, E). These results showed that IL-1β caused abnor-
mal electron transport as more ROS were created, and it was 
relieved by the anti-inflammatory effect of CXB.

Autophagosome formation was up‑regulated by CXB 
evidenced by mRFP‑GFP‑LC3 and western blot
Given that protein synthesis and oxidative stress have 
changed in inflamed NPCs, we reasoned that autophagy 
plays a major role in homeostasis and counteracts 
inflammation. To monitor autophagy formation in 
real-time, we transfected NPCs with Autophagy Sen-
sor mRFP-GFP-LC3. Optimal MOI for transfection was 
verified by titration (Fig.  3  A). Compared to the con-
trol group, yellow puncta in the IL-1β group increased 
slightly, indicating that autophagosome formed more 
when treated with IL-1β. However, yellow puncta grew 
tremendously when concentrations of CXB treated NPCs 
with IL-1β (Fig. 3B) and quantified (Fig. 3 C). Autophagy 
requires a few experiments to validate and complement 
each other’s results. To do so, we analyzed autophagic 
flux by measuring LC3-I and LC3-II. When NPCs were 
being treated with increasing concentrations of CXB, the 
ratio of LC3-II to LC3-I also rised, indicating enhance-
ment of autophagic flux under IL-1β. Opposing to LC3, 
p62 decreases by autophagic degradation (Fig.  4  A, B). 
Furthermore, we compared autophagic flux between 
samples by inhibiting the fusion of autophagosome and 
lysosome with Bafilomycin A1 (Fig. 4 C, D) [28]. LC3-II 
to LC3-I ratio increased in NPCs treated with CXB com-
bining IL-1β, and Baf A1 blocked the autophagic degra-
dation, evidenced by even more of LC3-II.

(See figure on next page.)
Fig. 1  IL-1β inhibited ECM synthesis and was restored by CXB in a dose and time-dependent manner in NPCs. A Chemical formula and structure 
of CXB provided by the manufacturer. B Cytotoxicity assay of IL-1β and CXB. C, D Expression of aggrecan, type I and II collagen decreased as the 
concentration of IL-1β increased. E, F Treating with CXB for 24 h restored ECM synthesis in a dose-dependent manner. G, H NPCs pre-treated with 
10 µM CXB for 24, 48, 72 h, and treated with IL-1β for 24 h enhanced ECM synthesis in a time-dependent manner. The grouping of blots were 
cropped from different parts of different blots. Data are represented as mean with SD of more than three repeats, performed in triplicates. *P ≤ 0.05, 
**P ≤ 0.01, *** P ≤ 0.001
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Fig. 1  (See legend on previous page.)
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mTOR signaling pathway facilitated autophagy in response 
to CXB
In search of the mechanism that CXB regained ECM 
synthesis and reduced ROS production by autophagy, 
we focused on kinases. In response to environmen-
tal cues, such as starvation and stimuli, the mTOR 

pathway regulates cell growth and survival, which 
has become our primary concern [29]. Therefore, we 
sought to clarify how CXB affects mTOR. This was 
done by using RAPA to examine mTOR and down-
stream molecules’ activity relating to survival and 
apoptosis. We performed western blot and analyzed 

Fig. 2  CXB reduced intracellular ROS and mitochondrial ROS production in NPCs. A Representative images of NPCs treated with IL-1β alone or 
with 2 µM or 10 µM CXB for 24 h and stained for intracellular ROS and mitochondrial ROS by DCFH-DA and MitoSOX Red at 37˚C, 30 min. B, C CXB 
reduced intracellular ROS and mitochondrial ROS production at higher concentrations. D, E 10 µM CXB reduced intracellular ROS and mitochondrial 
ROS production significantly at 24 h. Flow cytometry analysis was calculated as mean fluorescence intensity (MFI). Data were represented as mean 
with SD. Scale Bars, 200 μm. *P ≤ 0.05, **P ≤ 0.01, *** P ≤ 0.001
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multiple downstream proteins of mTOR signaling 
to investigate how they work together to promote 
autophagy and other functions. We found that CXB 
inhibited mTOR when NPCs were stimulated by IL-1β, 
and this effect was confirmed by Rapamycin (RAPA) 
(Fig.  5  A, B). In the contrast, protein kinase B (Akt) 
was upregulated and unchanged by RAPA (Fig.  5  C). 
The downstream ribosomal protein S6 (rpS6) was also 
downregulated to a greater degree (Fig. 5D). 4E-bind-
ing protein-1 (4E-BP1) is another downstream element 
of mTOR. In eukaryotic cells, 4E-BP1 binds to eukary-
otic initiation factor 4E (eIF4E) that initiates mRNA 

translation. In response to mTOR, 4E-BP1 (Fig.  5E) 
was dephosphorylated, thus associated with eIF4E and 
inhibited cap-dependent translation [30]. These results 
showed that mTOR activity and its downstream effec-
tors, mediated autophagy which was induced by CXB.

Autophagy prevents apoptosis and inhibition of ATG5 lead 
to apoptosis
Concerning findings in autophagy, we examined if 
CXB treatment upon autophagy exhibits anti-apop-
totic and pro-survival effects by Atg5 siRNA silenc-
ing. Firstly, NPCs were transfected with Atg5 siRNA at 

Fig. 3  CXB enhanced autophagy in NPCs transfected with mRFP-GFP-LC3. A MOI titration assay for the optimal transfection. B Representative 
images and numbers of puncta of NPCs transfected with mRFP-GFP-LC3 for 6 h and replaced with fresh culture medium and subjected to IL-1β 
alone or with 2 µM or 10 µM CXB. Yellow puncta indicate autophagosome formation and were quantified (C). Each experiment was repeated three 
times. Scale bars for MOI titration, 200 μm. Scale Bars for autophagy, 30 μm
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50 nM for 24  h before subjecting to IL-1β and CXB. 
Knockdown of Atg5 translation to 40% was verified by 
western blot (Fig.  6  A). Atg5 silencing solely doesn’t 
lead to apoptosis of nucleus pulposus cells [26, 31]. 
After 24  h of indicated treatment, cleaved caspase-9, 
B-cell lymphoma 2 (Bcl-2), BCL2 Associated X (Bax) 
were analyzed by western blot. In NPCs treated with 

IL-1β alone, pro-apoptotic protein cleaved caspase-9 
and Bax were relatively higher than NPCs treated with 
10 µM combining IL-1β. On the contrary, pro-survival 
protein Bcl-2 was the highest in NPCs treated with 
CXB and IL-1β among the others (Fig.  6B-E). Apop-
tosis was monitored in NPCs by YO-PRO-1 and PI 
as disruption of the cell membrane increased their 

Fig. 4  CXB enhanced autophagy in a dose-dependent manner. A, B NPCs were treated with IL-1β alone or with 0.2, 2, 5, 10 µM of CXB and 
analyzed with LC3-II/LC3-I, p62, ATG5, and Beclin-1. C, D NPCs were treated with IL-1β alone or with 10 µM CXB. Furthermore, 200nM Baf A1 was 
added to confirm autophagosome enhancement by inhibiting autophagosome formation. The grouping of blots were cropped from different parts 
of different blots. Data were represented as mean with SD. *P ≤ 0.05, **P ≤ 0.01, *** P ≤ 0.001
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diffusion. As shown in (Fig.  6  F, G), the differences 
between the treatment with IL-1β or CXB were not 
significant. However, inhibition of autophagy in NPCs 
lead to significant apoptosis. These results suggest the 
anti-apoptotic effect of CXB by autophagy enhance-
ment. Furthermore, inhibition of autophagy by Atg5 
lead to significant apoptosis.

Discussion
Our study found that IL-1β, as an inflammatory 
cytokine, affected ECM synthesis and ROS produc-
tion, which contributed to NPC degeneration. CXB 

reversed the deleterious effect of IL-1β by modulating 
autophagy. The mTOR signaling pathway was the prin-
cipal regulator upon activating autophagy and main-
tained NPCs homeostasis. Autophagy was found to be 
a critical role in promoting cell survival and viability 
by reducing apoptotic proteins and retaining cell mem-
brane integrity.

We noticed that major ECM proteins, which correlates 
to NPCs function and water retention, were reduced 
by IL-1β stimulation. It was proposed that overactive 
matrix metalloproteinases (MMP) induced by IL-1β 
lead to the structural change of intervertebral discs [26]. 

Fig. 5  CXB inhibited mTOR signaling pathway and downstream molecules. A-E NPCs were treated with IL-1β alone or with 10 µM CXB. 200 nM 
RAPA was added in addition to IL-1β and CXB as a positive control. Phosphorylation of mTOR, Akt, rpS6, and 4E-BP1 were analyzed for activity 
relating to autophagy, cell growth, and mRNA translation. The grouping of blots were cropped from different parts of different blots. Data were 
represented as mean with SD. *P ≤ 0.05, **P ≤ 0.01, *** P ≤ 0.001

Fig. 6  CXB has protective effects on IL-1β treated NPCs, and inhibition of autophagy leads to apoptosis. A Atg5 silencing and autophagy inhibition 
was evaluated by two different sequences of siRNA. B-E NPCs were treated with IL-1β, 10 µM CXB, or with inhibited autophagy. Pro-survival protein 
Bcl-2 and pro-apoptotic protein cleaved caspase-9, Bax were analyzed by Western blot. The grouping of blots were cropped from different parts of 
different blots. F, G For apoptosis analysis, NPCs were treated with IL-1β, 10 µM CXB, or inhibited with autophagy, then stained with YO-PRO-1/PI for 
FACS. Values in dot plots were represented in percentage. Data are represented as mean with SD of three repeats. *P ≤ 0.05, **P ≤ 0.01, *** P ≤ 0.001

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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Furthermore, IL-1β promotes blood vessel and nerve 
ingrowth, followed by leukocyte infiltration and pain 
(35). In addition to IL-1β, other inflammatory cytokines 
including IL-6, IL-17, and TNF were also characterized 
in IDD. The much higher expression of IL-1β among the 
others justifies its usage as a stimulator and the results 
that came out are representative (33, 34). At low and 
medium concentrations with a longer duration of treat-
ment, CXB regained protein synthesis by NPCs, suggest-
ing an overall positive effect. Mastbergen et al. found that 
CXB enhanced proteoglycan synthesis rather than the 
nonselective cyclooxygenase inhibitor Indomethacin in 
arthritic human cartilage culture, supporting ECM pro-
duction is benefited by selectively inhibiting COX-2 [32].

We found that intracellular ROS increased slightly at a 
lower CXB concentration and decreased significantly at 
higher CXB concentrations. Unexpectedly, CXB takes 
a considerable amount of time to reduce ROS levels. 
Unlike intracellular ROS, mitochondrial ROS decreased 
more at every higher CXB concentration.

IL-1β and CXB might change ROS catalysis of the 
superoxide dismutase (SOD) to a different exent in the 
cytosol and mitochondira, and result in a discrepancy 
between consequent intracellular and mitochondrial 
ROS [33, 34]. It was found that CXB affects ROS pro-
duction variably in several studies, and altered mito-
chondrial function in a different context should be 
responsible for the difference [35, 36]. Mitochondria are 
the primary sources of ROS, while pathological factors 
such as inflammation and hypoxia affect complex II of 
the mitochondrial respiratory chain and NADPH oxidase 
(NOX) activity. In accelerated aging mice, mitochondria-
derived ROS was identified to reduce proteoglycan syn-
thesis [37]. Since CXB reduced mitochondrial ROS, it has 
the potential in treating ROS-related diseases [38, 39].

Autophagy was characterized in the progression of 
IDD, and the expression of autophagy-related genes are 
responsive to IL-1β stimulation [40]. CXB was proven to 
activate autophagy in several cancer cell lines and hepat-
ocytes [41, 42]. In our study, CXB induced numerous 
autophagic puncta in NPCs, and LC3-II to LC3-I ratio 
increased consecutively with every higher CXB concen-
tration, suggesting autophagy of NPCs responded well to 
CXB. What’s more, misinterpretation of LC3 analysis was 
ruled out by blocking autophagosome-lysosome fusion, 
which degrades LC3-II. Other alternative autophagy 
indicators, including ATG5 and Beclin-1, were also com-
patible with LC3 analysis, indicating canonical pathway 
of autophagy [43]. Concentrations of CXB for inducing 
autophagy are different in several studies. In our study, 
we used lower concentrations to induce autophagy, as 
higher concentrations are not protective in terms of ECM 
production. In contrast to elevated expression of COX-2 

and autophagy in NPCs, cancer cells are less sensitive to 
CXB without IL-1β stimulation in other studies, [41, 42]. 
Since CXB pertaining to autophagy in IDD has not been 
studied to date, our work described the interplay between 
CXB and autophagy for the first time.

The mTOR detects environmental stimuli and regu-
lates autophagy by UNC-51-like kinase 1 (ULK1) and 
Beclin-1. It also regulates protein synthesis by rpS6 and 
cap-dependent translation by 4E-BP1 [30, 44]. In our 
study, CXB moderately modulated mTOR activity, fol-
lowed by the downstream effectors rpS6 and 4E-BP1. In 
addition to the mTOR phosphorylation [45, 46], other 
proteins including p53 and Bcl-2 also take part in CXB-
induced autophagy [41, 47]. More specifically, mTOR 
regulated autophagy by forming a protein complex with 
the regulatory-associated protein of mTOR (RAPTOR) as 
mammalian target of rapamycin complex 1 (mTORC1). 
Specifically, selective inhibition of RAPTOR within 
mTORC1 rather than mTORC2 activates autophagy with 
protective effects [48]. In addition to CXB taking effects 
at mTORC1, inhibition of downstream ribosomal protein 
S6 kinase beta-1 (p70/S6K) by anti-inflammatory drugs 
A771726 enhances autophagy as well [49]. Moreover, 
tuberous sclerosis complex (TSC) is another potential 
target as an upstream regulator of mTORC1 for enhanc-
ing autophagy [50]. All the findings revolve around 
mTORC1 as a promising target for autophagy enhance-
ment therapy under various conditions. However, thera-
pies that aim to modulate protein kinases raise other 
concerns, as many kinases cowork with other proteins 
and regulate a plethora of effectors, of which the inhibi-
tion leads to side effects. For example, RAPA prevents 
atherosclerosis by inhibiting mTORC1, it also leads to 
dyslipidemia by the concurrent inhibition of mTORC2 
in the liver [51]. Thus, more specific targets than kinases 
are of utmost importance for fewer adverse effects while 
modulating autophagy. Nevertheless, this study is a proof 
of concept that CXB dephosphorylates mTOR signaling 
pathway and activates autophagy.

We applied siRNA to inhibit autophagy and excluded 
the off-target effect, rather than using 3-Methyladenine 
(3-MA) due to low solubility and interference in normal 
cell activity [52]. ATG5 participates in autophagosome 
membrane formation and knockdown of ATG5 fur-
ther leads to diversified consequences regarding degen-
eration, autoinflammatory diseases, and compromised 
immune system in mice [26, 53, 54]. Given its critical role 
in normal health, ATG5 is an ideal protein for investigat-
ing autophagy in apoptosis. CXB protected NPCs from 
IL-1β stimulation, and without normal autophagy, Bcl-2, 
cleaved caspase-9, and Bax mediated mitochondrial apop-
tosis [55]. Interestingly, the interaction of Bcl-2 and Bec-
lin-1 as autophagy regulators have been reported [41, 56]. 
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What role does Bcl-2 play in NPCs’ autophagy induced by 
CXB needs more experiments to clarify. In addition, cell 
membrane integrity was also disrupted if autophagy was 
blocked, in consistent with mitochondrial apoptosis in 
our study. Not only apoptosis, ATG5 and autophagy block 
also play an critical role in senescence [31]. Together, 
autophagy and ATG5 are crucial to apoptosis and other 
functional characteristics of NPCs and further contribute 
to the development of IDD.

For the entire study, only rat NPCs were used, so clini-
cal relevance was limited. NPC phenotypes were gradu-
ally lost by more passages, although we managed to use 
early passages. In the end, we found another approach for 
ameliorating NPCs degeneration in treating IDD rather 
than simply relieving pain. In hindsight, we look for-
ward to performing in vivo studies and evaluations in the 
human intervertebral disc.

Conclusion
The inflammation induced by IL-1β interfered with 
ECM components, including aggrecan, type I and II col-
lagen. CXB restored ECM components in a dose and 
timely-dependent manner. CXB also suppressed intracel-
lular and mitochondrial ROS production in a dose and 
time-dependent manner. CXB significantly enhanced 
autophagy, which was carried out by modulating the 
mTOR signaling pathway and downstream effectors, rpS6, 
and 4E-BP1. The ATG5-mediated autophagy is crucial in 
preventing apoptosis. In summary, CXB demonstrated 
protective effects by enhancing autophagy on NPCs. More 
importantly, autophagy activated by CXB offers a novel 
strategy in treating other degenerative diseases.
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