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Background
Intra-tumour heterogeneity is a consequence of accumulated somatic mutations dur-
ing tumour evolution [1, 2] and the culprit of acquired resistance and relapse in clini-
cal cancer therapy  [3, 4]. Phylogenetic inference is a powerful tool to understand the 
development of intra-tumour heterogeneity in time and space. Variant allele profiles 
derived from bulk sequencing data have typically been used to reconstruct the tumour 
phylogeny at the level of clones  [5–9]. More recently, the development of single-cell 
DNA sequencing (scDNA-seq)  [10–12] has enabled single-nucleotide variant (SNV) 
calling [13–18] and phylogeny reconstruction [15, 19–26] down to the single-cell level.

A statistical phylogenetic model is defined by an instantaneous transition rate 
matrix, a tree topology and tree branch lengths. Such a model defines a Markov pro-
cess for the evolution of nucleotides or genotypes [27]. Studying the evolutionary pro-
cess and estimating important parameters such as the branch lengths using statistical 
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phylogenetic models has a long tradition, benefits from well established theory, and 
has many applications, such as interpreting temporal cell dynamics [28].

However, compared to statistical phylogenetic models, most methods for phylog-
eny reconstruction from scDNA-seq operate within a simpler modelling framework. 
First, although branch lengths are a critical part of a phylogenetic tree and reflect the 
real evolutionary distances among cells, they are often ignored. Those approaches 
that do infer branch lengths [22, 26] employ the data from the variant sites and ignore 
information from background sites (that have a wildtype genotype), which may lead to 
so-called acquisition bias and overestimated branch lengths [29, 30].

Moreover, variant calling and phylogenetic inference are commonly considered 
independent tasks. Variant calling is typically performed first, and phylogenetic infer-
ence is performed on the called variants. However, variant calling, particularly from 
scDNA-seq data, can be hampered by missing data and low coverage, potentially 
resulting in wrong calls that could mislead phylogenetic inference. A feasible strategy 
to alleviate this problem is to integrate tree reconstruction with variant calling [12], 
where phylogenetic information on cell ancestry is used to obtain more reliable vari-
ant calls. Recently developed methods for scDNA-seq data approach this strategy 
from different perspectives  [15, 31]. However, those methods do not operate within 
the statistical phylogenetic framework, in particular do not infer branch lengths of 
the tree. Moreover, either they fully follow the infinite-sites assumption (ISA), which 
is often violated in real datasets  [32, 33], or relax this assumption to only a limited 
extent. As a result, they may miss important events in the evolution of tumours. Thus, 
methods have not yet been developed which, employing statistical phylogenetic mod-
els under the finite-sites assumption (FSA), infer cell phylogeny from raw scDNA-seq 
data and simultaneously call variants.

To address this, we propose SIEVE (SIngle-cell EVolution Explorer), a statistical 
method that exploits raw read counts for all nucleotides from scDNA-seq to reconstruct 
the cell phylogeny and call variants based on the inferred phylogenetic relations among 
cells. To our knowledge, SIEVE is the first approach that employs a statistical phylo-
genetic model following FSA, where branch lengths, measured by the expected num-
ber of somatic mutations per site, are corrected for the acquisition bias using the data 
from the background sites, and simultaneously calls variants and allelic dropout (ADO) 
states from raw read counts data. SIEVE incorporates solutions tailored for scDNA-seq 
tumour data. First, it includes a trunk in the tree structure, representing the branch join-
ing the healthy root to the most recent common ancestor (MRCA) of the subpopulation 
of the analysed cells. As such, the model captures the early, important gene mutations, 
common for all cells in the trunk. Second, it employs a dedicated probabilistic model of 
the raw nucleotide read counts at the modelled sites, and discerns between single and 
double mutations at these sites. Thanks to its flexibility, the model is able to detect 12 
different types of genotype transitions, corresponding to nine types of events in evolu-
tionary history. SIEVE is implemented and available as a package of BEAST  2, which 
allows for benefiting from other packages in this framework. Using simulated data, we 
assess the performance of our model in comparison to existing methods. To illustrate 
the functionality of SIEVE, we apply it to datasets from two patients with CRC and one 
with TNBC.
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Results
SIEVE is a statistical method for joint inference of SNVs and cell phylogeny from scDNA‑seq 

data

SIEVE takes as input raw read count data at candidate SNV sites, accounting for the 
read counts for three alternative nucleotides and the total depth at each site (Fig.  1a) 

Fig. 1  Overview of the SIEVE model. a Input data to SIEVE at candidate SNV sites. For a specific cell at an 
SNV site, fed to SIEVE are the read counts for all nucleotides: reads of the three alternative nucleotides with 
values in descending order and the total coverage (denoted by D in a). b Graphical representation of the 
SIEVE model. Bridged by gij , the genotype for site i in cell j, the orange dotted frame encloses the statistical 
phylogenetic model, and the blue dashed frame highlights the model of raw read counts. Shaded circle 
nodes represent observed variables, while unshaded circle nodes represent hidden random variables. Small 
filled circles correspond to fixed hyper parameters. Arrows denote local conditional probability distributions 
of child nodes given parent nodes. The sequencing coverage cij follows a negative binomial distribution 
parameterised by the number of sequenced alleles αij , the mean of allelic coverage t and the variance of 
allelic coverage v. αij is a hidden categorical variable parameterised by ADO rate θ , which has a uniform prior 
with fixed hyper parameter u. t also has a uniform prior with fixed parameter ρ , while v has an exponential 
prior parameterised by ζ . The nucleotide read counts mij given cij follow a Dirichlet-multinomial distribution 
parameterised by ADO-affected genotype g′ij , which is a hidden random variable depending on αij and 
genotype gij , effective sequencing error rate f, which has en exponential prior with fixed hyper parameter 
τ , and overdispersion wij , which is a hidden categorical variable dependent on g′ij parameterised by fixed 
parameters ξij and ψij for each category. gij is determined by the statistical phylogenetic model parameterised 
by fixed rate matrix Q, fixed number of categories h as well as shape parameter η with exponential prior for 
site-wise substitution rates, and tree topology T  along with branch lengths β . T  and β have a coalescent 
prior with an exponentially growing population parameterised by effective population size M, which has 
a multiplicative inverse prior, and growth rate e, which has a laplace prior parameterised by � and ǫ . c The 
transition rate matrix in the statistical phylogenetic model. During an infinitesimal time interval only one 
change is allowed to occur. d The cell phylogeny inferred from the data with SIEVE. Not only is the tree 
topology crucial, but also the branch lengths. The root represents a normal cell, and the only direct child 
of the root is the most recent common ancestor (MRCA) of all cells. e Variant calling given the inferred cell 
phylogeny. For further details, see the “Methods” section
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and combines a statistical phylogenetic model with a probabilistic graphical model of 
the read counts, incorporating a Dirichlet Multinomial distribution of the nucleotide 
counts (Fig. 1b; Methods). The statistical phylogenetic model allows for acquisition and 
loss of mutations on both maternal and paternal alleles (Fig. 1c). It considers four pos-
sible genotypes, 0/0 (referred to as wildtype), 0/1 (single mutant), 1/1 (double mutant, 
where the two alternative nucleotides are the same) and 1/1′ (double mutant, where the 
two alternative nucleotides are different). With these genotypes, SIEVE is able to dis-
cern 12 different types of genotype transitions, which can be categorised into nine types 
of mutation events, namely single mutation, homozygous coincident double mutation, 
heterozygous coincident double mutation, single back mutation, double back mutation, 
homozygous single mutation addition, heterozygous single mutation addition, homozy-
gous substitute single mutation, and heterozygous substitute single mutation (Table 1; 
Methods). Based on the inferred tree (Fig.  1d), SIEVE calls the maximum likelihood 
somatic mutations (Fig.  1e). With these calls and the recognised mutation events on 
the branches of the tree, we detect parallel evolution in the case when the same event 
re-occurs on independent branches of the tree. The tree contains a trunk joining the 
root representing a healthy cell with the most recent common ancestor (MRCA) of the 
modelled cells, representing the acquisition of clonal mutations at the initial stage of 
tumour progression. SIEVE leverages the noisy raw read counts to integrate genotype 
uncertainty into cell phylogeny inference. Benefiting from the inferred cell relationships, 
SIEVE is able to reliably infer the single-cell genotypes, especially for sites where only 
few reads are available. SIEVE is implemented as a package of BEAST 2, a flexible and 
mature framework for statistical phylogenetic modelling [34].

We investigated the performance of SIEVE using simulated data with different means 
and variances of allelic coverage, reflecting different coverage qualities (Methods). Spe-
cifically, we simulated data with low mean and high variance of allelic coverage (low 
quality), with high mean and medium variance (medium quality), and with high mean 

Table 1  12 types of genotype transitions that SIEVE is able to identify, with their interpretation 
as mutation events. The genotype transitions correspond to possible changes of genotypes on 
a branch from the parent node to the child node. If any of these events occurs on independent 
branches of the phylogenetic tree, it is also considered as a parallel evolution event. For detailed 
explanations of the mutation events, see the “Methods” section

Genotype transition Mutation event

0/0 → 0/1 Single mutation

0/0 → 1/1 Homozygous coincident double mutation

0/0 → 1/1′ Heterozygous coincident double mutation

0/1 → 0/0 Single back mutation

1/1 → 0/1 Single back mutation

1/1′ → 0/1 Single back mutation

1/1 → 0/0 Double back mutation

1/1′ → 0/0 Double back mutation

0/1 → 1/1 Homozygous single mutation addition

0/1 → 1/1′ Heterozygous single mutation addition

1/1′ → 1/1 Homozygous substitute single mutation

1/1 → 1/1′ Heterozygous substitute single mutation
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and low variance (high quality). Other important dataset characteristics were varied, 
including the number of cells and mutation rate, which is measured by the number of 
somatic mutations per site per generation.

SIEVE accurately estimates tree topology and branch lengths

We first evaluated the accuracy of SIEVE in inferring the simulated cell phylogeny with 
branch lengths using the branch score (BS) distance [35] (Fig. 2a; Methods). We com-
pared to CellPhy [26] and SiFit [22], which were fed with the variant calls from Mono-
var  [13]. Here, we gave SiFit an advantage of setting the true positive error rate used 
in the simulation (Methods). Thanks to the acquisition bias correction, SIEVE reports 
branch lengths as expected number of somatic mutations per site, while CellPhy and 
SiFit per SNV site. SCIPhI  [15] does not infer branch lengths, hence its BS distance 
could not be computed. SIEVE consistently outperformed CellPhy and SiFit, regardless 
of the number of cells, mutation rate and coverage quality. This may be because, in con-
trast to SIEVE, CellPhy and SiFit do not model raw reads and, importantly for the BS 
distance, do not correct the inferred branch lengths for acquisition bias. We also found 
that the BS distance of SIEVE had a negative nonlinear association with the number of 
background sites (Additional file 1: Fig. S1), explaining the relatively greater differences 
under higher mutation rates. These results proved the necessity for correcting the acqui-
sition bias with enough background sites to obtain accurate branch lengths.

As the BS distance is dominated by the branch lengths, we further assessed SIEVE’s 
accuracy in inferring the tree structure using the normalised Robinson-Foulds (RF) dis-
tance  [36]. Compared to CellPhy, SiFit and SCIPhI (Fig. 2b; Methods), SIEVE was the 
most robust method to changes of mutation rate, number of cells and coverage quality. 
When the data hardly contained mutations violating the ISA (mutation rate being 10−6 , 
with less than 0.1% double mutant genotypes and at most 1% SNV sites with parallel 
mutations), all methods achieved a similar median RF distance (around 0.15–0.3). Since 
in contrast to SCIPhI, SIEVE, CellPhy and SiFit employ statistical phylogenetic models 
following FSA, this indicates that models following FSA are also applicable to data evolv-
ing under the ISA. SIEVE outperformed CellPhy and SiFit when the number of cells 
and the mutation rate increased. When the data clearly violated the ISA (mutation rates 
being 8× 10−6 and 3× 10−5 , with 0.02–0.3% and 0.1–1% double mutant genotypes, as 
well as 2–8% and 10–27% SNV sites with parallel mutations indicative of FSA, respec-
tively), SCIPhI inferred reasonable tree topologies from datasets with a small number 
of cells (40). However, its performance dramatically dropped with 100 cells, especially 
when the data was of medium or high coverage quality. The behaviour of SCIPhI might 
be related to its estimation of ADO rate and single mutant genotype calling in these 
scenarios.

SIEVE accurately infers parameters in the model of raw read counts

We next investigated the accuracy of parameter estimates, including effective sequenc-
ing error rate, ADO rate, and wildtype and alternative overdispersion (Additional 
file 1: Fig. S2; Methods). Here, the effective sequencing error rate (Additional file 1: 
Fig. S2a) takes into account both amplification and sequencing error rates in scDNA-
seq. Wildtype and alternative overdispersion are parameters in the distribution of 
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nucleotide read counts related to different genotypes. The former corresponds to gen-
otype 0/0 and 1/1, while the latter to genotype 0/1 and 1/1′ . SIEVE accurately inferred 
most parameters in all simulated scenarios regardless of the number of cells, muta-
tion rate and coverage quality. Although SIEVE’s accuracy of estimating ADO rate 
slightly decreased with the coverage quality, it still was the best among the competing 
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Fig. 2  Benchmarking result of the SIEVE model. Varying are the number of tumour cells, mutation rate and 
coverage quality. Each simulation is repeated n = 20 times with each repetition denoted by coloured dots. 
The grey dashed lines represent the optimal values of each metric. Box plots comprise medians, boxes 
covering the interquartile range (IQR), and whiskers extending to 1.5 times the IQR below and above the box. 
a, b Box plots of the tree inference accuracy measured by the BS distance where the branch lengths are taken 
into account (a) and the normalised RF distance where only tree topology is considered (b). c, d Box plots 
of the single mutant genotype calling results measured by the fraction of true positives respectively in the 
ground truth positives, i.e. the sum of true positives and false negatives, (recall, c) as well as in the predicted 
positives, i.e. the sum of true positives and false positives, (precision, d). e, f Box plots of the double mutant 
genotype calling results measured by recall (e) and precision (f), where the variant calling results when 
mutation rate is 10−6 are omitted as very few double mutant genotypes are generated (less than 0.1%)
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methods. For data with medium and high coverage quality, 100 cells and higher muta-
tion rates ( 8× 10−6 and 3× 10−5 ), SCIPhI tended to overestimate ADO rates.

SIEVE accurately calls single and double mutations

Next, we assessed SIEVE’s performance in calling the single mutant genotype (Fig. 2c, d, 
Additional file 1: Figs. S3a,b and S4; Methods). As opposed to Monovar, recall for SIEVE 
and SCIPhI increased with the number of cells but was less sensitive to the coverage 
quality (Fig.  2c). The recall of SIEVE was higher than that of SCIPhI by 0.16–18.55% 
and that of Monovar by 28.89–71.74%. Unlike Monovar, both SIEVE and SCIPhI ben-
efit from the information provided by cell phylogenies. We speculate that the advantage 
of SIEVE over SCIPhI stems from the use of raw read counts for all nucleotides, while 
SCIPhI only employs the sequencing coverage and the read count of the most prevalent 
alternative nucleotide.

Moreover, SIEVE and Monovar achieved comparable precision (Fig. 2d) and false pos-
itive rates (Additional file 1: Fig. S3a) regardless of the number of cells, mutation rate 
and coverage quality. However, this did not hold for SCIPhI. By analysing the types of 
false positives among the predicted single mutant genotypes (Additional file 1: Fig. S4; 
Methods), we found that SCIPhI tended to miscall wildtype genotypes as single mutant 
genotype (i.e. 0/0 are called as 0/1) (Additional file 1: Fig. S4a). This occurred with high 
mutation rates ( 8× 10−6 and 3× 10−5 ), especially in scenarios where SCIPhI inferred 
inaccurate trees (Fig. 2b) and overestimated ADO rates (Additional file 1: Fig. S2b). The 
reason is twofold. First, the ISA upon which SCIPhI builds naturally limits its application 
to data following FSA. Second, under these scenarios, SCIPhI tends to mistake sites with 
no variant support for ADO events, and hence its high ADO rate. SIEVE avoids such 
mistakes by leveraging a model of sequencing coverage (Methods), thereby accounting 
for the related overdispersion and correctly estimating the ADO rate. We also noticed 
that when data clearly violated ISA, both Monovar and SCIPhI miscalled more double 
mutant genotypes as the single mutant genotype than SIEVE (Additional file 1: Fig. S4b).

We then focused on the results of double mutant genotype calling (Fig. 2e, f, Addi-
tional file 1: Fig. S3c,d; Methods), where SCIPhI was excluded as it is unable to call such 
mutations. The recall of double mutant genotypes for SIEVE and Monovar increased 
with the number of cells and the coverage quality (Fig. 2e), while SIEVE showed higher 
recall for such genotypes than Monovar. Moreover, SIEVE outperformed Monovar with 
high precision (almost 1, Fig. 2f ) and low false positive rate (almost 0, Additional file 1: 
Fig. S3c).

SIEVE accurately calls ADOs for data of adequate coverage quality

We further assessed SIEVE’s performance in ADO calling (Additional file  1: Fig. S5), 
where there are no published methods for us to compare with. When calling ADOs, 
SIEVE’s performance was independent of the number of cells or mutation rate, but 
highly dependent on the coverage quality. The reason is that SIEVE calls ADOs by 
inferring the number of sequenced alleles, assuming it is proportional to the observed 
sequencing coverage (Methods). Consequently, for data with medium and high cover-
age quality the average F1 score of ADO calling was high (0.86 and 0.93, respectively), 
whereas for data with low coverage quality, which is typical for current scDNA-seq data, 
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the ADO calling performance deteriorated, with average F1 score being only 0.10. Since 
the coverage quality of real data is low, we do not report ADO calling results for all real 
datasets analysed below (Additional file 1: Table S1).

SIEVE accurately infers cell phylogenies and calls variants in the presence of copy number 

aberrations (CNAs)

Both SIEVE and two compared methods, CellPhy and SCIPhI, work with the assump-
tion that the genomes of the cells are diploid. SiFit allows deletions, thus considering 
copy number 1 or 2. Occurrences of CNAs change the copy number for some of the 
sites. Leaving such sites in the data introduces discrepancy with the assumption, but 
may give more statistical power for model inference. To investigate the degree to which 
the performance of SIEVE and other models is affected by CNAs, we considered simu-
lation scenarios where both deletions and amplifications were added, by changing the 
copy number to any integer from the [0, 10] interval that is different than 2 (Methods). 
We varied the amount of genomic sites having CNAs in either small or large amount ( 1/3 
or  2/3 of all sites, respectively), and all methods were run both with CNA sites included 
and excluded from the input data.

The presence of CNAs had very little effect on the performance of inferring the simu-
lated cell phylogeny with branch lengths by all evaluated methods. Indeed, the BS dis-
tances obtained by the methods were at a similar level, regardless of the presence of the 
CNAs and their amount (Additional file 1: Fig. S6a). In contrast, the presence of CNAs 
worsened the performance of all methods in the task of inferring the topology of phy-
logeny, as measured by the normalised RF distance. When the CNAs were present in a 
small amount, the normalised RF distance for all methods was only slightly increased, 
regardless of the inclusion of the CNA sites or their exclusion from the input data. In 
the case when the CNAs were present in a large amount, the normalised RF distance 
increased stronger and the methods visibly benefited from including CNA sites, as they 
suffered from insufficient information when the CNA sites were excluded (Additional 
file 1: Fig. S6b).

In terms of inferring the single mutant genotype, the recall and precision of SIEVE 
and SCIPhI were not affected much by the presence of CNA sites, regardless of their 
amount and inclusion or exclusion from the data. In contrast, these measures decreased 
for Monovar, deteriorating most strongly when CNAs were present in large amounts 
and included in the data (Additional file 1: Fig. S7a,b). The existence of CNA sites had 
little influence on the false positive rate of SCIPhI, and only slightly increased the false 
positive rates of Monovar and SIEVE (Additional file 1: Fig. S7c). The F1 scores of SIEVE 
and SCIPhI were invariant to the CNA sites, while that of Monovar dropped propor-
tionally to the amount of CNAs in the case when they were included in the data (Addi-
tional file 1: Fig. S7d). For inferring double mutant genotypes, adding CNAs had very 
little impact on the performance of both SIEVE and Monovar (Additional file 1: Fig. S8).

Overall, although assuming a diploid genome, SIEVE is robust to the existence of CNA 
sites in the input data for both inferring cell phylogeny and calling variants. For phylog-
eny inference using SIEVE it is rather desirable to potentially increase statistical power 
and include all sites in the data, even if they were affected by CNAs.
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SIEVE achieves favourable run times and low memory usage in the default, multi‑thread 

mode

We further evaluated the run times and memory requirements of SIEVE and other 
approaches (Additional file  1: Fig. S9 and Table  S2; Methods). While SIEVE in sin-
gle thread mode was not competitive, it achieved stellar run time performance in the 
default, multi-thread mode. In particular, SIEVE outperformed other Bayesian meth-
ods and was similar in run time performance as compared to CellPhy, a model based on 
maximum likelihood inference and using bootstrap to estimate node support. With the 
increase of the number of both cells and sites, the run time of SIEVE in the multi-thread 
mode increased much slower compared to other methods. This indicates that SIEVE is 
scalable to large number of cells and sites. In terms of memory usage, all methods per-
formed similarly well, except for SiFit, which required tremendous amounts of memory.

SIEVE inferred a phylogenetic tree and called variants for CRC cells

We applied SIEVE to a new single-cell whole genome sequencing (scWGS) dataset, 
where 28 tumour cells were isolated from three primary tumour biopsies of a patient 
with CRC (CRC28; see the “Methods” section). We identified 8470 candidate SNV sites 
and 1,163,335,103 background sites. To take into account branch-wise substitution rate 
variation, we employed a relaxed molecular clock model  [37] (same for the following 
datasets; see the “Methods” section). In the inferred maximum clade credibility (MCC) 
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tree (Fig. 3; see Additional file 1: Fig. S10 for the branch lengths), tumour cells grouped 
into three highly supported clades corresponding to the three biopsies. The average 
length of the branches was 4.2× 10−7 . The estimated effective sequencing error and 
ADO rates were 7.6× 10−4 and 0.20, respectively.

Among the trees obtained by other methods (Additional file  1: Fig. S11), the tree 
obtained by CellPhy was the most similar to the one by SIEVE and also the closest in 
terms of normalised RF and BS distance (Additional file 1: Fig. S12). Although all meth-
ods grouped tumour proximal (TP) cells identically as an independent subclone, SCI-
PhI and SiFit clustered tumour distal (TD) and tumour central (TC) cells distinctly. Both 
SIEVE and CellPhy agreed that TP and TD cells were closer than TC cells during the 
evolutionary history. The fact that the different biopsies form well-supported clades 
exposes a strong geographical clonal structure suggesting regular growth and limited 
cell migration. From the four compared models, only SIEVE and CellPhy reported node 
support values, giving clear intuitions about the confidence for each clade.

We mapped non-synonymous mutations to the internal branches (Methods), where 
only single mutations were found, indicating that the mutational process likely followed 
the ISA. Many mutations resided on the trunk (clonal mutations), including established 
CRC driver genes [38, 39], such as APC, as well as genes related to the metastatic pro-
gression of CRC [40, 41], such as ASAP1 and RGL2. For all mapped genes, SIEVE identi-
fied only one type of mutation event, i.e. single mutations that correspond to the switch 
of the genotype from 0/0 to 0/1. The lack of other mutation events that are possible to 
identify using our model (see Table 1) indicates that for this sample the model did not 
detect any violations of the ISA.

SIEVE identified 8029 SNV sites among the candidate SNV sites (Fig. 3a), where most 
of the genotypes were single mutant and few were double mutant, including 1/1′ . The 
variant calling results of SIEVE and Monovar (Fig. 3b) were overall similar. However, the 
calls from Monovar were clearly more noisy, with many missing entries and more double 
mutant genotypes, some of which might be false positives according to the simulation 
results. The proportion of genotypes called by SIEVE and Monovar were summarised in 
Additional file 1: Table S3 (same for the following datasets).

SIEVE inferred a phylogenetic tree and called variants for TNBC cells

We then applied SIEVE to a single-cell whole exome sequencing (scWES) dataset [42], 
containing 16 tumour cells collected from a patient with TNBC (TNBC16; see the 
“Methods” section). We identified 5912 candidate SNV sites and 152,027,822 back-
ground sites. The estimated tree was supported by high posterior probabilities (Fig. 4) 
with a relatively long trunk and short terminal branches (Additional file 1: Fig. S13). The 
average branch length was 4.6× 10−6 . We estimated that the effective sequencing error 
rate was 8.2× 10−4 and the ADO rate was 0.05.

SCIPhI and CellPhy returned trees that were similar in structure to the one obtained 
by SIEVE (Additional file 1: Fig. S14), where the tree inferred by SCIPhI was the closest 
to that inferred by SIEVE (Additional file 1: Fig. S15a) in terms of normalised RF dis-
tance and the one inferred by CellPhy was the closest in terms of the BS distance (Addi-
tional file 1: Fig. S15b). Finally, the tree obtained by SiFit was the least similar to all other 
methods.



Page 11 of 33Kang et al. Genome Biology          (2022) 23:248 	

While for the previous CRC28 dataset the events identified by SIEVE consisted 
solely of single mutations (transitions from 0/0 to 0/1 genotype), which are typically 
analysed and often detected by other methods, the TNBC16 dataset is the show-
case of SIEVE’s ability to detect more diverse types of mutation events. By mapping 
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non-synonymous mutations to the internal branches, we identified five different types 
of mutation events (Methods), including several violations of the ISA, such as back 
mutations and parallel mutations. These, apart from the standard single mutations, 
included 44 homozygous coincident double mutations (transitions from 0/0 to 1/1 
genotype), nine homozygous single mutation additions (from 0/1 to 1/1 genotype), 
two parallel single mutations (from 0/0 to 0/1 genotype that occurred more than once 
on the tree), and seven single back mutations (from 0/1 to 0/0 genotype). Demeule-
meester et  al. [33] suggested that single back mutation events might occur due to 
retained mutability of the variant allele, thus making it likely to be mutated again. An 
alternative explanation for single back mutations could be an occurrence of a loss of 
heterozygosity. Other events violating the ISA might be due to mutational hotspots 
and hypermutable motifs  [33]. As expected, most of the mutations, including single 
and double mutant genotypes, resided on the trunk, and some of them occurred in 
genes which were also reported in the original study  [42], such as TBX3, NOTCH2, 
NOTCH3 and SETBP1. In the original study, the evolutionary tree of SNVs was recon-
structed using hierarchical clustering. Unfortunately, clustering is not a phylogenetic 
method based on shared ancestry, and assumes ultrametricity (perfect clock). In con-
trast to hierarchical clustering, our approach gives more insights into the evolution-
ary history of the tumour. In particular, it infers the error rates, categorises the types 
of the mutation events that occurred, and gives posterior estimates for the nodes (the 
node supports). The high support values (Fig.  4) indicate that the tree inferred by 
SIEVE is highly plausible.

SIEVE identified 5,895 SNV sites (Fig. 4a). In contrast to Monovar, SIEVE calls geno-
types for all analysed sites, including sites with missing data (Fig. 4b).

SIEVE inferred a phylogenetic tree and called variants for CRC samples mixed with normal 

cells

Finally, we applied SIEVE to another scWES dataset [43], which consisted of 35 tumour 
and normal cells as well as 13 adenomatous polyp cells from a patient with CRC 
(CRC0827 in [43]; referred to as CRC48 below; see the “Methods” section). The tumour 
cells came from two distinct anatomical locations (cancer tissue 1 and 2). We identi-
fied 707 candidate SNV sites as well as 119,486,190 background sites. From the inferred 
phylogenetic tree (Additional file  1: Figs. S16-S17), we identified two tumour clades 
matching their anatomical locations and one clade for adenomatous polyp and normal 
cells. Nine cells collected from the tumour biopsies were clustered outside the tumour 
clades, suggesting that these were normal cells within the tumour biopsies, which was 
also pointed out in the original study. The average branch length of the inferred tree was 
2.1× 10−7 . We estimated that the effective sequencing error rate was 8.3× 10−4 and the 
ADO rate was 0.10.

Other methods reported distinct trees (Additional file 1: Figs. S18-S21), which might 
result from the relatively insufficient number of (candidate) variant sites as input. Cell-
Phy, SCIPhI and SiFit were also able to distinguish the same set of normal cells from 
tumour cells. However, SiFit was unable to group tumour cells into two clades matching 
their anatomical locations as well as SIEVE.
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From the non-synonymous mutations mapped to the branches, we observed unique 
subclonal mutations, including an established CRC driver mutation, SYNE1  [39]. 
In addition to multiple single mutation events, we located two parallel single muta-
tions (CHD3 and PLD2), which evolved independently in adenomatous polyps and in 
tumour cells. Moreover, a mutated gene, MLH3, known being related to DNA mismatch 
repair [44], was found on the branch leading to the tumour subclone. This might be one 
of the reasons why this phylogenetic tree demonstrates a strong imbalance of branch 
lengths, with much longer branches found in the tumour subtree.

The variant calling results of SIEVE shared a similar but less noisy structure to those of 
Monovar (Additional file 1: Fig. S16a,b). We identified 678 SNV sites in total.

Discussion
Here we present a statistical approach for cell phylogeny inference and variant calling 
from scDNA-seq data. SIEVE leverages raw read counts to directly reconstruct cell 
phylogenies and then to reliably call single-cell variants. SIEVE tackles a considerably 
challenging problem, i.e. the propagation of errors in variant calling to the inference 
of cell phylogeny, by sharing information between these two tasks. Important charac-
teristics of SIEVE include accounting for the FSA and correction for acquisition bias 
for tree branch lengths, which prevents from overfitting the phylogenetic model, and, 
finally, modelling the trunk of the evolutionary tree accommodating the events that 
are common for all cells.

Inferring mutation status accurately from highly noisy scDNA-seq data remains a 
demanding problem. A pivotal strength of SIEVE is its characteristic of using genotypes 
as a bridge between tree inference and variant calling so that these tasks are united. 
SIEVE is able to reliably differentiate wildtype, single and double mutant genotypes. The 
benchmarking shows that SIEVE, regarding variant calling, outperforms methods which 
employ no cell relationships (Monovar) and which, despite accounting for such informa-
tion, do not include an instantaneous transition rate matrix and branch lengths (SCI-
PhI). Regarding tree reconstruction, SIEVE is more robust than SCIPhI, which infers 
phylogenies following ISA from raw scDNA-seq data. It also outperforms methods that 
rely on variants called by other approaches as a pre-processing step, thereby likely being 
misled by wrongly inferred variants (CellPhy and SiFit). The high performance of SIEVE 
can also be attributed to the fact that it is the only model that performs acquisition bias 
correction, allowing for more accurate branch lengths, and models the distribution of 
sequencing coverage and accounting for its overdispersion. Finally, SIEVE is also able to 
reliably call ADOs given data of adequate coverage quality.

Although MCMC is employed in the inference, our results show that SIEVE is an effi-
cient method regarding both run time and memory consumption in the default, multi-
thread mode. It also has the potential of favourable scalability to large numbers of cells 
and sites, where the latter is particularly relevant to the inference of accurate cell phylog-
enies. Naturally, the more candidate variant sites are available, the more statistical power 
they confer.

Currently, SIEVE only considers SNVs and assumes a diploid genome. Further 
improvement could embrace small indels and CNAs to improve phylogenetic inference 
and variant calling, yet care must be taken to differentiate deletions during evolution 
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from ADOs. Additionally, SIEVE only allows at most one ADO for each site and cell. 
Further extension could expand to locus dropout, which directly results in missing data.

We apply SIEVE to real scDNA-seq datasets harnessed from CRC and TNBC. 
SIEVE calls far fewer double mutant genotypes and gives more reliable mutation 
assignment than Monovar does, in line with the simulation results. We also notice 
that SIEVE identifies double mutant genotypes, which is rare in CRC but frequent 
in TNBC, indicating the noteworthy role such genotypes play in the evolution of dif-
ferent types of cancer. Future studies could be based on the phylogenetic tree and 
variants inferred by SIEVE to identify somatic mutations potentially related to the 
resistance and relapse in the clinical therapy of cancer. SIEVE can also be applied to 
targeted sequencing data, where a user-defined number of background sites could 
be specified for acquisition bias correction. Moreover, SIEVE’s applicability is not 
restricted to cancer samples, and it can also be used to trace lineages of healthy cells.

In the real data analysis we utilise the relaxed molecular clock model implemented in 
BEAST 2. This shows one of the advantages of SIEVE being a package of BEAST 2, and 
the potential of exploiting the functionality of other BEAST 2 packages in our model.

Conclusions
The SIEVE model successfully exploits raw read counts from scDNA-seq data and 
jointly infers phylogeny and variants. Our comprehensive simulations show that 
SIEVE can produce reliable cell phylogeny and somatic variants, facilitating the 
downstream analysis. With the advancement of scDNA-seq technology, we expect 
the improvement of the coverage quality where the inference of ADO states is reli-
able. Although we mainly illustrate the application of SIEVE to scDNA-seq data from 
tumours, it is applicable to studying evolution also in other tissues.

Methods
Single‑cell isolation, whole‑genome amplification and sequencing

We isolated EpCAM+ cells from one normal and three tumoural regions (TP: tumour 
proximal; TC: tumour central; TD: tumour distal) from the patient with a BD FAC-
SAria III cytometer. We successfully amplified the genomes of 28 tumour cells and 18 
normal cells with Ampli1 (Silicon Biosystems) and built whole-genome sequencing 
libraries using the KAPA (Kapa Biosystems) library kit. Each library was sequenced at 
≈6× on an Illumina Novaseq 6000 at the Spanish National Center of Genomic Analy-
sis (CNAG-CR; https://​www.​cnag.​crg.​eu/). We called this dataset CRC28.

Data preprocessing

For the public TNBC16  [42] and CRC48  [43] datasets, we downloaded the raw 
sequencing reads from the SRA database in FASTQ format. For the three datasets 
(CRC28, TNBC16 and CRC48) we trimmed the Illumina adapter sequences using 
cutadapt (version 1.18) and mapped reads to the 1000G Reference Genome hs37d5 
using BWA MEM (version 0.7.17). After de-duplication with Picard (version 2.18.14), 

https://www.cnag.crg.eu/
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we used GATK (version 3.7.0) for local realignment based on indel calls from the 
1000G Phase 1 and the Mills and 1000G gold standard. Subsequently, we recalibrated 
the base scores using GATK (version 4.0.10) with polymorphisms from dbSNP (build 
138) and indels from the 1000G Phase 1. Exact commands used to run the tools are 
featured in Supplementary Note.

SIEVE model

SIEVE is a statistical approach which combines a statistical phylogenetic model with 
a probabilistic model of raw read counts. We implement SIEVE under BEAST 2 [34], 
a popular Bayesian phylogenetic framework that uses Markov Chain Monte Carlo 
(MCMC) for the estimation of phylogenetic trees and model parameters.

Input data

SIEVE takes as input raw read counts of all four nucleotides at candidate SNV sites 
(Fig.  1a). Specifically, for cell j ∈ {1, . . . , J } at candidate SNV site i ∈ {1, . . . , I} , the 
input data to SIEVE is in the form of D(1)

ij = (mij , cij) , where mij = {mijk | k = 1, 2, 3} 
corresponds to the read counts of three alternative nucleotides with values in 
descending order and cij to the sequencing coverage for cell j and site i. Candidate 
SNV sites are defined as statistically significant SNVs that could potentially occur in 
single cells (see the “Candidate site identification” section).

For scWGS and scWES datasets, raw read counts from I ′ background sites are 
denoted D(2) . The number of background sites is used to correct acquisition bias (see 
the “SIEVE likelihood” section). For datasets lacking background information (for 
instance, from targeted sequencing), SIEVE accepts a user-specified number of back-
ground sites only for acquisition bias correction.

Candidate site identification

To identify candidate variant sites, we employ a strategy similar to SCIPhI [15]. Spe-
cifically, a likelihood ratio test is conducted for SNV detection, but with a modifica-
tion enabling to capture sites containing double mutant genotypes. To this end, the 
Beta-Binomial distribution is fitted with free mean and overdispersion parameters at 
each site across all cells with non-zero variant read counts, and the corresponding 
likelihood is denoted L1 . Next, another constrained Beta-Binomial distribution is fit-
ted using the same set of cells with fixed mean being 0.25 and free overdispersion, 
whose likelihood is denoted L0 . As a result, the test statistic −2 log L0

L1
 asymptotically 

follows the χ2 distribution with degrees of freedom being 1. The null hypothesis ( H0 ) 
is thus that the mean = 0.25 , and the alternative hypothesis ( H1 ) is that the mean 
 = 0.25 . A site is classified as candidate variant when the corresponding p-value is 
larger than 0.05 or the fitted mean is larger than 0.25. This analysis is performed on 
tumour cells. Normal cells are additionally used to filter out germline mutations. This 
candidate site identification procedure is implemented in a tool named DataFilter.

The sites identified by DataFilter are referred to as ‘candidate’ since they could 
sometimes be false discoveries due to technical errors in scDNA-seq. Moreover, the 
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actual variant calling, i.e. determination of whether the variant occurs in each of the 
candidate sites in each cell is performed by SIEVE, and not DataFilter. Notably, all 
other methods that identify evolutionary trees, including CellPhy [26], SiFit  [22], or 
SCIPhI [15], require an input either actual variants in each cell (CellPhy, SiFit) or the 
candidate variant sites (SCIPhI). The identification of these candidate sites is crucial 
for model performance, as it limits the number of sites where the variation may occur, 
which is much smaller compared to the full set of all possible sites.

Statistical phylogenetic model

The statistical phylogenetic model behind SIEVE includes an instantaneous transition 
rate matrix, which is defined by a continuous-time homogeneous Markov chain. We 
consider four possible genotypes G = {0/0, 0/1, 1/1, 1/1′} , where 0, 1, and 1′ are used 
to denote the reference nucleotide, an alternative nucleotide, and a second alternative 
nucleotide which is different from that denoted by 1, respectively. The fundamental 
evolutionary events we consider are single mutations and single back mutations. The 
former happen when 0 mutates to 1, or 1 and 1′ mutate to each other, while the latter 
occur when 1 or 1′ mutates to 0. Hence, genotypes 0/0 and 0/1 represent wildtype and 
single mutant genotypes, respectively, whereas genotype 1/1 and 1/1′ represent double 
mutant genotypes. We intentionally use the non-standard nomenclature of single and 
double mutants to discern important evolutionary events. In contrast, calling both 
0/1 and  1/1′ a heterozygous mutation genotype would be more standard and correct, 
but would not differentiate between the genotype that has only a single allele changed 
with respect to the reference (0/1) from the genotype that has two alleles changed 
( 1/1′ ). We only consider unphased genotypes, so we do not differentiate between 0/1 
and 1/0 or between 1/1′ and 1′/1.

The joint conditional probability of all cells at SNV site i having genotype 
gij ∈ G, j = 1, . . . , J  is determined according to the statistical phylogenetic model by

In Eq. (1), β represents the branch lengths measured by the expected number of somatic 
mutations per site and Q is the instantaneous transition rate matrix of the Markov chain. 
T  is the rooted binary tree topology, representing the genealogical relations among 
cells. We specifically require the root of T  to have only one child, representing the most 
recent common ancestor (MRCA) of all cells. The branch between the root and the 
MRCA is the trunk of the cell phylogeny. The trunk is one of novelties of our approach, 
introduced to represent the accumulation of clonal mutations (shared among all cells) 
in the initial phase of tumour progression. Therefore, with J existing cells, labelled by 
{1, . . . , J } , as leaves, T  has J internal hidden ancestor nodes, labelled by {J + 1, . . . , 2J } , 
and 2J − 1 branches, whose lengths are kept in β . The trunk is essential for T  to assure 
that the root, labelled by 2J, represents a normal ancestor cell even if the data only con-
tains tumour cells. Hence the genotype of the root for SNV site i, denoted gi,2J , is fixed 

(1)
P g

(L)
i T ,β ,Q, h, η =

g
(A)
i \gi,2J

P g
(L)
i , g

(A)
i \ gi,2J T ,β ,Q, h, η .
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to 0/0. g(L)i  represents the genotypes of J cells as leaves of T  , while g(A)i  is the genotypes 
of all ancestor cells as internal nodes of T  . Note that we marginalise the genotypes of 
the ancestor nodes except for the root. We also consider among-site substitution rate 
variation following a discrete Gamma distribution with mean equal 1, parameterised by 
the number of rate categories h and shape η [45]. T ,β , η in Eq. (1) are hidden variables, 
estimated using MCMC (see the “Posterior and MCMC” section), whereas h is a hyper-
parameter that is fixed (4 by default). Note that variant calling effectively corresponds to 
the determination of the values of the variables g(L)i .

In the transition rate matrix Q (Fig. 1c), each entry denotes a rate from one genotype 
to another during an infinitesimal time interval �t . Note that at most one change is 
allowed to occur in �t . For instance, the transition of 0/0 moving to 1/1 during �t is 
impossible as two single somatic mutations are required; thus, the corresponding transi-
tion rate is 0. The transition rate from genotype 0/0 to 0/1 represents the somatic muta-
tion rate and is set to 1. The back mutation rate is measured relatively to the somatic 
mutation rate and therefore is 1/3.

With the genotype state space G defined, for a given branch length β , the underlying 
four-by-four transition probability matrix R(β) of the Markov chain is represented using 
matrix exponentiation of the product of Q and β as R(β) = exp(Qβ) [27].

Model of raw read counts

The probability of observing the input data Dij for cell j at site i is factorised as

where the first component is the model of nucleotide read counts and the second the 
model of sequencing coverage.

Model of sequencing coverage  After single-cell whole-genome amplification (sc-WGA) 
some genomic regions are more represented than others. After scDNA-seq, this results 
in an uneven coverage along the genome, much more than in the case of bulk sequenc-
ing. Here, to model the sequencing coverage c in the presence of overdispersion, we 
employ a negative binomial distribution.

with parameters p and r. We reparameterise the distribution with p =
µ/σ 2 and 

r = µ2
/σ 2

−µ , where µ and σ 2 are the mean and the variance of the distribution of the 
sequencing coverage c, respectively.

Theoretically, each cell j at site i has its specific µij and σ 2
ij parameters, which, however, 

are impossible to be estimated freely. Hence, we make additional assumptions and pool 

(2)P(Dij) = P(mij | cij)P(cij),

(3)P(c | p, r) =

(

c + r − 1
r − 1

)

pr(1− p)c,
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the data for better estimates, adapting the approach of [46]. We assume that µij and σ 2
ij 

have the following forms, respectively:

In Eq.  (4), t is the mean of allelic coverage (the expected coverage per allele) and v is 
the variance of allelic coverage. We estimate t and v with MCMC (see the  “Posterior 
and MCMC” section). αij ∈ {1, 2} is a hidden random variable denoting the number 
of sequenced alleles for cell j at site i. According to the statistical phylogenetic model, 
both alleles are expected to be sequenced. However, due to the frequent occurrence of 
allelic dropout (ADO) during scWGA, there are cases where only one allele is amplified 
and therefore αij is 1. Equation (4) reflects the fact that the expected sequencing cover-
age and its raw variance are proportional to the number of sequenced alleles. Note that 
inferring the hidden variable αij corresponds to identifying occurrences of ADO events, 
and hence the ability of SIEVE to perform ADO calling. We denote the prior distribution 
of αij

where θ is a parameter corresponding to the the probability of ADO occurs, i.e. the ADO 
rate, which is estimated using MCMC.

In Eq. (4), sj is the size factor of cell j which makes sequencing coverage from dif-
ferent cells comparable and is estimated directly from the sequencing coverage using

where J ′ is the number of cells with non-zero coverage at a site. By taking into account 
only the non-zero values, the estimate ŝj is not affected by the missing data, which is 
prevalent in scDNA-seq.

(4)
µij = αijtsj ,

σ 2
ij = µij + α2

ijvs
2
j .

(5)
{

P(αij = 1 | θ) = θ , if ADO occurs,
P(αij = 2 | θ) = 1− θ , otherwise,

(6)

ŝj = median
i:cij �=0

cij






�J ′

j′ = 1
cij′ �= 0

cij′







1
J ′

,

Table 2  Definition of the distribution of g′ij conditional on gij and αij

g′ij gij αij P(g′ij | gij ,αij)

0/0 0/0 2 1

0/- 0/0 1 1

0/1 0/1 2 1

1/1 1/1 2 1

1/- 1/1 1 1

1/1′ 1/1′ 2 1

1/- 1/1′ 1 1

0/- 0/1 1 1/2

1/- 0/1 1 1/2

Others 0
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Model of nucleotide read counts  We denote the genotype affected by ADO 
g ′ij ∈ G

⋃

{0/-, 1/-} , where 0/- and 1/- are the results of ADO occurring to gij . For 
instance, 0/- is caused either by 0 dropped out from 0/0 or by 1 dropped out from 0/1. 
Then the probability of g ′ij is denoted by

which is defined at length in Table 2.

We model the read counts of three alternative nucleotides mij given the sequencing cov-
erage cij with a Dirichlet-multinomial distribution as

with parameters aij = {aijk | k = 1, . . . , 4} and aij0 =
∑4

k=1 aijk . F is a function in the 
form of

where B is the beta function. Note that cij −
∑3

k=1mijk is the read count of the reference 
nucleotide.

To improve the interpretation of Eq.  (8), we reparameterise it with aij = wijf ij , where 
f ij = {fijk | k = 1, . . . , 4},

∑4
k=1 fijk = 1 is a vector of expected frequencies of each nucleo-

tide and wij represents overdispersion. f ij are categorical hidden variables dependent on g ′ij:

where f is the expected frequency of nucleotides whose existence is solely due to techni-
cal errors during sequencing. To be specific, f is defined as the effective sequencing error 
rate including amplification (where a nucleotide is wrongly amplified into another one 
during scWGA) and sequencing errors.
wij is also a categorical hidden variable dependent on g ′ij:

where w1 is wildtype overdispersion and w2 is alternative overdispersion.

(7)P
(

g ′ij

∣

∣

∣
gij ,αij

)

,

(8)P(mij | cij ,aij) =
F(cij , aij0)

∏3
k=1:mijk>0 F(mijk , aijk)F(cij −

∑3
k=1mijk , aij4)

,

(9)F(x, y) =

{

xB(y, x), if x > 0,
1, otherwise,

(10)f ij =































f 1 =

�

1
3 f ,

1
3 f ,

1
3 f , 1− f

�

, if g ′ij = 0/0 or 0/-,

f 2 =

�

1
2 −

1
3 f ,

1
3 f ,

1
3 f ,

1
2 −

1
3 f
�

, if g ′ij = 0/1,

f 3 =

�

1− f , 13 f ,
1
3 f ,

1
3 f
�

, if g ′ij = 1/1 or 1/-,

f 4 =

�

1
2 −

1
3 f ,

1
2 −

1
3 f ,

1
3 f ,

1
3 f
�

, if g ′ij = 1/1′,

(11)wij =

{

w1, if g
′

ij = 0/0, 0/-, 1/1, or 1/-,

w2, if g
′

ij = 0/1 or 1/1′,
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By plugging in Eqs. (10) and (11), (8) is equivalently represented with

Note that P0/0 and P0/- share the same f  and w1 , showing that the model of nucleotide 
read counts is not enough to discriminate 0/0 from 0/- , and so do P1/1 and P1/- . In such 
cases, incorporating the model of sequencing coverage helps resolve the entanglement.

To understand Eq. (12), first take P0/0 as an example. Theoretically, no alternative 
nucleotides are supposed to exist if no technical errors occur. Thus, any observa-
tions of any alternative nucleotides can only result from technical errors, and the 
expected frequency of the reference nucleotide is accordingly adjusted to 1− f  . For 
another example P0/1 , say the reference nucleotide is A and the alternative nucleo-
tide is C, and both their read count frequencies are supposed to be 1/2 if no technical 
errors occur. For the other two alternative nucleotides, G and T, their observations 
could only result from technical errors, and both their frequencies are f/3 . Moreo-
ver, either A or C may be sequenced as a different nucleotide (each with probability 
1/2). In the former case, the frequency of A decreases by f/2 . In the latter case, if C is 
sequenced as A (with probability f/3 ) the frequency of A increases by 1/2 × f/3 . Over-
all, the frequency of A decreases by f/3 , resulting in 1/2 − f/3.

f, w1 and w2 in Eq. (12) are estimated with MCMC.

SIEVE likelihood

We denote the conditional variables in Eq.  (1) as � = {T ,β ,Q, h, η} and those in the 
model of raw read counts as � = {t, v, θ , f ,w1,w2} . Given the input data D(1) and D(2) , 
the log-likelihood of the SIEVE model is

where L(1) is the tree likelihood corrected for acquisition bias computed from candidate 
SNV sites in D(1) , while L(2) is the likelihood computed from background sites in D(2) , 
referred to as the background likelihood. Equation (13) does not contain gij , g ′ij ,αij since 
they are marginalised out (see below).

Since we only use data from SNV sites to compute the tree likelihood, the tree branch 
lengths β are prone to be overestimated [29, 30]. The overestimation of β due to only 
using data from SNV sites is called acquisition bias, which is corrected in SIEVE 
according to  [47]:

(12)P(mij|cij , g
′

ij , f ,wij) =












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







































P0/0 = P
�

mij

�

� cij , g
′

ij = 0/0, f 1,w1

�

,

P0/- = P
�

mij

�

� cij , g
′

ij = 0/-, f 1,w1

�

,

P0/1 = P
�

mij

�

� cij , g
′

ij = 0/1, f 2,w2

�

,

P1/1 = P
�

mij

�

� cij , g
′

ij = 1/1, f 3,w1

�

,

P1/- = P
�

mij

�

� cij , g
′

ij = 1/-, f 3,w1

�

,

P1/1′ = P
�

mij

�

� cij , g
′

ij = 1/1′, f 4,w2

�

.

(13)logL(�,�) = logL(1)(�,�)+ logL(2)(f ,w1),

(14)logL(1)
= log P

(

D
(1)

∣

∣

∣�,�
)

+ I ′ log

(

1

I

I
∑

i=1

Ci

)

,
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where the first component is the uncorrected tree log-likelihood for SNV sites, and Ci 
in the second component is the likelihood of SNV site i being invariant (see below). The 
regularisation term I ′ log

(

1
I

∑I
i=1 Ci

)

 renders SIEVE in favour of trees with short branch 
lengths where L(1) is large due to the increasing averaged C.

To compute the uncorrected tree log-likelihood, we marginalise out αij and g ′ij:

where P0/0,P0/-,P0/1,P1/1,P1/-,P1/1′ are defined in Eq. (12) and P
(

g ′ij

∣

∣

∣ gij ,αij

)

 is defined 

in Eq.  (7). In the second line of Eq.  (15), the probability is factorised out according to 
Fig. 1b.

To compute log P
(

D(1)
∣

∣�,�
)

 in Eq. (14), we assume that the SNV sites evolve inde-
pendently and identically. By plugging Eqs. (1) and (15), log P

(

D(1)
∣

∣�,�
)

 is denoted by

which is efficiently computed out by Felsenstein’s pruning algorithm [48], with the exten-
sion of the model of raw read counts applied on leaves. Specifically, the Fenselstein’s 
pruning algorithm is applied to an extended tree T  , where additional leaf nodes cor-
responding to the data are attached at the bottom of T  : for each node corresponding to 
genotype gij there is a leaf node added, corresponding to data (mij , cij) , and the transition 

(15)

P(mij , cij|gij ,�) =P(mij , cij|gij , f ,wij , t, v, θ)
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+ P0/- · P(cij |αij = 1, t, v) · θ , if gij = 0/0,
P0/1 · P(cij |αij = 2, t, v) · (1− θ)

+

1

2
(P0/- + P1/-) · P(cij|αij = 1, t, v) · θ , if gij = 0/1,
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probability between the genotype node and the leaf is given by Eq. (15). For I candidate 
SNV sites, J cells and K genotype states in G (for SIEVE K = 4 ), the time complexity of 
Felsenstein’s pruning algorithm is O(IJK 2).
Ci in Eq. (14) is determined similarly to Eq. (16) by computing the joint probability of 

observing the data D(1)
i  and g(L)i = 0/0:

Formally, to compute the background likelihood, we should account for the fact that the 
background sites, similarly to the variant sites, also evolve under the phylogenetic model 
and involve similar computations as above. This, however, would result in a large addi-
tional computational burden due to the large number of background sites compared to 
the variant sites. Thus, to estimate the background log-likelihood efficiently, we make 
several simplifications and compute it only approximately. First, we assume that across 
I ′ background sites each cell has the same genotype 0/0 and both alleles are covered. We 
further ignore the model of sequencing coverage and the tree log-likelihood in the com-
putations. As a result, by employing an alternative expression of Dirichlet-multinomial 
distribution logL(2) is efficiently obtained as

(17)
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where P0/0 is defined in Eq. (12). Nc , Nmk
 for k = 1, 2, 3 and N

c−
∑3

k=1 mk
 represent, across 

I ′ background sites and J cells, the unique occurrences of sequencing coverage c, of alter-
native nucleotide read counts m1,m2,m3 , and of reference nucleotide read counts 
c −

∑3
k=1mk , respectively. In Eq. (18), some items, namely log Ŵ(c + 1) , − log Ŵ(mk + 1) 

for k = 1, 2, 3 , and − log Ŵ
(

c −
∑3

k=1mk + 1
)

 , only depends on the data, which remain 
constants during MCMC. Therefore, they are ignored in the computation of background 
likelihood. It is clear that the background likelihood helps estimate f and w1.

The time complexity of Eq.  (18) is O(c) with c being the number of unique values of 
sequencing coverage across all cells and background sites. Since IJK 2 is usually much larger 
than c, the overall time complexity of model likelihood is O(IJK 2).

Priors

To define priors for model parameters and for the tree coalescent, we employ the prior dis-
tributions defined in BEAST 2. We impose on T  and β in Eq. (1) a prior distribution fol-
lowing the Kingman coalescent process with an exponentially growing population. The tree 
prior is parameterised by scaled population size M and exponential growth rate q, and is 
denoted by

whose analytical form is defined in [49]. M and e are hidden random variables and are 
estimated using MCMC. Note that, by default, M represents the number of time units, 
e.g. the number of years, and the mutation rate is measured by the number of mutations 
per time unit per site. Their product results in the unit of branch length, i.e. the number 
of mutations per site. Since scDNA-seq data usually does not contain temporal informa-
tion as a result of collecting samples at the same time, it is impossible to differentiate M 
from the mutation rate. However, if the mutation rate is known, one could alternatively 
estimate a time-calibrated cell phylogeny.

As prior distributions, we assign to M

where δ is the current proposed value of M. Note that this is supposed to be normalised 
to define a proper probability distribution, but this form is sufficient to define a proper 
posterior (see the “Posterior and MCMC” section).

For e, we choose

where we choose mean � = 10−3 and scale ǫ = 30.7 (default in the BEAST 2 software). 
We choose an exponential distribution as the prior for η in Eq. (1):

where γ = 1.
For the model of sequencing coverage described in Eqs. (3) and (4), we set the prior for t 

within a large range of values with

(19)P(T ,β |M, e),

(20)P(M | δ) =
1

δ
,

(21)e | �, ǫ ∼ Laplace(�, ǫ),

(22)η | γ ∼ exp(γ ),
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where ρ = 1000 , and the prior for v with

where ζ = 25 . In terms of θ in Eq. (5), it also has a uniform prior:

where u = 1.
For the model of nucleotide read counts described in Eqs. (10) to (12), we choose an 

exponential prior for f:

where τ = 0.025 , and a log normal prior for both w1 and w2:

where we choose for w1 the log-transformed mean ξ1 = 3.9 (150 for untransformed) and 
the standard deviation ψ1 = 1.5 , and for w2 the log-transformed mean ξ2 = 0.9 (10 for 
untransformed) and the standard deviation ψ2 = 1.7 . Specifically, the mean is log-trans-
formed using

These specific values reflect our belief that w1 is greater than w2 , and are chosen in such a 
way that both distributions cover a large range of possible values for w1 and w2.

Posterior and MCMC

With the model likelihood and priors defined, the posterior distribution of the unknown 
parameters is

where Z is a normalisation constant, representing the probability of the observed data.
Since the posterior distribution does not have a closed-form analytical formula, we employ 

the MCMC algorithm with Metropolis-Hastings kernel to sample from the posterior distri-
bution in Eq. (28). Given the current state of the parameters q, we propose a new state q∗ 
according to proposal distributions P(q∗|q) that assure the reversibility and ergodicity of the 
Markov chain. With one parameter changed a time, q∗ is accepted with probability

(23)t | ρ ∼ Uniform(0, ρ),

(24)v | ζ ∼ exp(ζ ),

(25)θ |u ∼ Uniform(0,u),

(26)f | τ ∼ exp(τ ),

(27)
w1 | ξ1,ψ1 ∼ Log-Normal(ξ1,ψ1),

w2 | ξ2,ψ2 ∼ Log-Normal(ξ2,ψ2),

ξtransformed = log(ξuntransformed)−
ψ2

2
.

(28)

P
(

T ,β ,M, e, η, t, v, θ , f ,w1,w2

∣

∣D
(1),D(2)

)

=

1

Z
P
(

D
(1),D(2)

∣

∣

∣ T ,β , η, t, v, θ , f ,w1,w2

)

× P(T ,β |M, e)P(M | δ)P(e | �, ǫ)P(η | γ )

× P(t | ρ)P(v | ζ )P(θ |u)P(f | τ )

× P(w1 | ξ1,ψ1)P(w2 | ξ2,ψ2),
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where the normalisation constant Z cancels out after plugging in Eq. (28).
For sampling the structure of the cell phylogeny, we take advantage of proposal distri-

butions implemented in the BEAST 2 software [49] and modify them to make sure they 
are compatible with our tree topology, so that the sampled trees are binary and contain 
a trunk. Specifically, the tree branch lengths are changed by scaling the heights of the 
internal nodes. For tree topological exploration, we use the Wilson-Balding move to per-
form subtree pruning and regrafting. Specifically, a random node and half of its subtree 
is pruned and reattached to a random branch not belonging to the moved subtree. A 
subtree-slide move is also used, where a random node and half of its subtree slides either 
upwards or downwards along branches and cross at least one node. Both those two 
moves include changes to the lengths of some branches. The final type of move swaps 
two randomly selected subtrees.

For sampling unknown parameters, we perform either scaling operations or random 
Gaussian walks.

SIEVE runs with a two-stage sampling strategy. In the first stage the acquisition bias 
correction is switched off and all parameters are explored, while in the second stage the 
acquisition bias correction is turned on and parameters not affecting branch lengths 
are fixed with their estimates from the previous stage. This two-stage strategy proved to 
yield more accurate parameter and tree estimates than a strategy where both parameters 
and tree would be explored at once, with the acquisition bias correction enabled. Addi-
tionally, the initial tree in the second stage is set to the tree summarised from the first 
stage.

Variant calling, ADO calling, maximum likelihood gene annotation and mutation event 

classification

During the sampling process g(L)i  , g(A)i  , g ′ij and αij (Eqs. (1), (15) and (16)) are hidden 
variables that are marginalised out. Therefore, to obtain estimates of these hidden varia-
bles, we infer their maximum likelihood configuration with the max-sum algorithm [50], 
using the maximum clade credibility tree  [51] and parameters estimated from the 
MCMC posterior samples.

To be specific, by determining the maximum likelihood genotypes of the leaves ( g(L)i  ), 
we are able to call variants. By inferring the maximum likelihood g ′ij and αij , the ADO 
state is determined. Moreover, by computing the maximum likelihood genotypes of the 
internal nodes ( g(A)i  ), SIEVE maps mutations to specific tree branches.

Mutation events are classified into different categories based on the correspond-
ing genotype transitions (see Table 1). The single mutation ( 0/0 → 0/1 ) happens when 
an allele of the wildtype is mutated. The homozygous coincident double mutation 
( 0/0 → 1/1 ) refers to the case when both alleles of the wildtype are mutated to the same 
alternative nucleotide, while the heterozygous coincident double mutation ( 0/0 → 1/1′ ) 
refers to the case when both alleles of the wildtype are mutated to different alternative 
nucleotides. The single back mutation ( 0/1 → 0/0 , 1/1 → 0/1 and 1/1 → 0/1 ) hap-
pens when a mutated allele mutates back to the reference nucleotide, while the double 

(29)min

{

1,
P
(

T ∗,β∗,M∗, e∗, η∗, t∗, v∗, θ∗, f ∗,w∗

1 ,w
∗

2

∣

∣D(1),D(2)
)

P(q | q∗)

P
(

T ,β ,M, e, η, t, v, θ , f ,w1,w2

∣

∣D(1),D(2)
)

P(q∗ | q)

}

,
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back mutation ( 1/1 → 0/0 and 1/1′ → 0/0 ) happens when both mutated alleles mutate 
back to the reference nucleotide. The homozygous single mutation addition ( 0/1 → 1/1 ) 
refers to the case when the unmutated allele of the single mutant genotype mutates to 
the same alternative nucleotide as the mutated allele, while for the heterozygous single 
mutation addition ( 0/1 → 1/1′ ) the unmutated allele mutates to an alternative nucleo-
tide different from the mutated allele. For the homozygous substitute single mutation 
( 1/1′ → 1/1 ), one of the mutated alleles mutates to the same alternative nucleotide as the 
other mutated allele, while for the heterozygous substitute single mutation ( 1/1 → 1/1′ ) 
one of the mutated alleles mutates to another alternative nucleotide.

Summary of model assumptions

Taken together, SIEVE makes several assumptions about the evolutionary process 
behind the observed single cell data. First, the model assumes that the genome is dip-
loid. This assumption stands behind most of our model equations. In order not to violate 
this model assumption, one should pre-process the data to exclude non-diploid regions. 
On the other hand, this comes with the cost of excluding sites in these regions. Leav-
ing such sites introduces discrepancy with the assumption, but might give more statisti-
cal power for model inference. Thus, we leave this decision of excluding copy number 
altered regions as a preprocessing step to the user.

Another important assumption, made by most methods for phylogenetic reconstruc-
tion, is that the sites are independently affected by the mutational process. This assump-
tion is key to computational performance, as it allows to factorise the model likelihood 
across the sites.

One more assumption made behind SIEVE is that the phylogenetic tree has a trunk, 
which connects a healthy cell as the root and its only child as the MRCA of all cells in 
the data. When there are only tumour cells in the data, the MRCA represents the first 
tumour cell founding the tumour tissue, and since many clonal mutations accumulate 
during the foundation process of tumour, the trunk is expected to be long. When both 
healthy and tumour cells are available, the MRCA is also a healthy cell, and since only 
very few, if any, mutations accumulate between two healthy cells, the trunk is expected 
to be short. The incorporation of the trunk comes in handy in practice not only because 
it can help to identify normal cells mixed with tumour cells, but also because an out-
group is not needed to root the tree.

Finally, SIEVE follows the finite sites assumption (FSA), which is both more general 
and more plausible than the infinite sites assumption (ISA). Events violating the ISA are 
expected biologically and probabilistically [32, 33]. It is important to note that per defi-
nition, SIEVE and other models that follow the FSA are well suited to model both cases 
(when ISA is violated and not). More specifically, the ISA is a special case of the FSA, so 
the models that follow the FSA also account for the ISA.

Summary of evolutionary features accounted for by the model

In contrast to other models, SIEVE is able to identify 12 types of genotype transitions, 
corresponding to nine types of mutation events (Table 1). Moreover, when such events 
affecting the same site are detected on more than one branch, our model is able to detect 
parallel evolution. This is because SIEVE considers four genotype states (0/0, 0/1, 1/1, 
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1/1′ ) and is based on the underlying Markov process model that follows the FSA. Among 
those nine mutation events, only one of them, namely the single mutation, correspond-
ing to the transition from genotype state 0/0 to 0/1, is accounted for by models that fol-
low the ISA. Moreover, SiFit, which follows the FSA but has a restricted genotype state 
space compared to SIEVE, is also unable to identify all 12 genotype transitions that are 
detectable by SIEVE.

Moreover, SIEVE’s another feature is its compatibility with molecular clock mod-
els implemented in BEAST 2, including the strict, relaxed and random local molecular 
clock model [52, 53]. The use of these models opens the door for the estimation of diver-
gence times (event timing) and substitution rates using sound statistical models.

Importantly, we separate these features from model assumptions, as these are proper-
ties that SIEVE supports in an unforced manner. For instance, SIEVE is able to identify 
12 genotype transitions, but not all of them are necessarily to appear on the tree.

ScDNA‑seq data simulator

In order to benchmark the performance of SIEVE against those of other published meth-
ods, we simulated scDNA-seq data by modifying CellCoal  [54] (commit 594e063). In 
contrast to CellCoal, the sequencing coverage is generated according to Eqs. (3) to (6). 
Given the sequencing coverage, read counts are simulated with a Multinomial distribu-
tion including errors. Input configuration follows the one described for CellCoal [54].

The simulator mimics both the biological evolution and the sequencing process. We 
first generated a binary genealogical cell lineage tree following the coalescent process 
assuming a strict molecular clock and created a reference genome where each site was 
initialised by the reference genotype with one of the four nucleotides. With a specific 
mutation rate, each site was evolved independently along the tree according to a rate 
matrix which contains ten diploid genotypes encoded with nucleotide pairs (Additional 
file 1: Table S4). The rate matrix allows mutations and back mutations, where the prob-
ability of the latter is 1/3 of the former. All simulated sites for which at least one cell has 
a non-reference genotype are considered as true SNV sites. Next, we added at most 
one ADO to cell j at site i according to the ADO rate. If ADO happens, the number of 
sequenced alleles αij drops from two to one. We recorded the true ADO states across 
cells for the SNV sites. Size factors for cells in Eq. (4) were sampled from a normal distri-
bution (mean = 1.2, variance = 0.2). Using the negative binomial distribution, we simu-
lated the sequencing coverage with given t and v. Based on the ADO-affected genotype 
and sequencing coverage, the read count for each nucleotide was simulated using a Mul-
tinomial distribution with a given amplification error rate and sequencing error rate.

Simulation design

We designed simulations to compare multiple methods in different aspects. The bench-
marking framework was built using Snakemake [55].

Simulations only considering SNVs

We assumed that the tumour cell samples belonged to an exponentially growing population 
(growth rate = 10−4 ) with an effective population size of 104 . The number of tumour cells 
was chosen to be either 40 or 100. We selected three mutation rates: 10−6 , 8× 10−6 and 
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3× 10−5 . For different mutation rates, different total number of sites were chosen to result 
in around 1000 SNV sites for 100 cells ( 1.3× 105 sites for 10−6 , 2× 104 sites for 8× 10−6 , 
and 6.5× 103 sites for 3× 10−5 ), as well as between 250 and 1000 SNV sites for 40 cells 
( 8× 104 sites for 10−6 , 2× 104 sites for 8× 10−6 and 5× 103 sites for 3× 10−5 ). Addition-
ally, we varied t and v in Eqs. (3) and (4) to simulate different coverage qualities. For high 
quality data, we chose high mean ( t = 20 ) and low variance ( v = 2 ) of allelic coverage. For 
medium quality data, we chose high mean ( t = 20 ) and medium variance ( v = 10 ). For low 
quality data, we chose low mean ( t = 5 ) and high variance ( v = 20 ), which was specifically 
created to mimic the CRC28 dataset.

Other important parameters in the simulation were fixed as follows: in Eq. (5) θ = 0.163 , 
in Eq. (12) w1 = 100 and w2 = 2.5 , and both amplification error rate and sequencing error 
rate were 10−3 , which resulted in the effective sequencing error rate f ≈ 2× 10−3 in 
Eq. (12).

We designed in total 18 simulation scenarios, each repeated 20 times.

Simulations considering both SNVs and CNAs

To add CNAs, we selected a set of datasets generated as described above, using the fol-
lowing parameters: 40 cells, medium mutation rate ( 8× 10−6 ) and medium coverage qual-
ity ( t = 20, v = 10 ). Two levels of CNA prevalence were simulated: around 1/3 or 2/3 of all 
genomic sites. A site could contain CNAs occurring at an early or at a late stage during the 
evolutionary process with equal probabilities, and the corresponding number of CNAs was 
sampled in {0, 1, 3, . . . , 10} . For a site containing early stage CNAs, the probability of a cell 
carrying such events was sampled uniformly from the [ 2/3, 1 ] interval, while for late stage 
CNAs the probability was sampled from the ( 0, 1/3 ] interval. If a site in a cell was sampled 
to be affected by CNAs, a specific allele was selected for CNA with probability 0.5. To this 
end, if the sampled CNA value was 0, the read counts for the site and the cell was simply set 
to 0. Otherwise, we directly manipulated the simulated read counts of the chosen allele by 
multiplying the CNA value minus one, where the one CNA copy was retained for the other 
unchosen allele.

The simulated datasets after adding CNAs were stored in two versions: with or without 
genomic sites containing CNAs, both of which were used as input for all methods.

It is important to note that in these simulations, the CNAs were added independently of 
the phylogenetic structure. It is thus expected that we were simulating the most pessimistic 
scenario, as CNAs introducing bias in the data in the same way for phylogenetically related 
cells could in fact help with better phylogeny reconstruction.

Measurement of cell phylogeny accuracy and quality of variant calling

To assess the accuracy of the cell phylogeny reconstruction considering branch lengths, we 
computed the BS distance from the inferred tree to the true tree [35]. For any two trees, this 
difference is computed as:

(30)dBS =
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∑
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where l(s)ji  represents the length of a branch shared by both trees, and l(u)ji  represents the 
length of a branch i that is unique for tree j.

To assess the accuracy of the cell phylogeny reconstruction ignoring branch lengths we 
used the normalised RF distance [36]:

where nj denotes the total number of branches in tree j, while n(u)j  represents the number 
branches exclusive of tree j.

Thus, BS distance and normalised RF distance values equal to 0 indicate a perfect tree 
reconstruction. For SIEVE and SiFit, we compute both normalised RF distance and BS 
distance in the rooted tree mode. For CellPhy, we compute these metrics in the unrooted 
tree mode as it infers an unrooted tree from data only containing tumour cells. Since 
SCIPhI reports a rooted tree without branch lengths, we can only compute the normal-
ised RF distance. BS distance and normalised RF distance values were computed using 
the R package phangorn [56].

To evaluate the variant calling and ADO calling results, we computed precision, recall, 
F1 score and false positive rate (FPR). For variant calling, we separately compared the 
performance in calling the single mutant genotype and double mutant genotypes. In 
particular, when we evaluated the accuracy of single mutant genotype calling, any identi-
fication of double mutant genotypes whose true genotype is single mutant genotype was 
counted as a false negative. Moreover, we analysed two different types of false positives 
in single mutant genotype calling. The first type corresponds to single mutant calls for 
sites where the true genotype is a wildtype genotype. The second type are single mutant 
calls for sites where the true genotype is a double mutant.

For SIEVE and Monovar, we computed the recall, precision, F1 score, and FPR for sin-
gle mutant genotype calling and double mutant genotype calling. For SCIPhI, we only 
computed metrics for single mutant genotype calling as it does not call double mutant 
genotypes. Moreover, we evaluated the accuracy of calling ADO states only for SIEVE, 
as it is the only method that is able to call them.

Configurations of methods

For Monovar (commit 68fbb68), we used the true values of θ and f as priors for false 
negative rate and false positive rate and default values for other options.

For SCIPhI (commit 34975f7), we ran it with default options and 5× 105 iterations.
To run CellPhy (commit 832f6c2) and SiFit (commit 9dc3774), we fed the required 

data with variants called by Monovar. For CellPhy, we piped the data in VCF format and 
initialised the tree search with three parsimonious trees. We instructed the tool to use 
a built-in rate matrix with ten genotypes (GT10), a stationary nucleotide frequency dis-
tribution learned from the data (FO), an error model applied to the leaves (E), and the 
Gamma model of site-wise substitution rate variation (G). For SiFit, we fed the input 
data as a ternary matrix and used the true values of θ and f as the prior for false negative 
rate and the estimated false positive rate, respectively. We ran it with 2× 105 iterations.

(31)dRF =

n
(u)
1 + n

(u)
2

n1 + n2
,
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On the simulated data, we ran SIEVE with a strict molecular clock model for 2× 106 
and 1.5× 106 iterations for the first and the second sampling stage, respectively. On the 
real datasets, we used a log-normal relaxed molecular clock model to take into consid-
eration branch-wise substitution rate variation. To achieve better mixed Markov chains, 
we employed a optimised relaxed clock model in  [37] instead of the default one in 
BEAST 2.

Since more parameters are added when using the relaxed molecular clock model, we 
ran the analysis with 3× 106 iterations for the first stage and 2.5× 106 iterations for 
the second, respectively. Note that the parameters introduced by the relaxed molecular 
clock model are also explored in the second sampling stage. The SNVs were then anno-
tated using Annovar (version 2020 Jun. 08) [57]. In the main text, the tree was plotted 
using ggtree [58] and the genotype heatmap was plotted using ComplexHeatmap [59].

Run time analysis

Repeated five times, we used a simulation scenario with the following parameters for 
run time analysis: medium mutation rate ( 8× 10−6 ) and medium coverage quality 
( t = 20, v = 10 ). SiFit and SCIPhI were run in the default, single-thread mode, while 
CellPhy and SIEVE were run in both single- and multi-thread mode, where different 
numbers of threads were provided to achieve their highest efficiency. SiFit, SCIPhI 
and the two stages of SIEVE were run for 106 iterations, respectively. With bootstrap 
applied, CellPhy was run with the default setting (a maximum of 1000 replicates with 
a possible early-stopping). This analysis was performed on a server with 64 cores 
(AMD Ryzen Threadripper 3990X 64-Core Processor) and 256 GB memory.
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