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Abstract 

Background:  Epigenome-wide association studies (EWAS) have helped to define the associations between DNA 
methylation and many clinicopathologic and developmental traits. Since DNA methylation is affected by genetic 
variation at certain loci, EWAS associations may be potentially influenced by genetic effects. However, a formal 
assessment of the value of incorporating genetic variation in EWAS evaluations is lacking especially for multiethnic 
populations.

Methods:  Using single nucleotide polymorphism (SNP) from Illumina Omni Express or Affymetrix PMDA arrays and 
DNA methylation data from the Illumina 450 K or EPIC array from 1638 newborns of diverse genetic ancestries, we 
generated DNA methylation quantitative trait loci (mQTL) databases for both array types. We then investigated asso-
ciations between neonatal DNA methylation and birthweight (incorporating gestational age) using EWAS modeling, 
and reported how EWAS results were influenced by controlling for mQTLs.

Results:  For CpGs on the 450 K array, an average of 15.4% CpGs were assigned as mQTLs, while on the EPIC array, 
23.0% CpGs were matched to mQTLs (adjusted P value < 0.05). The CpGs associated with SNPs were enriched in the 
CpG island shore regions. Correcting for mQTLs in the EWAS model for birthweight helped to increase significance 
levels for top hits. For CpGs overlapping genes associated with birthweight-related pathways (nutrition metabolism, 
biosynthesis, for example), accounting for mQTLs changed their regression coefficients more dramatically (> 20%) 
than for other random CpGs.

Conclusion:  DNA methylation levels at circa 20% CpGs in the genome were affected by common SNP genotypes. 
EWAS model fit significantly improved when taking these genetic effects into consideration. Genetic effects were 
stronger on CpGs overlapping genetic elements associated with control of gene expression.

Keywords:  DNA methylation quantitative trait loci (mQTL), DNA methylation, Epigenome-wide association analysis 
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Background
Epigenome-wide association studies (EWAS) examine 
the relationship between DNA methylation at individual 
CpG sites throughout the genome and demographic, 
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environmental, or disease characteristics. DNA meth-
ylation is quantified as the fraction of site-specific CpGs 
that are methylated within a tissue, for example, blood, 
and typically using Illumina array methodology. While 
DNA methylation level is a continuous phenotype, its 
status is primarily a reflection of gene expression control 
within a particular tissue. DNA methylation may, how-
ever, be partially or completely controlled by neighboring 
genetic factors or polymorphisms, or be itself polymor-
phic. When these polymorphisms exist within the probes 
used for measurement, the DNA methylation assay may 
fail, leading to aberrant data—lists of such CpG sites have 
been published and these are usually filtered out before 
the analysis phase [1, 2]. Genetic effects are not limited 
to such probes, as genetic polymorphisms can have pro-
found cis or trans impacts on DNA methylation even at a 
distance—an example would be several of the CpG sites 
that are known to be strongly impacted by tobacco expo-
sure [3]. Interestingly, some of these are also impacted 
by SNPs proximal to their sites as cis methyl quantita-
tive trait loci [4]. SNPs may both distort the environmen-
tal association (e.g., GFI1 CpG and tobacco) or simply 
introduce noise without being directly associated with 
the environment (e.g., AHRR and tobacco) [4]. In either 
case, the lack of accounting for the genetic effect leads to 
measurement error in associations between environmen-
tal and phenotypic characteristics and DNA methylation 
which should be accounted for in EWAS analysis. Ulti-
mately, both genetic and environmental effects need to 
be incorporated to understand epigenetic variation asso-
ciated with environmental, dietary, and other factors.

Birthweight is related to several factors, including ges-
tational age, parity, fetal sex, maternal height, age, and 

ethnicity [5, 6]. Studies have also shown recurrent DNA 
methylation variations associated with birthweight cor-
rected for gestational age. Indeed, EWAS studies have 
established a large set (914 CpG sites) of CpG sites vali-
dated over a large meta-analysis of Illumina HM450K 
data in neonates [7]. Birthweight is also known to have 
a strong polygenic etiology, with over 430 birthweight-
associated SNPs discovered in genome-wide associa-
tion studies [8, 9]. Here, we consider DNA methylation 
variation at birth in relation to birthweight variation in 
a California population of non-Latino White and Latino 
ethnicities, while accounting for DNA methylation quan-
titative trait loci (mQTL).

Results
Overview of scanned mQTLs in different datasets
See Methods section and Additional file 4: Table S1 for a 
description of datasets and generation of array data used 
in this study. Briefly, four datasets each containing non-
Latino Whites (NLW), and Latinos (LAT) were included. 
Each dataset has both DNA methylation data (Illumina 
450 K or EPIC arrays) and a genome scan for SNPs (Illu-
mina Omni Express or Affymetrix Precision Medicine 
Diversity Array). See Methods section for scanning and 
detection of mQTLs in each dataset by ethnicity. For 
datasets assessed on the 450 K methylation array (Set 1 
NLW, Set 1 LAT, Set 2 NLW, and Set 2 LAT), an aver-
age of 15.35% CpGs have a matched mQTL at adjusted 
significance level (P < 0.05), while for datasets assessed 
on the EPIC methylation array (Set 3 NLW, Set 3 LAT, 
Set 4 NLW, and Set 4 LAT), an average of 22.95% CpGs 
are matched to mQTLs with adjusted P values < 0.05 as 
its mQTL (Fig.  1A). The larger proportions of mQTLs 

Fig. 1  Distributions of scanned mQTLs in different datasets. A Proportions of CpGs with a matched significant mQTL in four different datasets 
by ethnicity. 1 Pair-wise comparisons of datasets by ethnicity on each platform. Compared are number of CpGs with the same SNP assigned as 
matched mQTLs across datasets, number of CpGs whose mQTLs are in linkage disequilibrium (R2 > 0.5) across datasets, and number of CpGs whose 
matched mQTLs fit either of the previous two criteria. NLW non-Latino whites; LAT Latinos
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identified in EPIC arrays are likely due to the larger 
sample size (n = 971) than in sets run on 450  K arrays 
(n = 667). Interestingly, proportions of mQTL-matched 
CpGs differ by ethnicity. In all four datasets, LAT consist-
ently have a higher proportion of mQTL-matched CpGs 
comparing to NLW (Fig. 1A), likely due to differences in 
statistical power. More specifically, sample sizes of LAT 
subjects were larger than NLW in all four datasets, and 
CpG-SNP pairs with similar effect sizes could have a 
higher statistical significance in the LAT cohort because 
of their larger sample sizes. To investigate if this was the 
case, we meta-analyzed mQTLs of each ethnicity (NLW: 
Set 1 NLW, Set 2 NLW, Set 3 NLW, Set 4 NLW; LAT: Set 
1 LAT, Set 2 LAT, Set 3 LAT, Set 4 LAT), and for shared 
CpG-SNP pairs between these ethnicities, we compared 
effect sizes and P values of mQTL effects (Additional 
file  3: Figure S1). As a result, effect sizes were similar, 
but P values were stronger in Latino subjects, suggest-
ing that the discrepancy was mostly due to sample size 
differences.

We also examined whether a CpG tends to be paired 
with the same SNP, or SNPs in linkage disequilibrium 
(LD) (R2 > 0.5), across different datasets. We made 8 
pair-wise comparisons for datasets assessed on the same 
DNA methylation platform (Additional file 4: Table S2). 
For 450 K arrays, SNPs matched to the same CpG across 
dataset have a higher probability to be in LD with each 
other than identical. However, for EPIC array, SNPs tend 
to be identical rather than in LD (Fig.  1B). All overlaps 
of shared CpG-SNP pairs on either 450 K array or EPIC 
array datasets are shown in Additional file 3: Figure S2.

Generation of CpG‑mQTL pair databases by DNA 
methylation arrays
We then combined results from multiple datasets to cre-
ate an mQTL database for 450 K and EPIC arrays sepa-
rately, which include CpG-SNP pairs with the strongest 
associations, which can be used as mQTL covariates in 
subsequent EWAS analyses. These mQTL databases are 
used subsequently to account for genetic effects in epi-
genome-wide association analysis. More specifically, we 
combined mQTL scanning from Set 1 NLW and LAT, 
Set 2 NLW and LAT datasets to create a database for the 
450 K array, while Set 3 NLW and LAT, Set 4 NLW and 
LAT datasets were combined to create a database for the 
EPIC array.

The following combining scheme for each plat-
form was adopted: For each CpG, all SNPs identified 
as mQTLs in each dataset were recorded, sorted by P 
value, which was computed by meta-analyzing effect 
sizes from different datasets (between both ethnic 
groups, and between both datasets) weighted by inverse 
of standard errors using the “SCHEME STDERR” mode 

of METAL [10]. As one CpG could be matched to dif-
ferent mQTLs in different datasets, there could be sev-
eral CpG-SNP pairs for a particular CpG. As a result, 
on the 450 K array, 243,450 such CpG-SNP pairs were 
identified for a total of 150,333 CpGs. On the EPIC 
array, 630,971 CpG-SNP pairs were in the database for 
a total of 358,325 CpGs.

Genome‑wide distribution of mQTL
We next investigated the location of CpGs with the 
significant CpG-SNP correlation from each array, and 
whether they have a higher chance of localizing within 
regions that play a key biological role.

On the 450 K array, CpGs with matched mQTLs had 
a higher probability to be located in northern Shore (N_
shore), southern shore (S_shore), and OpenSea regions, 
comparing to genome-wide CpG distributions. On the 
EPIC array, mQTL-matched CpGs were less likely to be 
in the OpenSea region, but enriched in all other regions 
(Fig. 2A, 2B).

Interestingly, on both arrays, CpGs with matched 
mQTLs are significantly enriched in CpG island shore 
regions (either the N_shore or S_shore) comparing to 
whole-genome distributions (chi-squared test P val-
ues < 2.2 × 10–16 on both arrays) (Additional file 3: Fig-
ure S3).

We also conducted enrichment analysis to inves-
tigate if CpGs matched to mQTLs are more or less 
likely to be in regulatory regions. For transcription 
factors, we gathered all available TFs in the Encyclo-
pedia of DNA Elements (ENCODE) [11] ChiP-seq 
database for (N = 161) in 91 cell types combined; inter-
estingly, 149 were significantly less enriched on the 
450 K array while no TF site is more enriched. On the 
EPIC array, 148 were significantly less enriched, while 
8 were significantly more enriched. Among the avail-
able CpG sites on the arrays we can conclude that 
TF binding sites are less likely to harbor mQTLs. For 
histone modification sites, H3K4me3 sites were sig-
nificantly less enriched for CpGs matched to mQTLs 
both on 450  K array (fold enrichment = 0.934, 
P value = 1.27 × 10–80) and EPIC array (fold 
change = 0.654, P value < 1.00 × 10–160). On the con-
trary, H3K27me3 sites were significantly more enriched 
for CpGs matched to mQTLs both on 450 K array (fold 
enrichment = 1.108, P value = 1.414 × 10–85) and EPIC 
array (fold change = 1.0395, P value = 6.6476 × 10–22). 
Lastly, in terms of enhancer regions for three HSC cell 
lines, CpG sites in enhancer regions were less enriched 
for both 450  K and EPIC arrays (450  K array, fold 
change = 0.895, P value = 1.3563 × 10–122; EPIC array, 
fold change = 0.8022, P value < 1.00 × 10–160).
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Comparison with published cis and trans mQTL effects
Min et al. [12] reported a database of in cis mQTLs using 
large cohort of subjects of NLW ethnicity. We compared 
both the effect sizes and P values of mQTLs from our 
databases with Min et al.’s (Additional file 3: Figure S4). 
In all datasets and in both NLW and LAT populations, 
there is very low consistency in terms of both effect sizes 
and P values.

It was reported that in cis mQTLs have much big-
ger effect sizes than in trans mQTLs [12]. While trans 
mQTLs should be relevant for our purposes, we were 
underpowered to capture trans mQTL effects. There-
fore, we limited our mQTL scanning to in cis SNP-CpG 
pairs. Nevertheless, we still investigated if we could lev-
erage published trans mQTL databases to account for 
in trans genetic effects. Recently, studies were published 
discussing trans-mQTL effects in large cohorts [12, 13]; 
however, most of these studies focus on subjects of non-
Latino white populations, and it is the applicability of 
trans-mQTL databases across ethnicities is not validated.

We aimed to test if trans-mQTLs published by Min 
et  al. could be replicated on our Latino and non-Latino 
White subjects. To achieve this, we extracted 46,148 CpG 
along with the most significant SNP matched to each 
CpG from their analysis within our dataset and tested 
whether the same mQTL effects were present in our 
dataset. We were able to test 43,464 such CpG-SNP pairs 
from Set 1 (NLW and LAT), 43,386 from Set 2 (NLW and 
LAT), 40,247 from Set 3 (NLW and LAT), and 40,360 
pairs from Set 4 (NLW and LAT). The replicability of 
trans-mQTL effects was, however, poor in all NLW and 
LAT datasets, both in terms of regression coefficients 

and significance. Additional file 3: Figure S5 shows Set 1 
NLW, Set 1 LAT, Set 2 NLW, and Set 2 LAT as examples. 
We therefore do not consider trans mQTLs effects in the 
current manuscript.

EWAS reveals significant CpGs associated with birthweight
Birthweight has been reported to have significant asso-
ciations with neonatal DNA methylation [7, 14, 15]. 
However, previous reports did not take into considera-
tion possible effects from genetics. To address this, using 
the same dataset where mQTL scanning was performed, 
we conducted an EWAS analysis to investigate the cor-
relation between neonatal DNA methylation and birth-
weight, while accounting for platform-specific mQTLs. 
This analysis was performed in all four datasets sepa-
rately, and meta-analysis was conducted for each array 
(450  K and EPIC separately). We also conducted the 
same regression models without accounting for SNPs for 
comparison.

On the 450 K array
In the 450 K array dataset (n = 667), using EWAS mod-
els accounting for mQTL effects (mQTL-model), we dis-
covered a total of 33 CpGs significantly associated with 
birthweight after Bonferroni correction, of which 19 
CpGs were previously associated with birthweight [7], for 
example, in the ARID family genes ARID3A and ARID5B 
(Additional file  4: Table  S3), and 14 CpGs were novel 
associations. Of the 33 significant CpGs, 15 (45.45%) 
were corrected for significant mQTLs in the model, and 
three of these CpGs were located in the transcription 
start site region of the genes.

Fig. 2  Distributions of different genomic positions of genome-wide CpGs with matched mQTLs. A distributions of CpGs on the 450 K methylation 
array in different regions of the genome. Salmon bars show proportions of CpGs located in each genomic region for CpGs matched to mQTLs, 
and turquoise bars show distributions for all genome-wide CpGs. Whether these proportions were significantly different were compared using 
proportion tests (* for P < 0.05, ** for P < 0.01, and *** for P < 0.001). B Distributions of CpGs on the EPIC methylation array in different regions of the 
genome. Similar to (A), Salmon bars show proportions of CpGs matched to mQTLs, and turquoise bars show distributions for all CpGs. Proportion 
tests were done similar to that of (A).
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We also conducted the same EWAS without account-
ing for mQTL effects in Sets 1 and 2 (non-mQTL-
models), followed by the same meta-analysis like that 
of models including mQTLs. As a result, none of these 
hits would have been identified if we did not account 
for mQTL effects, as only 3 CpGs were significant when 
mQTLs were not included in the model. This suggested 
the importance of taking genetic effects into considera-
tion in epigenome-wide association analysis.

We investigated how controlling for mQTL’s genetic 
effects changed results of our EWAS models. We were 
able to compare a total of 123,012 CpGs which were 
matched to mQTLs. Their matched mQTLs’ effects were 
accounted for in mQTL-models but not in non-mQTL-
models. While regression coefficients from EWAS 
models with or without controlling for mQTLs were in 
general similar (Fig.  3A), however, inconsistencies were 
also seen for some CpGs, as for these CpGs, controlling 
for mQTLs affected EWAS effect sizes to a large extent. 
However, the regression coefficients for the 15 significant 
mQTL-matched CpGs seemed to be similar with or with-
out controlling for mQTLs (Fig. 3A).

In terms of P values, controlling for genetic effects also 
affected significance for many CpGs, to a much greater 
extent than regression coefficients (Fig. 3B). This included 
the 15 significant mQTL-matched CpGs from the model, 
and the majority of these significant CpGs became more 
significant after adjusting for mQTL effects. However, 
opposite from that of the significant hits, the majority of 

450  K CpGs became less significant after adjusting for 
SNP effects. As shown in Fig. 3B, the majority (80,384 out 
of 122,997, 65.35%) of non-significant hits (shown in tur-
quoise) were below the y = x line.

The 450  K results suggest that, in general, controlling 
for genetic effects can help to identify additional CpG 
loci that are associated with variation in birthweight.

We also conducted an enrichment test on the 26 genes 
overlapping significant CpGs identified in the association 
analysis using Gene Set Enrichment Analysis (GSEA) [16, 
17] (Additional file 4: Table S5). “Early-TGFB1 signature” 
gene set was identified to be strongly enriched (FDR q 
value = 1.92 × 10–2), among other sets.

On the EPIC array
There has not been a report of large-scale multi-cohort 
birthweight EWAS on the EPIC array as was performed 
previously for the 450  K array [7]. In the larger EPIC 
array sample set (n = 971), we identified 3,294 significant 
CpGs after Bonferroni correction associated with birth-
weight (Additional file  4: Table  S4) from mQTL-model, 
many of which were not available in the 450 K platform 
(2112 out of 3294, 64.12%). For example, one of the top 
hit CpGs cg09797037 in EXOSC10 (P = 8.42 × 10–31, 
direction: + +) is significantly associated with birth-
weight in our EPIC array data; however, Küpers et al. did 
not identify this gene in their multi-cohort meta-analysis.

In our EWAS results, 2004 (60.84%) of the signifi-
cant hits were corrected for mQTL’s genetic effects, at 

Fig. 3  Comparison of birthweight epigenome-wide association analysis results with or without controlling for mQTL (450 K array). Comparison of 
two EWAS model’s (mQTL-model and non-mQTL-model) results analyzing the correlation between birthweight and DNA methylation for a total 
of 129,072 CpGs matched to mQTLs. One model included mQTL for each CpG as a covariate (y-axis), while the other did not (x-axis). For the same 
CpG, regression effect sizes and P values were compared in these two models. A regression β coefficients from these two models were compared 
for CpGs on the 450 K array. The 15 CpGs that were significantly associated with birthweight were marked red, and CpGs that were not significant 
were marked turquoise. Red lines represent X = 0, Y = 0 and X = Y, respectively. Blue line represents regression line between Y and X. B Negative log 
P values from these two models were compared, with significant CpGs marked red. Similar to A, X = Y is shown with a red line and blue line shows 
regression line between Y and X 
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a CpG-SNP mQTL cutoff adjusted P value of 0.05. 425 
(12.90%) of these CpGs are annotated as transcription 
starting region (TSS) in the Illumina’s EPIC methylation 
arrays annotation [18].

Similar to 450 K, we repeated the same EWAS model in 
both Sets 3 and 4 without controlling for mQTL’s effects 
(non-mQTL-models). Running the same pipeline (meta-
analysis, and multiple correction using Bonferroni), 
2216 of significant hits from models including mQTLs 
as covariates would not have been identified if mQTL 
effects were not adjusted, accounting for 67.27% of all 
the significant hits. Similar to that of the 450  K array, 
this illustrates that adjusting for mQTLs in this EWAS 
model significantly affected the fundamental landscape 
of results.

Adding the mQTLs as additional variables also did 
not alter regression effect sizes appreciably for the 3294 
significant CpGs, similarly to the result with the 450  K 
(Fig.  4A). P values were also significantly different after 
controlling for mQTL, increasing the significance for 
most significant hits, further suggesting the importance 
of controlling for genetic effects when conducting EWAS 
analysis (Fig. 4B). For the majority of all EPIC CpGs, after 
adjusting for SNP effects, the majority (154,489 out of 
294,446, 52.47%) also became more significant (Fig. 4B), 
opposite from the trend observed on the 450 K array.

We also tested for model fit to test for the effect of 
mQTL using partial F-tests. For CpGs matched to 
mQTLs, full model refers to mQTL-model, and reduced 
model refers to non-mQTL-model (see Methods sec-
tion for equations of these models). In Set 4, for example, 

199,625 out of 296,157 (67.41%) models have a signifi-
cant partial F-test P value. This illustrated for a majority 
of CpGs, after controlling for matched mQTLs, model fit 
significantly improved.

GSEA was also performed using top 50 genes from the 
EWAS results similar to that of 450 K (Additional file 4: 
Table  S6). Enriched gene sets include tissue maturation 
(FDR q value = 3.87 × 10–04) and abnormal inflammatory 
response (FDR q value = 3.87 × 10–04).

Shared CpGs
For shared, or in-common CpGs (CpGs that are on both 
450 K and EPIC array), we controlled for mQTLs for in-
common CpGs described in the method section for each 
dataset and meta-analyzed all four datasets. Results were 
similar: controlling for mQTL effects seemed to increase 
significance of birthweight effects (Additional file 3: Fig-
ure S6).

Investigating CpGs whose regression coefficients were 
significantly affected by mQTLs
On the 450 K array
We found that after correcting for mQTLs, regression 
coefficients of some CpGs changed more significantly 
than others, suggesting that the association between 
these CpGs and birthweight was more heavily distorted 
by mQTLs. Taking genetic effects into consideration is of 
vital importance for this group of CpGs.

Among all the significant CpGs in the association 
analysis after FDR correction, there are in total 93 CpGs 
whose effect sizes changed more than 20% in either 

Fig. 4  Comparison of birthweight epigenome-wide association analysis results with or without controlling for mQTL (EPIC array). Similar to that 
of Fig. 3, two EWAS models (mQTL-model and non-mQTL-model) were run. Regression effect sizes and P values of 155,852 CpGs were compared. 
A Regression β coefficients from these two models were compared for CpGs on the EPIC array. The 3354 CpGs that were significant were marked 
red, and CpGs that were not significant were marked turquoise. Red lines represent x = 0, y = 0 and x = y, respectively. B Negative log P values from 
these two models were compared, with significant CpGs marked red. X = y is shown with a red line
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direction after correcting for mQTL effects. Pathway 
analyses suggest these CpGs are enriched in cell prolif-
eration and energy related pathways. For example, KEGG 
of these CpGs showed top pathways include glycer-
ophospholipid metabolism (KEGG ID 00,564, adjusted 
P value = 1.08 × 10–80) and GnRH signaling pathway 
(KEGG ID 004,912, adjusted P value = 1.08 × 10–80) 
among top pathways (Additional file 4: Table S7).

On the EPIC array
The EPIC array was able to identify 1711 CpGs with sig-
nificantly changed effect sizes after correcting for mQTL, 
using the same filtering as that of 450 K. Pathway analy-
ses also revealed that these CpGs are enriched in energy 
and metabolism functions. In GO pathway analysis, 
ATPase regulator activity (GO ID 0060590, adjusted P 
value = 3.20 × 10–08) and chemokine activity (GO ID 
0045600, adjusted P value = 0.044) are among signifi-
cantly enriched pathways (Additional file 4: Table S8).

These results suggested that, for CpGs overlapping 
with genes in pathways associated with birthweight, 
including biosynthesis, metabolism, and leukemia (high 
birthweight was a risk factor for leukemia [19]), their 
association analyses with birthweight were distorted 
heavily by genetic effects.

Correcting for maternal weight gain as an additional 
covariate did not significantly change EWAS results
It has been reported before that excessive maternal gain 
was associated with birthweight [20–22]. Therefore, 
maternal weight gain during pregnancy could also influ-
ence birthweight EWAS models. As a sensitivity analysis, 
we controlled for maternal weight gain as an additional 
covariate. As a result, neither P values nor regression 
coefficients were significantly altered. (Set 4 results were 
shown as an example in Additional file 3: Figure S7.)

Discussion
While epigenome-wide analyses (EWAS) have helped 
identify the correlation between DNA methylation and 
key clinical or biological traits, the effects of genetic fac-
tors are generally ignored in such studies. Using four 
multi-ethnic datasets, we generated SNP-CpG databases 
that could help us understand the role played by mQTLs 
in EWAS studies using a well-studied covariate that is 
related to DNA methylation at birth (birthweight), for 
both 450 K and EPIC arrays separately.

Several studies [12, 13] have explored mQTL effects 
in large cohorts, mostly of European ancestry. However, 
populations of varied ethnicities might have different 
SNP-CpG interactions. For example, the Latino popu-
lation is recently admixed European, Amerindian, and 
African ancestries, and mQTL features can be inherited 

from all three ancestral groups. By adjusting for ances-
tral-variant principle components (EPISTRU​CTU​RE), 
we aimed to account for such heterogeneity on a global 
scale. Specific mQTLs on a local scale may not be ade-
quately controlled with global principal components, 
necessitating local adjustments. We attempted to use 
published mQTLs for this purpose; however, replicability 
between databases seems to be poor, both in cis and in 
trans in our data. We tested consistency of mQTL effect 
sizes and significance from our datasets with Min et al., 
and in all datasets in both NLW or LAT populations, 
there is very low consistency. Reasons for low replicabil-
ity are unclear, but may relate to differences in technical 
batch effects, SNP array designs, study population age 
structure, and systematic differences from population 
structures. Either way, this suggests in order to account 
for genetic effects in EWAS models, leveraging published 
mQTL databases might be less ideal than doing dataset-
specific mQTL scanning particularly when population 
substructure varies between intended training and test 
datasets.

We assessed DNA methylation using two different Illu-
mina arrays platforms (450 K and EPIC). Since the EPIC 
array includes a majority of 450 K array probes, we con-
ducted some analyses on shared probes between both 
arrays using all datasets. However, scanning mQTLs and 
applying EWAS models on separate array types are justi-
fied, because batch effects in sample processing and data 
normalization could bias results dramatically. Further-
more, 450  K and EPIC arrays had differences in design 
even for some of the same CpGs, and it has been previ-
ously reported that Type I probes had lower individual 
site correlations than Type II probes [23].

Nevertheless, on both arrays those CpGs that matched 
to mQTLs were more likely to be in CpG island shore 
regions (N_shore or S_shore) compared to other anno-
tated regions. CpG island shores are 2 kb regions flank-
ing a CpG island [24], and DNA methylation in the 
shore regions has been reported to be associated with 
both disease traits such as Alzheimer’s disease [25] and 
chronic lymphocytic leukemia [26], as well as nega-
tively associated with gene expression levels [24, 27]. We 
reported that methylation of CpGs in the shore regions 
was also more likely to be affected by genotypes, sug-
gesting that previously reported shore methylation and 
gene expression associations were likely in fact expres-
sion quantitative trait loci (eQTL) effects and key mark-
ers of population trait variability. In fact, of all the 
596,249 SNPs that were matched to a CpG in our results, 
325,556 (54.60%) were significant eQTLs for the whole 
blood tissue based on the Genotype-Tissue Expres-
sion (GTEx) data. Furthermore, in general, gene control 
regions (including transcription binding sites, histone 
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modification sites, enhancer regions, etc.) tend to eschew 
mQTLs which may indicate negative evolutionary selec-
tion for mQTLs. In other words, the genetic regulatory 
motifs are unlikely to tolerate polymorphic variability in 
DNA methylation levels of nearby sequences. However, 
polycomb repression-associated H3K27me3 sites were an 
interesting exception. They preferentially favored CpGs 
with mQTLs when compared to the remainder of the 
array.

Incorporating this mQTL database, we performed 
EWAS analysis investigating the association between 
birthweight and neonatal DNA methylation. While this 
relationship has been reported by multi-cohort meta-
analysis [7], genetic effects were not previously taken into 
consideration. We identified some similar hits as before, 
for example, at ARID3A and ARID5B. The AT‑rich inter-
acting domain (ARID) family proteins bind to DNA 
[28] and play roles in transcriptional regulation dur-
ing cell proliferation, differentiation, and development 
[29]. Other top genes overlapping with significant CpGs 
include PLD2 (cancer development and progression [30, 
31]), and TGFB2 (regulation of angiogenesis and heart 
development [32, 33]). We were also able to identify 
CpGs located in genes not previously reported in EWAS 
studies.

The EPIC array contains almost twice as many probes 
as the 450  K array, and we were able to identify other 
genes, on top of 450  K results, significantly related to 
birthweight. For example, EXOSC10 was involved in 
ATP/ITP metabolism pathway. Gusev et al. reported that 
its expression level was associated with birthweight in 
a TWAS study [34]. Some other notable genes include 
IL21R (interleukin 21 receptor, transducing the growth 
promoting signal of IL21 [35]), IPO9 (associated with 
waist circumference [36], fat-free mass or lean body mass 
[37], and body mass index [38] in previous GWAS stud-
ies), and ST6GALNAC4 (catalyzing the transfer of sialic 
acid from CMP-sialic acid to galactose-containing sub-
strates [39]).

We noticed that after adjusting for mQTLs, the major-
ity of 450 K array CpGs became less significant, but this 
trend was reversed on the EPIC array. An explanation 
for this difference was not immediately clear to us. We 
hypothesized that this was mostly due to array and sam-
ple size differences. The same probe can have different 
designs on 450 K and EPIC arrays, and this discrepancy 
could contribute to such differences. Additionally, sam-
ple size was larger for EPIC array datasets (N = 971) than 
450 K array (N = 667), allowing the regression model to 
have better and more stable results. In fact, when we 
looked at probes on both 450 K and EPIC arrays from all 
our datasets (Additional file 3: Figure S6B), the behavior 
became very similar to EPIC array results. Therefore, we 

expect when sample size is large and DNA methylation is 
captured more accurately; in general, CpGs will become 
more significant after mQTL corrections.

Interestingly, adjusting for mQTLs had a larger effect 
on regression coefficient values for a group of CpGs 
compared to others, most regression coefficients (67%) 
increasing. To understand the characteristics for these 
CpGs, we performed pathway analyses and found that 
they were highly enriched for energy metabolism and 
biological synthesis pathways. This suggested that for 
CpGs overlapping genes strongly connected to the out-
come (birthweight in our study) in EWAS analyses, 
accounting for genetic effects was especially important.

We note that it is appropriate to control for mQTL 
effects in EWAS models when DNA methylation is the 
outcome in the causal pathway. In other situations, for 
example, when DNA methylation is an instrumental 
variable of another causal factor that leads to the phe-
notype variation, the benefit of controlling for mQTL 
effects is complicated by additional considerations, which 
will require additional model specifications. Indeed, the 
“top hits” from any mQTL-adjusted models should be 
checked to assure that correct model assumptions are 
met.

There are some drawbacks of our study. We only had 
access to DNA methylation array data, instead of whole-
genome bisulfite sequencing data, which could limit 
our ability to detect other key SNP-CpG loci. Moreover, 
although our datasets contain multi-ethnic subjects, we 
only had access to significant numbers of NLW and LAT 
subjects and have ignored other ethnic groups. Once data 
are available, it will be of interest to investigate how our 
findings might change in other ethnic groups including 
African-Americans and Asians.

In summary, it is of value to account for genetic effects 
when performing EWAS models. Our matrix of SNP-
CpG methylation effects presented in the current analy-
sis can be used directly for non-Latino White and Latino 
populations on both types of Illumina DNA methylation 
array data. This will allow accounting for genetic bias, 
especially for CpGs overlapping key genes, and poten-
tially help to identify more associations that were not 
possible to detect without concurrent adjustment for 
mQTL effects.

Methods
Study subjects
Four separate datasets are used in this analysis (Addi-
tional file  4: Table  S1). Three datasets (Set 1, 168 non-
Latino Whites (NLW) and 174 Latinos (LAT), Set 2, 105 
NLW and 220 LAT, and Set 3, 137 NLW and 356 LAT) 
are from California Childhood Leukemia Study (CCLS) 
project which involved active recruitment of children 
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with leukemia and healthy controls throughout California 
between 1995 and 2015 [40]. A separate sample set (Set 
4, 160 NLW and 318 LAT) was derived independently 
from a separate leukemia case–control sample set with 
subjects born within a five-county Southern California 
region as described [41]. As these 4 sets were designed 
and created at separate times, we analyzed them sepa-
rately without pooling individual level data. Our analyses 
were limited to self-reported LAT and NLW due to a lack 
of power for the analysis of other population groups.

This study was approved by the State of California 
Committee for the Protection of Human Subjects, and 
the University of Southern California and University of 
California, Berkeley institutional review boards.

Genome‑wide DNA methylation arrays
DNA was extracted from 1/3 of each newborn dried 
blood spots (DBS) (~ 1.4  cm diameter) using the Qia-
gen DNA Investigator blood card protocol, and bisulfite 
conversion performed using Zymo EZ DNA Methylation 
kits. Bisulfite-converted DNA samples were randomized.

Sets 1 and 2 were assayed on Illumina Infinium Meth-
ylation450K Beadchip genome-wide DNA methylation 
arrays (referred to as 450 K array from here); Sets 3 and 
4 were assayed on Illumina Infinium Methylation850K 
Beadchip genome-wide EPIC methylation arrays 
(referred to as EPIC array from here).

Genome‑wide SNP genotype arrays
Additional DNA was isolated from DBS for genotyping. 
Sets 1, 2, 3 were genotyped on Illumina Omni Express 
arrays as previously described [42], while Set 4 was geno-
typed on the Affymetrix Precision Medicine Diversity 
Array (PMDA) array.

Genotype data preprocessing
Pre-imputation quality control (QC) was done in Sets 
1, 2, 3 and Set 4 separately. Genotyped variants as well 
as subjects with missing call rates exceeding 5% were 
excluded. Variants with Hardy–Weinberg equilibrium 
P value < 10–4 or with a minor allele frequency < 0.01 
were also excluded. We then imputed SNP data on the 
TOPMed imputation server using TOPMed Imputa-
tion Reference panel consisting of 97,256 samples with 
high-quality whole-genome sequencing data as reference 
population [43–45], and after imputation, for Sets 1, 2, 4 
and Set 3 separately, we included imputed SNPs with an 
R2 score higher than 0.6 and excluded SNPs with a minor 
allele frequency (MAF) < 0.01. Lastly, since Sets 3 and 4 
were measured on different DNA methylation arrays, 
Set 3 and Set 4 genetic data were harmonized and com-
bined by taking only the shared SNPs from each set. This 

resulted in 9,129,560 SNPs for Set 1, 9,240,323 SNPs for 
Set 2, and 8,974,195 SNPs for sets 3 and 4.

DNA methylation array data preprocessing and annotation
DNA methylation data were normalized using R pack-
age “Minfi,” and “funnorm” normalization [46] was 
performed for each dataset with noob background cor-
rection, followed by BMIQ normalization [47]. CpG 
probes and subjects with more than 5% missingness were 
removed from normalized data. The remaining missing 
values were imputed using “impute” package as described 
in our previous publication [48]. For association analysis, 
probes located on sex chromosomes as well as CpGs or 
probes that overlap with SNP sites with MAF > 5% were 
excluded.

Scanning of genome‑wide mQTLs for each CpG site
Scanning of mQTLs in cis was done using QTLtools [49] 
in each dataset stratified by self-reported ancestry (NLW 
and LAT) using the parameters described below. This 
created eight datasets for mQTL scanning: Set 1 NLW, 
Set 1 LAT, Set 2 NLW, Set 2 LAT, Set 3 NLW, Set 3 LAT, 
Set 4 NLW, and Set 4 LAT.

We did a permutation test (n = 1000) for each CpG 
and SNPs located within a 2 million base pair window 
flanking that CpG, the default setting for QTLtools. This 
analysis outputs the top in cis SNP associated with each 
CpG for each dataset by ancestry. Covariates controlled 
for in this mQTL screening analysis included sex, batch 
effect at the time of DNA methylation measurement, and 
first 5 genetic PCs to account for remaining heterogene-
ity within ancestry groups. CpG-SNP pairs from each 
dataset with an association adjusted P value < 0.05 were 
included in downstream analysis. Multiple testing adjust-
ment was based on the number of variants and pheno-
types tested in cis given by the fitted beta distribution as 
described in Delaneau [49]. Briefly, null distribution was 
empirically characterized through permutation (n = 1000 
in our study), and adjusted P values were computed by 
assessing how likely the nominal P value was from this 
null distribution.

To obtain a harmonized mQTL database for each DNA 
methylation array type (450  K and EPIC, in Additional 
files 1, 2), we meta-analyzed outputs from datasets by 
platform, and for each CpG, we selected the SNP with 
the most significant P value as the mQTL for that CpG. 
More specifically, 450 K mQTLs were based on results of 
meta-analysis of Set 1 NLW, Set 1 LAT, Set 2 NLW, and 
Set 2 LAT, while EPIC mQTLs were based on results of 
meta-analysis of Set 3 NLW, Set 3 LAT, Set 4 NLW, and 
Set 4 LAT.
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Enrichment analysis
To investigate the potential functional significance of 
genetic influence on CpG sites, we compared CpGs with 
QTLs to those without across the whole array with regards 
to genomic functional annotations. A significant increase 
or decrease in overlap with transcription factor (TF) bind-
ing sites, histone modification markers (H3K4me3 and 
H3K27me3), and previously identified enhancer regions 
for three HSC cell lines may provide insight into functional 
relevance to mQTL polymorphic variation in blood. The 
number of SNP-matched CpGs and array-wide CpGs over-
lapping each feature was evaluated by the Fisher’s exact test.

TF binding sites for 161 transcription factors in 91 cell 
types combined were downloaded from the ENCODE pro-
ject (wgEncodeRegTfbsClusteredV3.bed). Histone modifi-
cation data were downloaded for cell line E035, a primary 
HSC, from the Roadmap Epigenomics Mapping Consor-
tium database [50]. Enhancer sites for HSC cell lines (BI_
CD34_Primary_RO01536, BI_CD34_Primary_RO01480, 
and BI_CD34_Primary_RO01549) were acquired from a 
previously published study [51].

Assessment and adjustment of cell‑type heterogeneity
Reference-based deconvolution of blood cell propor-
tions was obtained using the Identifying Optimal Librar-
ies (IDOL) algorithm from R package “FlowSorted.Blood.
EPIC.” Reference cord blood data were derived from R 
package “FlowSorted.CordBloodCombined.450 k” [52]. We 
were able to deconvolute proportions of monocytes, granu-
locytes, natural killer cells, B lymphocytes, CD4 T lympho-
cytes, CD8 T lymphocytes, and nucleated red blood cells, 
which were later used to correct for cell-type heterogeneity 
in the regression analysis.

Epigenome‑wide association analyses
For each CpG, a linear regression model (mQTL models) 
was fit using methylation β value as the dependent variable. 
Independent variables include assigned mQTL if there is 
one, birthweight (the major variable of interest in this study), 
batch variable, sex, case control status of childhood acute 
lymphoblastic leukemia (ALL) as a selection variable (to 
avoid possible bias effect from ALL since some of our sub-
jects were diagnosed with ALL), gestational age, 10 genetic 
PCs for ancestry heterogeneity, and deconvoluted cell pro-
portions (excluding granulocytes to avoid collinearity) for 
cell-type heterogeneity. The equation for mQTL-models is:

Methylation β value ∼ birth weight
(

gram
)

+ sex+ gestational age(weeks)+ Batch

+ selection factor(casecontrol status of ALL)

+ CD8T+ CD4T+NK+ Bcell+Mono+ nRBC

+ PC1+ · · · + PC10+mQTL(if present)

Models without controlling for mQTL effects (non-
mQTL models) were also performed to compare results. 
The equation for non-mQTL-models is:

CpGs were excluded if they overlap with SNPs with more 
than 5% MAF, on chromosomes X or Y, or with 50% miss-
ing values. Such model was performed in all four datasets 
(Set 1, Set 2, Set 3, and Set 4), and the results were meta-
analyzed by platform (450  K array and EPIC array). Sub-
jects with gestational age shorter than 30  weeks (n = 9) 
were excluded from this analysis.

Sensitivity analyses were run by including maternal 
weight gain during pregnancy as an additional covariate. 
The equation for sensitivity models is:

To maximize power to discover mQTLs for CpGs that 
are on both 450  K and EPIC arrays (common CpGs), we 
meta-analyzed all 8 datasets, from both array platforms. 
This created another mQTL dataset for in-common CpGs 
only. We also conducted separate birthweight EWAS model 
for in-common CpGs only, controlling for the mQTLs for 
these CpGs. Bonferroni correction was then done to adjust 
for multiple testing, with adjusted P value < 0.05 as thresh-
old for statistical significance.
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