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Abstract

A cornerstone of clinical medicine is intervening on a continuous exposure, such as titrating 

the dosage of a pharmaceutical or controlling a laboratory result. In clinical trials, continuous 

exposures are dichotomized into narrow ranges, excluding large portions of the realistic treatment 

scenarios. The existing computational methods for estimating the effect of continuous exposure 

rely on a set of strict assumptions. We introduce new methods that are more robust towards 

violations of these assumptions. Our methods are based on the key observation that changes of 

exposure in the clinical setting are often achieved gradually, so effect estimates must be “locally” 

robust in narrower exposure ranges. We compared our methods with several existing methods on 

three simulated studies with increasing complexity. We also applied the methods to data from 14k 

sepsis patients at M Health Fairview to estimate the effect of antibiotic administration latency 

on prolonged hospital stay. The proposed methods achieve good performance in all simulation 

studies. When the assumptions were violated, the proposed methods had estimation errors of one 

half to one fifth of the state-of-the-art methods. Applying our methods to the sepsis cohort resulted 

in effect estimates consistent with clinical knowledge.

Index Terms—

Causal effect estimation; Causal inference; Continuous exposure; Sepsis; Time to treatment

I. INTRODUCTION

Estimating the effect of exposures and interventions on outcomes is one of the cornerstones 

of biomedical research. When the exposure is binary, a multitude of effective methods 

exist. However, the exposures of interest in biomedicine are often continuous. For example, 
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the effect of A1c value on cardiovascular risk [14], [38], the effect of time to antibiotics 

on sepsis-related adverse outcomes [27], [32], [41], and the effect of potassium level on 

mortality due to acute myocardial infarction [13] are all examples of continuous exposures. 

Quantifying the effect of continuous exposures remains a challenge.

Randomized clinical trials (RCT) are considered the gold standard for estimating the effect 

of interventions. For some questions, however, the use of RCTs would be deemed unethical, 

and even when RCTs are applicable, they have difficulty handling continuous exposures. 

Typically, the exposure is dichotomized into two clinically meaningful narrow ranges to 

compare. In a diabetes example [38], patients with A1c of 6.0% (intensive control) are 

compared to patients with A1c between 7.0 and 7.9% (standard control) in terms of 

cardiovascular outcomes. The desired interpretation is that more intensive A1c control 

(being in the 6.0% range as opposed to the 7.0–7.9% range) leads to lower cardiovascular 

risk. Unfortunately, this leaves gaps in our knowledge about the potential benefit of the 

intervention in patients who are outside the range of exposure. Patients with A1c levels far 

in excess of 8% could potentially also benefit from more intensive control, however reducing 

their A1c to 6.0% may not be safe or even possible. To experimentally determine the effect 

of reducing A1c along the entire range of A1c measurements would require multiple RCTs.

In lieu of running multiple RCTs, effects can be estimated from observational studies. These 

studies, in turn, suffer from their own problems. Key among these problems is confounding, 

when the contribution of observed (or unobserved) variables is incorrectly attributed to the 

exposure. To overcome this problem, a vast array of causal modeling techniques have been 

developed. These techniques are used for better prediction [7], [12], [30], [39], learning the 

causal mechanisms underlying the data [11], [31], [33], [36], and estimating the effect of 

exposures or interventions on outcomes [8], [23], [32] in a broad range of contexts including 

time-series data (e.g. Granger causality in [12]), longitudinal data [30], pre-post analyses 

[29], retrospective subpopulation analysis [43], and propensity score (PS) analysis using 

aggregated Electronic Health Records (EHR) data [8].

In this paper, our focus is on estimating the effect size of a continuous exposure variable E 
on an outcome variable Y. We consider the most common study design in observational 

EHR data, where patients’ longitudinal data is aggregated into a single cross section. 

Commonly applied effect estimation methods include the basic Direct Adjustment (DA) 

method (our implementation is equivalent to G-computation method in [3]) and methods of 

the Generalized Propensity Score (GPS) class, which were first introduced as extensions of 

the binary exposure problem [35] to the continuous exposure [19], [22].

These methods critically depend on three assumptions, which are often violated in practice, 

yielding potentially misleading results or results that hold no clinical value.

Common support.

Common support assumes that patients who are identical, except for their exposure level, 

exist along the entirety of the exposure range. Returning to the A1c example, the common 

support assumption implies that there are patients along the entire A1c range, who are 

comparable in all respects relevant to A1c and the outcome, and only differ in their A1c 
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levels. The common support assumption is often violated at the extreme values of the 

exposure range: e.g. patients with normal A1c and those with excessively high A1c are 

typically not comparable; disease in the latter patients has progressed beyond comparability.

Validity of the outcome model.

A popular and straightforward method to estimate the effect of a continuous exposure on 

an outcome is to regress the outcome on the continuous exposure and potential confounders 

[13]. After acquiring this model, the average effect size between two levels of exposure can 

be estimated as the average of the difference in model predictions calculated at these two 

levels. Correct effect estimation is dependent on the correct specification of the outcome 

model, which could be a difficult task for real world problems where complex and non-

linear relationships exist.

Validity of the propensity model.

Many of the methods that adjust for confounding utilize propensity scores to this end. The 

use of propensity score methods can allow us to sidestep issues regarding the validity of the 

outcome model as long as the propensity model itself is correctly specified. However, the 

correct specification of the propensity model can be challenging when explicit knowledge 

about the causal mechanism is absent.

Many recent methods that are technically in the GPS class [6], [10], [18], [24], [44], [45], 

either try to estimate only a single global propensity model and/or a single outcome model, 

and assume global common support. The term global refers to the requirement that common 

support exists throughout the entire range of possible exposure values, while the term local 
means that common support is required only in a narrower range of exposure values. In 

this paper, we relax the global common support assumption to the local common support 

assumption and suggest a framework where the effect gradient is estimated locally and some 

of the effect gradients are then integrated into an effect estimate. Using local samples relaxes 

the assumption of validity of propensity (or outcome) model, because we focus on a more 

uniform sample with common support in the distribution of confounders (no extrapolation). 

We also introduce a common support diagnostic and show how to interpret the result of 

integrating the effect gradient based on the result of this diagnostic.

There are also some very recent novel techniques for estimating the effect of continuous 

exposures. These methods include the entropy balancing method [16], which has been 

extended from the binary to the continuous exposure problem very recently [40], [42], 

and the generative adversarial deconfounding method [25]. Both of these methods follow 

similar assumptions to GPS relying on global common support or global positivity. These 

methods rely on weighting the samples so that in different exposure levels the distribution of 

confounders become more similar in a certain sense.

Contributions.—The main contributions of this paper are (i) to point out that in 

biomedical studies, the common support assumption is often too strong and when 

the common support assumption is violated, the effect estimates by GPS can suffer 

considerably; (ii) to establish a general framework that can use any existing GPS or binary 
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PS methods locally to estimate the effect gradient when only local common support is 

present (relaxing global common support assumption); and (iii) to estimate the extent of 

common support for the integrated effect curve and discuss the causal interpretation of 

this curve. Specifically, in (ii), we introduce two example methods using the proposed 

framework and compare them to several existing methods on simulated datasets, where the 

true effect size is known. We also apply these methods to a real-world clinical problem, 

where we estimate the effect of the latency of the first antibiotic administration on prolonged 

hospital stay for sepsis patients.

II. MATERIALS AND METHODS

A. Problem Definition

For a continuous exposure E and two of its levels e1 and e2, we wish to estimate the average 

effect of changing E from e1 to e2 with respect to an outcome Y. This is analogous to ATT 

for binary treatment, where control group is E = e1 and treated (or exposed) group is E = e2. 

We denote this average effect by A(e1, e2).

B. Proposed Methods

Fig 1 shows an illustration of the proposed method. To estimate the effect of changing 

the exposure from e1 to e2, we create a sequence of propensity matched populations at 

a sequence of exposure levels ϵ between e1 and e2. Then, in each propensity matched 

population, we estimate the local effect a(ϵ) of the exposure in the small neighborhood of 

ϵ and finally, we sum up the local effects to obtain A(e1, e2). Local estimation allows for 

more relaxed assumptions: we only need common support locally, in the neighborhood of ϵ, 

as opposed to globally (along the entire exposure range) and similarly, the propensity and 

outcome models only need to provide a good approximation of the true relationship between 

exposure, confounders, and the outcome locally, in the small neighborhood around ϵ.

Specifically, we propose two methods for estimating A(e1, e2), the Local Gradient 

Propensity Score Matching (grad-PSM) and the Greater Than Less Than Propensity Score 

Matching (gtlt-PSM).
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Data: Xi, Ei, Yi for patinets i = 1, …, Ntot 
Result: Effect curve A e1, e2
Step 1. Initialization:
Generate ϵk sequence along exposure, k = 1, …, n
Choose Sϵ local sample, a minumum sample size N selected by
power sample analysis of local models;

Step 2. Local PSM:
Fit binary propensity score model for each Sϵ above vs below ϵ

and compute matched sample at ϵ, Sϵ(m);
(Use δ parameter as minimum difference between matched samples
to numerically stabilize gradient estimation .  See Appendix A for
details .)

Step 3. Fit local outcome model and compute
a(ϵ) = ESϵ(m)[∂y / ∂ϵ];

Step 4. Use trapezoid rule numerical integration to compute,

A e1, e2 = ∫e1

e2
 d ϵa(ϵ);

Step 5. Estimate the extent of common support: Use matching
efficiency (under the exact conditions of Step 2 for balance criteria
etc .)  from e1 to further and further target exposures e2 . Compute
extent of common support for each e1 as exposure e2 on each side
of e1 where matching efficiency drops to a cut‐off value (e . g . 90%) .

Algorithm 1: grad‐PSM algorithm .

Data: Xi, Ei, Yi for patinets i = 1, …, Ntot 
Result: Effect curve A e1, e2
Step 1. Initialization:
Generate ϵk sequence along exposure,  k = 1, …, n;
Step 2. Local PSM:
Fit binary propensity score model for each ϵ (greater than vs less

than ϵ using all data) and compute matched sample at ϵ, Sϵ(m);
(Use δ parameter as minimum difference between matched samples
to numerically stabilize gradient estimation .  See Appendix A for
details .)

Step 3. Use mean difference in outcome divided to change in
exposure for matched pairs to estimate the effect gradient,
a(ϵ) = E(i, j) ∈ Sϵ(m) Yi − Y j / Ei − Ej ;

Step 4. Same as grad‐PSM;
Step 5. Same as grad‐PSM .
Algorithm 2: gtlt‐PSM algorithm .

1) Local Gradient Propensity Score Matching (grad-PSM): (Step 1) Consider a 

sample of patients i with covariates Xi, exposure Ei and outcome Yi. A sequence ϵ1, ϵ2, 

…, ϵn of exposure values is generated and the exposure range is divided into a sequence of 
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(possibly overlapping) neighborhoods centered around ϵk(k = 1, 2, …, n). For brevity, below 

we use ϵ ∈ {ϵ1, ϵ2, …, ϵn}, dropping the index.

(Step 2) In the neighborhood around each ϵ, propensity score matching is carried out 

resulting in a matched set of patients Sϵ
(m),

Sϵ
(m) = (i, j) ∣ i, j ∈ Sϵ, Ei ≤ ϵ, ϵ < Ej,

pi ≈ pj, Ej − Ei > δ ,
(1)

where Sϵ is a set of patients around ϵ, i (and j) are patients with exposure levels Ei (and Ej, 

respectively) and propensity scores pi and pj that fall within the required calipers (pi ≈ pj), 

and their exposure levels differ at least by δ. The minimum difference δ in exposure levels 

numerically stabilizes the gradient estimate by avoiding division by very small numbers. 

More details about selecting Sϵ and matching procedure are covered in Appendix A.

(Step 3) In the propensity matched population Sϵ
(m), a(ϵ) is computed. To this end, we apply 

an outcome model, which is a logistic regression model for binary outcome Y, Y ∼ E + X, 

constructed on the matched samples Sϵ
(m), and estimate,

a(ϵ) = ESϵ(m) ∂y
∂ϵ = ESϵ(m) βE

4cosh2([1, X, E]β /2)
, (2)

where y is a model-based estimate of the outcome, β = [β0, βX, βE] is denoting the intercept, 

coefficients for confounders, and coefficient for exposure, respectively, and a reminder that 

cosh(x) = (ex + e−x)/2. Notice that this model needs to approximate the true relationships 

between X, E, and Y only in the narrow neighborhood of E = ϵ. The quantity a(ϵ) can 

be interpreted as the gradient of the average treatment effect in the treated (ATT) when 

exposure level is reduced approximately from ϵ + δ/2 to ϵ − δ/2.

(Step 4) We integrate a(ϵ) to obtain A(e1, e2), the effect of changing exposure from e1 to e2 

using the trapezoid rule,

A e1, e2 = ∫e1

e2
  dϵ a(ϵ), (3)

keeping in mind that A(e1, e2) in only meaningful up to the extent of common support from 

e1 to e2.

(Step 5) To estimate the extent of common support, we use the same matching method as 

above, and the proportion of samples at e1 that could be matched to samples at e2 or beyond 

can be used (e.g. using a 90% cut-off) as the extent of common support.

2) Greater than vs Less than Propensity Score Matching (gtlt-PSM): Inspired 

by [32], [41], gtlt-PSM is a simplified version of grad-PSM. The gtlt-PSM is identical to 
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the grad-PSM except for steps 2 and 3. In gtlt-PSM, we use the entire population when 

matching,

Sϵ
(m) = (i, j) ∣ Ei ≤ ϵ, ϵ < Ej,

pi ≈ pj, Ej − Ei > δ ,
(4)

and the gradient a(ϵ) is computed with mean difference in outcome (no outcome model),

a(ϵ) = E(i, j) ∈ Sϵ(m) Y i − Y j
Ei − Ej

. (5)

The details regarding the selection of the sequence of ϵ, propensity matching, and the choice 

of δ are identical to grad-PSM. These implementation details are covered in the Appendix 

A.

C. Comparison methods

Unadjusted is the most naive calculation of effect size, without adjusting for the 

confounders,

A e1, e2 = E Y Ei ≈ e2 − E Y Ei ≈ e1 , (6)

where “Ei ≈ e” is implemented as the 200 nearest samples to e (i denotes the samples).

Direct Adjustment is the most commonly used method to estimate the effect of continuous 

exposures, where a model is constructed for the outcome using the covariates. The effect 

curve in this case is calculated as,

A e1, e2 = E y Ei = e2, Xi − y Ei = e1, Xi , (7)

where y denotes the estimated outcome from the model. Specifically we consider two 

different models. GLM-DA utilizes a generalized linear model and GBM-DA uses gradient 

boosted trees as implemented in the gbm R package.

Covariate Balancing Generalized Propensity Score (CB-GPS) As discussed earlier, the 

GPS methods follow very similar assumptions, especially regarding the global common 

support. Here we include the CB-GPS method [10], a representative method from this class, 

that was recently found to stands out as one of the top-performing methods [3].

D. Simulation Studies

Real data with complex confounding is often observational data and the true effect of the 

interventions are not known. To know the true effect sizes and to be able to judge whether 

a causal method is successful in removing the confounding bias, the use of simulated data 

is necessary and common practice. We use a sequence of increasingly challenging studies 

designed to highlight the limitations of the different methods. Fig. 2 shows the causal graph 

used for data generation in all three studies. In Study 1, none of the assumptions are violated 

and our aim is to see whether the proposed method can perform as well as the theoretically 
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best method. In Study 2, although both the propensity and the outcome models for the GPS 

methods are specified correctly, the global common support assumption is violated. This 

study demonstrates the importance of the global common support assumption. In Study 3, 

neither the propensity nor the outcome model is specified correctly and the global common 

support assumption is also partially violated.

Study 1 is simple, patients are comparable across the entire range of the exposure. The 

exposure model is linear in the confounders and the outcome is linear in all variables; the 

outcome model we use is correctly specified,

E = ∑
j

Cj + 2.25 ξ, (8)

O = − 1 + 0.2E + 0.5∑
j

Cj + 0.5∑
j

Xj + ε . (9)

where ξ N(0, 1), ε N(0, 1), and the available outcome data is binary, Y = binom(logit(O)). 

Notice that about half the variation in exposure is due to noise (the choice of SD=2.25).

This study meets all the theoretical assumptions for GLM-DA and CB-GPS methods.

Study 2 is exactly the same as Study 1, except,

E = 1.4∑
j

Cj + ξ, (10)

and ξ N(0, 1). We kept the total variation of E almost the same as Study 1, but now most 

of this variation is due to confounders. This way the global common support assumption is 

violated.

In Study 3 we vary the effect size across exposure (non-linear U-shaped relation) and make 

patients only locally comparable across the exposure range. Also we use piecewise linear 

curves both in the exposure and the outcome models (still monotonic in each variable). This 

reflects the common behavior of labs and vitals in real biomedical studies, where a lab value 

mostly affects the exposure or outcome above or below a threshold.

E = 2.5 r C1, a + l C2, b + r C3, a + l C4, b + C5
+ ξ (11)

O = − 2
+ 1.5 l C1, − c + l C2, b + r C3, c + r C4, a + C5
+ r X1, a + l X2, b + r X3, a + l X4, b + X5
+ 0.1 u(E, − 0.5, 1) + ε,

(12)
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where ξ N(0, 1), ε N(0, 1), a = 0.5, b = −0.25, and c = 1 are used. l(X, a) is a left-hinged 

curve, where the curve is linearly decreasing on the left of ‘a’ and is constant on the right; 

r(X, a) is a right-hinged curve that is linearly increasing on the right of ‘a’ and is constant on 

the left; finally, u(X, a, b) is a u-shaped curve that quadratically decreases on the left of ‘a’, 

quadratically increases on the right of ‘b’, and zero in between (a < b),

l(X, a) = X X ≤ a,
a X > a . (13)

r(X, a) = a X < a,
X X ≥ a . (14)

u(X, a, b) =
(X − a)2 X ≤ a,
0 a < X < b,

(X − b)2 X ≥ b .

(15)

Again available outcome data is binary Y = binom(logit(O)). This example is an attempt to 

mimic the considered real data set and a bit more challenging test for methods introduced.

Usually in biomedical studies one knows the direction of effect size (it being positive or 

negative). Given that we defined the effect size to be U-shaped, for GLM-DA and CB-GPS, 

we estimate the effect size for E < 0 and E > 0 separately and combine the results. These 

methods have no built-in facility to handle U-shaped effect curves.

Evaluation: Since the data generation method assumes path/direction independence for 

A(e1, e2) function, for any e0 we have,

A e1, e2 = A e1, e0 + A e0, e2 = A e0, e2 − A e0, e1 . (16)

It is thus sufficient to reconstruct the A(e0, e) curve, a single-valued function of e, for all 

exposure levels e relative to a “reference” initial exposure e0. In other words, evaluating 

A(e1, e2) in two dimensions will not add any new information. The path independence 

assumption can be interpreted as averaging over a distribution of paths that patients take 

from e1 to e2; or more formally, ⟨A(γ(e1, e2))⟩ =: A(e1, e2) where γ is the paths patients 

take from e1 to e2 in the population that is comparable between e1 and e2 (confounders or 

propensity of exposure are changed by a very small amount).

We chose e0 = 0 as the reference level, because it is the approximate median of the exposure 

data. Changing e0 to e0′  only shifts all the curve by a constant A(e0, e0′ ) and does not affect 

the evaluation results in any other way.

Similar to simulations in previous studies, e.g. [10], the population in simulation is taken to 

be homogeneous (a single outcome model is used) and the effect size does not depend on the 

direction, meaning,
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A e1, e2 = − A e2, e1 , (17)

therefore different treatment effects are equal, i.e. ATE=ATT, which helps simplify and 

focus our discussion in this paper.

For improved visibility, smoothing is applied to the curve for all the methods. We use 

Gaussian kernel smoother with the same smoothing widths (bandwith) across all methods. 

See Appendix B.

We generated 10k samples for Studies 1 and 2, and 15k for Study 3. We applied the 

algorithms to estimate the effect curves and plotted them. We computed the RMSEs for three 

exposure ranges of decreasing data density: 35–65th, 25–75th and 5–95th percentiles. To 

quantify the variability of the RMSE, we generated 400 additional data sets and computed 

the RMSE on each. We report the mean and 95% CI of the 400 RMSEs for each exposure 

range. Also we use t-test for all method pairs to check whether the mean differences are 

significant, using p-value < 0.001 as the significance level with Holm-Bonferroni method to 

adjust for multiple comparisons.

Finally, to evaluate the extent of common support we use bins with 400 sample size at initial 

exposure, plot the heat-map plot of matching proportions for different target exposures and 

mark the 90% contours.

E. Antibiotic Latency Effect on Prolonged Hospital Stay for Patients with Sepsis on 
Admission

Study design and setting.—This is a retrospective cohort study of 14k hospitalized 

septic patients from M Health Fairview (FV) from Sep 2010 to Dec 2016. Septic patients 

are identified as those who are Systemic Inflammatory Response Syndrome (SIRS) positive 

or have acute organ dysfunction within two days of admission and follow a full course of 

antibiotics [34]. For patients with multiple hospitalizations, only one, a randomly chosen 

hospitalization is included.

Outcome.—The primary outcome is prolonged hospital stay, defined as length of stay of 

10 days or longer.

Exposure.—We define the continuous exposure variable antibiotic latency as the elapsed 

time from first the time the patient was SIRS positive (which we call onset time) until the 

first antibiotic administration, measured in hours.

Variables of interest.—We consider the following variables as potential confounders: 

chronic comorbidities (e.g. tumor, chronic kidney disease, liver disease, chronic obstructive 

pulmonary disease), baseline labs, the variables related to acuity of infection at the onset 

time: vital signs, WBC, lactate, and PCO2, plus other labs which can be related to organ 

dysfunction, again measured up to the onset time.

Statistical Analysis.—The proposed methods grad-PSM and gtlt-PSM were applied. As 

part of the method, propensity models are constructed. We use causal feature discovery [28] 
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to discover the actual confounders and these confounders were used in the propensity model. 

As discussed, grad-PSM uses an outcome model for further adjustment after matching.

Evaluation.: Given that exposure is time, the path independence assumption holds (similar 

to the simulated studies), meaning that we can study a single valued curve rather than 

two-dimensional A(e1, e2). Given that the latency distribution is concentrated around 2.5h, 

we focus on estimating the ATT of moving a patient from latency e to 2.5h denoted by −A(e, 
2.5h), where the negative sign is used to denote the benefit (outcome is adverse).

Estimating variability with propensity score methods is debated [4], [17], [37]. Here 

we simply report the estimated variability using 95% CI of bootstrap sampling (with 

replacement) following [17], [32]. Using all sample bootstrap (with replacement) potentially 

overestimates sample variation (especially for grad-PSM), but arguably it is the safer choice 

when reporting the existence or significance of effect sizes.

III. RESULTS

A. Simulation Studies

First we applied the methods to the data generated for Study 1. Fig 3a shows the estimated 

effect size for each method from a single run. The vertical axis depicts the effect size of 

A(0, e), changing the exposure from 0 to the target exposure e, e ranging from −5.3 to 5.2 

(5%−95% percentile of data) depicted on the horizontal axis. The effect size is ATE for 

GLM-DA and GBM-DA and ATT for the other methods. The solid black line represents the 

true effect size, for which ATE=ATT, and the dashed line is the raw (unadjusted) effect size.

Fig 3b visualizes the extent of common support. The horizontal axis corresponds to the 

original level e1 of exposure and the vertical axis corresponds to the target level e2. The 

greenness of the pixel represents the percentage of samples within gray box that could be 

matched. The contour lines corresponds to the range within which 90% of the samples was 

matched. For example, when the source exposure is 1.5 (1.5 on the horizontal axis), at least 

90% of the samples can be matched for target exposures between almost −1.5 and positive 

3.5 (this is where the two contour lines are).

Table Ia displays the errors (RMSE) from the various methods in different ranges of 

exposure (35%−65%, 25%−75%, and 5%−95%) (scaled up by 102 for easier reading). It 

shows the mean RMSE and its empirical 95% CI over the 400 runs. ‘Unadjusted’ has the 

highest error, followed by GBM-DA. The other methods perform very comparably and 

their RMSE is about 10% of the RMS of actual effect size. The mean differences can be 

read from this table and except the difference between CB-GPS and grad-PSM, all other 

differences were significant (using t-test for all the method pairs with significance level of 

p-value < 0.001 with Holm-Bonferroni adjustment for multiple comparisons).

Next, we performed the analysis on Study 2. Results are shown in Fig 3 second row. 

Recall that Study 2 violates the (global) common support assumption, but allows for correct 

specification of the outcome and exposure models. The results are similar to those from 

Study 1 but unlike in Study 1, CB-GPS fails to reliably estimate the effect size. Table Ib 
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contains the RMSE for the various methods. All the mean differences were significant other 

than the difference between grad-PSM and gtlt-PSM (using t-test for all method pairs and 

significance level of p-value < 0.001).

Finally, the analyses were carried out on Study 3 and are shown in Fig 3 third row. Given 

that all three assumptions are violated, all methods performed worse than in the previous 

studies, but the two proposed methods performed better than the others. GBM-DA was 

slightly more biased towards the Unadjusted curve. RMSE values are reported in Table Ic. In 

the middle (25%−75%) grad-PSM performs exceptionally well, but at the edges it becomes 

similar to gtlt-PSM as the sample density decreases. All the mean differences in Table Ic 

were significant (using t-test for all method pairs and significance level of p-value < 0.001).

B. Antibiotic Latency Effect on Prolonged Hospital Stay for Sepsis Cohort

The effect curves for grad-PSM and gtlt-PSM are shown in Fig 4(a). The vertical axis is 

−A(e, 2.5h) which denotes the effect size of reducing the outcome (benefit) by changing the 

latency from e to e0 = 2.5h.

Fig 4(b) shows that we have a rather large unconfounded variation in exposure, which allows 

patients to be matched down to about 1h (blue dashed line). This means we can get reliable 

effect estimates for reducing the exposure (latency) from 6h not only to 2.5h but all the way 

down to 1h and estimate the effect using equation (16): A(e, 1h) = A(e, 2.5h)+A(2.5h, 1h) 

for any e ≳ 2h. Using the average curves, reducing the delay in antibiotic administration 

from 6h to 1h can reduce prolonged hospital stay by about 3%.

IV. DISCUSSION

We consider the problem of estimating the effect of changing a continuous exposure from an 

original value e1 to another e2. Currently existing methods make three critical assumptions. 

These are (global) common support, validity of the outcome model, and validity of the 

propensity model. We designed a new method that reduces reliance on these assumptions 

and we demonstrated that the proposed methods can achieve good performance in face of 

violations of these three assumptions.

In a series of three simulation studies of escalating difficulty, the first one was very simple, 

where none of the assumptions were violated, and accordingly, most methods performed 

well, except for GBM-DA which overestimated the effect of exposure. The other methods 

(with their assumptions met) performed well with minimal differences (RMSE range from 

0.0046 to 0.012, which is 5.7% to 15% of the RMS of estimated effect.). GBM-DA could 

fit the outcome data almost perfectly, yet its effect estimates were biased because the 

confounders had similar coefficients in the exposure and the outcome models, allowing 

GBM to mistakenly attribute the confounders’ effect to the exposure. This is an example 

where a flexible (and less interpretable) outcome model, that fits the outcome data well, does 

not help with better causal effect estimation.

The second study primarily differs from the first one in that it violates the (global) common 

support assumption, only having local common support. With the outcome and propensity 
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models being correctly specified, most models performed well, except for CB-GPS and 

GBM-DA. CB-CPS relies on the global common support assumption heavily and even failed 

to determine the effect direction correctly. Similarly to the first study, the flexibility of 

GBM-DA hurt its performance.

The second study highlights one of the key differences between the proposed method and 

existing methods, which is the departure from the (global) common support assumption. 

Interpretation for Study 2 is driven by the local common support: A(e1, e2) = A(0, e2) − A(0, 

e1) is the ATT of changing the exposure level from e1 to e2, provided that e1 and e2 has 

sufficient common support (but neither e1 nor e2 has to have common support with E = 0). 

In practice this means that e1 and e2 cannot be arbitrarily far from each other. This reflects 

clinical practice. For example in patients with very high A1c levels, the target A1c level can 

be raised (to the more attainable 8% in the Minnesota Community Measures [1]) instead of 

the normal target of 7% [2].

The third study highlights that under more realistic conditions, where none of the 

assumptions are met, the proposed method still performs adequately. Study 3 simulates 

a situation where the exact functional form of the propensity and outcome models are 

unknown. This favors flexible methods such as GBM-DA and the proposed methods. Even 

though the models were incorrectly specified, using many local point estimates helped the 

proposed methods achieve a reasonably good approximation.

For the antibiotics treatment latency example, there is no gold standard thus we did not 

perform a thorough comparison and only included the results for the proposed methods. 

The findings are consistent with prior studies [27], [32], [41], and provide evidence that 

starting antibiotics earlier may also benefit “healthier” patients (“healthier” in the sense that 

we excluded in-hospital mortality). This is not to say that patients with about 6h latency 

can necessarily be compared to patients with about 2h latency and will benefit according 

to the resultant effect curve. The diagnostic ambiguities that cause large latency are very 

challenging to address, if at all possible. But looking at this result and the methods used, 

physicians will know how much benefit there is in reducing everyone’s latency by about an 

hour or two, which is an attainable amount. The interpretability and the focus on measuring 

attainable changes in exposure, better helps physicians make necessary changes in treatment 

planning.

Contrasting grad-PSM and gtlt-PSM.

In terms of the global support assumption, an assumption critical to the causal 

interpretability of the results, the various methods lie on a continuum. On one extreme 

are the existing methods that require global support. On the other extreme is grad-PSM 

that only requires local support. In between these two is gtlt-PSM, which is local due to 

binarization, but can use more data than grad-PSM. Also fusing grad-PSM and gtlt-PSM 

is possible. Rather than using a sharp cutoff at N samples in Sϵ for grad-PSM or using 

all possible samples in gtlt-PSM, Sϵ can be constructed by weighting the samples. More 

generally, many method variaties can be created from our proposed framework, for example, 

by replacing the PSM estimator with inverse propensity weighting or the doubly robust 

estimator in grad-PSM.
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Limitations.

(1) The methods used in the study, the proposed and comparison methods alike, rely 

on having sufficient local sample size for estimation. This is why in all studies above, 

the proposed methods performed better around central regions of exposure with higher 

sample density compared to the edge regions where the density was much lower. (2) The 

proposed methods use binary propensity matching as an operation and support virtually any 

such method [5], [9], [15], [20], [21], [26], [37]. Therefore, all the limitations of binary 

propensity score matching apply to the framework discussed in this paper. Though, due to 

the pointwise estimation, as we have shown, the provided framework can be more robust 

compared to single PS effect analyses (e.g. common binary PS or GPS methods).

V. CONCLUSION

When the three critical assumptions are met (having global common support and correctly 

specifying outcome and propensity models), the effect analysis problem is simple and most 

methods perform well. When they, especially the common support assumption, are violated, 

the proposed methods (grad-PSM and gtlt-PSM) can estimate the effects better than the 

existing methods. By focusing on estimating the effect of attainable or clinically actionable 

changes in exposure, the proposed methods can make more realistic assumptions and obtain 

more reliable effect estimates, thus they can better inform clinical decision making.
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APPENDIX

A. Proposed Methods

(Step 1) A sequence ϵ1, ϵ2, …, ϵn of exposure values is generated and the exposure range is 

divided into a sequence of (possibly overlapping) neighborhoods centered around ϵk, k = 1, 

…, n.

Recall that we perform three simulation studies and an application to a real-world clinical 

problem of estimating the effect of delay in antibiotic administration for sepsis cohort. In the 

simulation studies we used n = 100 points across the exposure range, and in the sepsis study, 

the sequence of ϵ is equally spaced at 5 min increments of delayed antibiotic administration, 

total of n = 73.

(Step 2) In the neighborhood around each ϵ, propensity score matching is carried out 

resulting in a matched set of patients Sϵ
(m).

Propensity scores are estimated by binarizing the exposure around E = ϵ and fitting a logistic 

regression model (E < ϵ vs E ≥ ϵ). For matching, we are using nearest neighbor matching 

with caliper 0.25. Balance diagnosis utilizes the standardized mean differences (SMD) of 

each variable: whenever SMD exceeds 0.1 (a commonly used SMD threshold), we re-match 
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the population using univariate subclassification matching on that variable [37], which refers 

to exact matching for binary and categorical variables, and to matching within quintiles 

for continuous variables. Additionally, matched pairs of patients are required to have a 

minimum exposure difference of δ. If sufficient balance could not be achieved following this 

matching procedure, we discard this ϵ from the gradient estimation.

The required number of patients in Sϵ (for propensity model) is determined based on power 

sample analysis and selecting a least sample size of N below and above E = ϵ. Here we use 

N = 500 for simulated studies and N = 1000 for the sepsis study.

We require that the matched pair’s exposure levels differ at least by δ. The minimum 

difference in exposure levels numerically stabilizes the gradient estimate by avoiding 

division by very small numbers.

The selection of δ can be domain driven: differences in antibiotic administration delays of 

less than 1 hour are not expected to impact outcomes measurably so we set δ = 1h; or can be 

chosen arbitrarily: we chose δ = 0.25 for all simulation studies. Sensitivity analysis is carried 

to verify that the choice of N and δ did not unduly influence the results.

(Step 3) In the propensity matched population Sϵ
(m), the effect gradient a(ϵ) is computed. 

As explained in the main text, for grad-PSM method we use the mean of derivative 

of outcome modelh preidiction with respect to exposure variable, a(ϵ) = ESϵ(m) ∂y
∂ϵ , and 

for gtlt-PSM we use the mean of outcome differences divided by exposure differences, 

a(ϵ) = E(i, j) ∈ Sϵ(m) Yi − Y j
Ei − Ej

. Other estimation methods are also possible, e.g. using inverse 

propensity weighting or doubly robust (DR) estimators.

(Step 4) We integrate a(ϵ) to obtain the A(e1, e2), the effect of changing exposure from E 
= e1 to E = e2. The way we use PSM makes A(e1, e2) directional, meaning that we are 

estimating ATT going from E = e1 (control) to E = e2 (treated). Using other estimators one 

can estimate ATE instead.

The numerical integration is done using the trapezoid rule. For the simulation studies, 

100 point estimates were used for the gradient a(ϵ). About 10 points got dropped from 

distribution tails with insufficient sample size for Sϵ or Sϵ
(m). In the sepsis study every 5 

minutes a point estimate is acquired (73 points from 60min to 420min, and again, about 10 

of them dropped from tails for not having enough samples).

(Step 5) The exact same criteria used in Step 2 for accepting matched groups is applied 

for matching from E ≈ e1 to further exposure value. E ≈ e1 means 400 samples around E 
= e1. The target exposure samples are selected from samples at E = e2 or further than E = 

e2 (measured from E = e1). And the extent of common support is defined as 90% matching 

ratio between 400 samples at E ≈ e1 and samples that are at E = e2 or further (at least 360 

matched pairs which must satisfy the same matching/balancing criteria given in Step 2).
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Computational complexity.

The computational complexity is linear in the number of ϵ steps n, multiplied to PS 

matching complexity (PSM). For PSM we used nearest neighbor greedy algorithm in 

our code, which is linear in sample size. So computational complexities are O(nN ) for 

grad-PSM and O(nNtot) for gtlt-PSM. For evaluating the extent of common support (or when 

path/direction independence assumption does not hold) one has to estimate the matching 

efficiency (or causal effect) on the surface of (e1, e2). This makes the complexity quadratic 

in the number of steps. We should mention that the algorithm is straightforward to fully 

parallelize in step iterations (independent for-loop parallelization). So with access to a 

computational grid, one can parallelize away the linear or quadratic in steps part and only 

deal with the underlying PSM complexity (or any propensity score method used in each 

local region).

B. Simulated Studies

Smoothing.

A final smoothing is applied on the effect curves. The integration step in proposed methods 

result in a smooth curve, however, to make all the results comparable, we use Gaussian 

kernel smoother on the final results for all the methods studied, with the same smoothing 

widths: 0.1 for simulated data and 20min for the real study.

U-shaped effect in GPS or GLM models.

Usually in biomedical studies one knows the direction of effect size (it being positive or 

negative). In Study 3, we defined the effect size to be U-shaped, so for GLM-DA and 

CB-GPS, we estimated the effect size for E < 0 and E > 0 separately and combined the 

results. These methods have no built-in facility to handle U-shaped effect curves.
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Fig. 1: 

After selecting a sequence of samples Sϵ, the local samples are matched Sϵ
(m) and the local 

effect a(ϵ) is computed. A(e1, e2) is estimated by numerically integrating over local effects 

a(ϵ). Finally the extent of common support is estimated e.g. by checking the matching ratio 

from e1 to further exposures.
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Fig. 2: 
The causal graph used for data generation in simulation studies. For clarity the true 

confounder variables X5, …, X10 are called C1, …, C5, respectively.
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Fig. 3: 
(a) The effect curve A(0, e) for Study 1, a single run. (b) Extent of common support. 

Matching a bin of 400 samples around a initial exposure (horizontal axis) with a matching 

proportion of 90% (360/400) was possible to the exposure range (vertical axis) shown by red 

and blue dashed lines. For example, a sample from e = 1.5 is likely to have a match from e 
= −1.5 (blue arrow) to e = 3.5 (red arrow). In this example, the extent of common support is 

large. (c) A(0, e) results for Study 2, a single run. (d) Extent of common support in Study 2. 

It is much smaller than Study 1 and to achieve 90% matching, one can only change exposure 

by about ≲ 0.5 below or above. In other words, on A(0, e) plot the estimated effects from e = 

e1 to e = e2 are only meaningful for |e2 − e1| ≲ 0.5. (e) The effect curve for Study 3, a single 

run. (f) The extent of common support for Study 3.
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Fig. 4: 
(a) Effect of antibiotic latency on prolonged (10+ days) hospital stay (excluding in-hospital 

mortality). −A(e, 2.5h) means how much patients will benefit (lowering the adverse 

outcome) if their latency is changed from e to 2.5h. (b) An estimation of the extent of 

common support. Patients with antibiotic latency of 2h or above can be matched down to 1h. 

So using the effect size curve in (a) it is reasonable to start from exposure 2h or above and 

reduce latency all the way down to 1h.
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TABLE I:

RMSE ×100 for different methods over three intervals of exposure for (a) Study 1, (b) Study 2, and (c) Study 

3. Reported values are the mean (95% CI) of the 400 RMSEs for each exposure range, comparing methods in 

regions with high density (35%−65%) going towards extreme exposure values with less densities (25%−75% 

and 5%−95%), pushing methods to rely more and more on extrapolating. t-test is used for all method pairs 

with significance level of p-value < 0.001 with Holm-Bonferroni adjustment for multiple comparisons.

35%−65% 25%−75% 5%−95%

GLM-DA 0.10 (0.01,0.3) 0.17 (0.03,0.6) 0.38 (0.08,1.2)

gtlt-PSM 0.18 (0.05,0.4) 0.32 (0.08,0.7) 1.11 (0.43,1.9)

grad-PSM 0.29 (0.07,0.7) 0.49 (0.16,1.1) 1.22 (0.47,2.2)

CB-GPS 0.26 (0.02,1.0) 0.44 (0.04,1.7) 0.96 (0.12,3.7)

GBM-DA 1.16 (0.35,3.0) 1.47 (0.57,3.5) 1.90 (0.90,3.8)

Unadjusted 3.42 (2.10,7.2) 5.07 (3.79,8.0) 10.90 (9.85,13.0)

(a) RMSE ×100 results for Study 1. t-tests are conducted for all method pairs. The only non-significant mean differences are between grad-PSM 
and CB-GPS.

35%−65% 25%−75% 5%−95%

GLM-DA 0.24 (0.02,0.8) 0.39 (0.04,1.3) 0.84 (0.13,2.9)

gtlt-PSM 0.51 (0.11,1.2) 0.83 (0.26,2.0) 2.08 (0.75,4.0)

grad-PSM 0.50 (0.12,1.2) 0.84 (0.22,1.9) 2.16 (0.82,4.3)

CB-GPS 0.77 (0.05,3.0) 1.29 (0.10,5.0) 2.80 (0.30,11.2)

GBM-DA 2.35 (0.88,3.9) 3.74 (1.46,5.7) 7.89 (3.21,12.6)

Unadjusted 4.22 (2.87,7.0) 6.66 (5.47,8.8) 14.85 (13.68,16.4)

(b) RMSE ×100 results for Study 2. t-tests are conducted for all method pairs. The only non-significant mean differences are between grad-PSM 
and gtlt-PSM.

35%−65% 25%−75% 5%−95%

grad-PSM 0.5 (0.2,1.6) 0.9 (0.3,2.0) 3.3 (1.9,4.9)

gtlt-PSM 1.4 (0.7,2.1) 2.0 (1.1,2.9) 3.1 (1.7,4.6)

GBM-DA 1.8 (0.3,3.4) 2.5 (0.6,4.1) 5.4 (2.4,7.7)

GLM-DA 6.8 (6.1,7.6) 8.3 (7.4,9.2) 10.0 (8.6,11.4)

CB-GPS 6.3 (4.3,9.0) 7.6 (5.0,11.2) 8.5 (4.9,14.4)

Unadjusted 6.5 (4.1,9.7) 9.0 (7.0,11.3) 18.0 (16.4,19.9)

(c) RMSE ×100 results for Study 3. t-tests are conducted for all method pairs. All the mean differences are significant.
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