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Insulin secretion is a signal-triggered process that requires membrane

fusion between the secretory granules and plasma membrane in pancreatic

b cells. The exocytosis of insulin is mediated by target-soluble N-

ethylmaleimide sensitive factor attachment protein receptors (SNAREs) on

the plasma membrane and vesicle-SNAREs on the vesicles, which assemble

into a quaternary trans-SNARE complex to initiate the fusion. Expression

of fusion proteins is reduced in the islets of patients with type II diabetes,

indicating that SNARE-mediated fusion defect is closely related to insulin-

based metabolic diseases. Previous studies have suggested that epigallocate-

chin gallate (EGCG) has an inhibitory effect on membrane fusion. In the

present study, we performed in vitro reconstitution assays to unravel the

molecular mechanisms of EGCG in SNARE-mediated insulin secretory

vesicle fusion. Our data show that EGCG efficiently inhibits insulin secre-

tory SNARE-mediated membrane fusion. Mechanistic studies indicated

that EGCG blocks the formation of the trans-SNARE complex. Further-

more, calcium/synaptotagmin-7-stimulated fusion kinetics were largely

reduced by EGCG, confirming that it is a potential regulator of SNARE-

dependent insulin secretion. Our findings suggest that the trans-SNARE

complex might be a promising target for controlling SNARE-dependent

vesicle fusion.

Exocytosis is a fundamental biological process that

transports cargoes encapsulated in the vesicles to the

extracellular matrix [1,2]. The imbalance of this pro-

cess may cause severe disorders. It has been well estab-

lished that exocytosis is driven by the soluble N-

ethylmaleimide-sensitive factor attachment protein

receptors (SNAREs) and their regulators [3,4]. The

target (t-) SNAREs and vesicle (v-) SNARE zipper

from the N- to C-terminus to form a four-helix trans-

SNARE complex that overcomes the free energy bar-

rier and initiates the fusion [5–8]. The SNARE

zippering is further controlled by regulatory factors or

signaling molecules, corresponding to the spatially and

temporally precise requirements of regulated exocytosis

[9–14].
Insulin, a peptide hormone, plays an essential role

in cellular glucose uptake and usage. The defect of

insulin secretion leads to a variety of metabolic dis-

eases. Insulin secretion is a glucose-stimulated process

that requires membrane fusion between the secretory

granules and plasma membrane (PM) in pancreatic b
cells [1,15]. In response to an increase in glucose
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concentration, insulin secretion exhibits a biphasic

secretory reaction with a first peak followed by a lower

sustained second phase [16,17]. The exocytosis of insu-

lin is primarily mediated by t-SNAREs syntaxin-1/

SNAP-25 on the PM and v-SNARE VAMP2 on the

vesicles [18–21], which assemble into a quaternary

trans-SNARE complex to open the fusion pore [22].

Furthermore, another t-SNARE pair syntaxin-4/

SNAP-23 was also involved in insulin secretion [23,24].

Glucose signals induce calcium influx from voltage-

dependent Ca2+ channels and synaptotagmin-7 (Syt7)

then couples with calcium to trigger SNARE-

dependent membrane fusion [25,26]. Earlier reports

found that the Syt7-knockout mice showed a severe

defect of glucose-stimulated insulin secretion [27]. A

reduced expression pattern of membrane fusion pro-

teins was found in type II diabetes patients’ islets, indi-

cating that the fusion defect is closely related to

insulin-based metabolic diseases [28,29].

Some regulated exocytosis, such as the degranula-

tion of mast cells or synaptic exocytosis, could be reg-

ulated by phenolic compounds [30–34]. Yang et al.

[34] reported that delphinidin and cyanidin could inhi-

bit the N-terminal SNARE zippering, whereas myrice-

tin intercalated into the hydrophobic layers near the

middle of the SNARE complex to block the SNARE

zippering. Multiple studies reported that polyphenols,

such as tea polyphenols and grape polyphenols, modu-

late blood glucose and alleviate type II diabetes by

facilitating glucose uptake or improving insulin sensi-

tivity [35–38]. Epigallocatechin gallate (EGCG), a

polyphenol substance accounting for 50–70% of green

tea extract (GTE), is the main active ingredient of

green tea [38–40]. It is a typical flavone-3-ol phenolic

compound with eight free hydroxyl groups (Fig. 1A).

Evidence obtained from cell culture and animal studies

suggests that EGCG has beneficial effects on improv-

ing multiple diseases, including diabetes and cardiovas-

cular diseases [38,41–43]. Previous studies suggested

EGCG has an inhibitory effect on membrane fusion,

although its activity is less potent than other polyphe-

nolic reagents such as myricetin, delphinidin or cyani-

din [34].

Here, we unravel the molecular mechanisms of

EGCG in SNARE-mediated insulin secretory vesicle

fusion by in vitro reconstitution assays. We observed

that EGCG efficiently inhibited the insulin secretory

SNARE-mediated membrane fusion. The inhibition of

membrane fusion by EGCG is compatible with multi-

ple v-SNARE isoforms, including VAMP2, VAMP3

and VAMP8, which all support insulin secretion

in vivo [44–46]. Further studies indicated that EGCG

retards membrane fusion by blocking the formation of

the trans-SNARE complex. Interestingly, EGCG could

further inhibit Ca2+/Syt7-stimulated fusion when we

reconstitute the Syt7 with the v-SNARE liposomes,

confirming EGCG is a negative regulator in SNARE-

dependent insulin secretion.

Results

EGCG dose-dependently inhibits SNARE-driven

membrane fusion

We first explored how EGCG affects SNARE-

dependent membrane fusion. The insulin secretory

SNAREs were reconstituted into a defined fusion sys-

tem in which the v- and t-SNAREs were anchored in

separate populations of proteoliposomes (Fig. 1B). In

a F€orster resonance energy transfer (FRET)-based

lipid mixing assay, v- and t-SNAREs drove an efficient

level of lipid mixing [47,48]. The fusion activity of

SNAREs was entirely blocked by the cytoplasmic

domain of VAMP2 (V2CD), a dominant-negative inhi-

bitor of trans-SNARE assembly, suggesting that the

change of lipid mixing is caused by the SNARE com-

plex [47,48]. When EGCG was included, the SNARE-

mediated lipid mixing was reduced to a background

level comparable to that in the negative control reac-

tion with V2CD (Fig. 1C,D). Interestingly, EGCG

also inhibited syntaxin-4/SNAP-23, another t-SNARE

pair involved in insulin secretion, and VAMP2-driven

membrane fusion (Fig. 1E,F).

We further examined how EGCG regulates

SNARE-driven content mixing [49,50]. Sulforho-

damine B was encapsulated in the VAMP2 liposomes

in which its fluorescence was self-quenched as a result

of the high concentration. Fusion of the VAMP2 lipo-

somes with unlabeled t-SNARE liposomes led to the

dilution of the dye and dequenching of fluorescence

(Fig. 2A). Using this assay, we observed that the

SNAREs drove a comparable level of content mixing.

EGCG strongly blocked the SNARE-mediated content

mixing reaction similar to V2CD (Fig. 2B,C). In the

leakage control reactions, the sulforhodamine B fluo-

rescence was not increased, indicating that no content

leakage occurred in the fusion reactions (Fig. 2D,E).

Thus, EGCG has the ability to inhibit both the lipid

and content mixing of SNARE liposomes.

We then examined the dose dependence of EGCG

activity in the reconstituted SNARE-dependent fusion

reaction (Fig. 3). The maximum inhibition of fusion

was reached with 10 lM EGCG (Fig. 3). Together,

these data demonstrated that EGCG is an insulin

secretory SNARE-dependent membrane fusion inhibi-

tor, which dose-dependently blocks membrane fusion.
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Fig. 1. EGCG inhibits insulin secretory SNARE-mediated lipid mixing reaction. (A) Chemical structure of EGCG. (B) Illustrations of the lipo-

some fusion procedures. The t-SNARE liposomes were reconstituted with syntaxin-1/SNAP-25, whereas the v-SNARE liposomes contained

VAMP2. (C) Fusion of the reconstituted proteoliposomes in the absence or presence of 10 lM EGCG. Negative controls: 20 lM V2CD was

added at the beginning of the reactions. Each fusion reaction contained 5 lM t-SNAREs and 1.5 lM v-SNARE. The fusion reactions were

measured using a FRET-based lipid mixing assay. (D) Initial lipid mixing rates of the liposome fusion reactions shown in (C). Data are pre-

sented as a percentage of fluorescence change per 10 min. Error bars indicate the SD. Data are presented as the mean � SD (n = 3 inde-

pendent replicates). P values were calculated using two-way ANOVA with Tukey’s multiple comparisons test. n.s., P > 0.05; ***P < 0.001.

(E) Fusion of the reconstituted proteoliposomes in the absence or presence of 10 lM EGCG. The t-SNARE liposomes were reconstituted

with syntaxin-4 and SNAP-23, whereas the v-SNARE liposomes were prepared using VAMP2. Negative controls: 20 lM V2CD was added at

the beginning of the reactions. Each fusion reaction contained 5 lM t-SNAREs and 1.5 lM v-SNARE. The fusion reactions were measured

using a FRET-based lipid mixing assay. (F) Initial lipid mixing rates of the liposome fusion reactions shown in (E). Data are presented as a

percentage of fluorescence change per 10 min. Error bars indicate the SD. Data are presented as the mean � SD (n = 3 independent repli-

cates). P values were calculated using two-way ANOVA with Tukey’s multiple comparisons test. n.s., P > 0.05; **P < 0.01.
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EGCG inhibits membrane fusion by blocking the

trans-SNARE assembly

Membrane fusion required the energy provided by the

zippering of the trans-SNARE complex. We then

tested how EGCG regulates the formation of the

trans-SNARE complex. At the low temperature of

4 °C, t- and v-SNARE liposomes formed a trans-

SNARE complex resistant to V2CD but could not

drive fusion [49–51]. We then added V2CD to block

the unpaired t-SNARE liposomes. After protein

Fig. 2. Epigallocatechin gallate inhibits the content mixing of SNARE-mediated membrane fusion. (A) Diagram of the liposome-liposome con-

tent mixing assay. The soluble dye sulforhodamine B (50 mM) was encapsulated in the v-SNARE liposomes, in which its fluorescence was

inhibited by self-quenching. Fusion of the v-SNARE liposomes with unlabeled t-SNARE liposomes led to the dequenching of fluorescence.

(B) Content mixing of the reconstituted fusion reactions. The v-SNARE liposomes were directed to fuse with t-SNARE liposomes in the

absence or presence of 10 lM EGCG. Each fusion reaction contained 5 lM t-SNAREs and 1.5 lM v-SNARE. Data are presented as the fluo-

rescence increase over time. In negative controls, 20 lM V2CD was added to the fusion reactions. (C) Initial content mixing rates of the

fusion reactions shown in (B). Data are presented as a percentage of fluorescence change per 10 min. Error bars indicate the SD. Data are

presented as the mean � SD (n = 3 independent replicates). P values were calculated using ordinary one-way ANOVA with Tukey’s multiple

comparisons test. n.s., P > 0.05; *P < 0.05. (D) Diagram of the leakage control reactions. Sulforhodamine B was included in both v- and t-

SNARE liposomes. (E) The leakage controls of the content mixing reactions. Increases in sulforhodamine B fluorescence were not observed,

indicating that no detectable content leakage occurred during the fusion reactions.
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solubilization, the t-SNAREs were pulled down by

His6-SNAP25. The full-length VAMP2 was used to

indicate the trans-SNARE complex (Fig. 4A) [49–51].
Using this assay, we observed that EGCG strongly

blocked the formation of the trans-SNARE complex,

which further inhibited the SNARE-dependent mem-

brane fusion (Fig. 4B).

The inhibitory activity of EGCG in the fusion

reaction is compatible with multiple v-SNAREs

Although VAMP2 is the primary v-SNARE, VAMP3

and VAMP8 were also reported to participate in the

regulation of insulin secretion [44–46]. They may serve

as compensatory v-SNAREs in insulin exocytosis. We

then examined whether EGCG could inhibit the fusion

reactions with VAMP3 or VAMP8. The t-SNARE

liposomes bearing syntaxin-1 and SNAP-25 were direc-

ted to fuse with liposomes reconstituted with VAMP2,

VAMP3, or VAMP8 (Fig. 5A). Interestingly, EGCG

dramatically reduced the fusion rate of all the fusion

reactions (Fig. 5B,C). These data suggest that the sup-

pression function of EGCG in the SNARE-dependent

fusion reaction is compatible with all the three v-

SNARE isoforms involved in insulin secretion.

The inhibitory function of EGCG is dominant

over the stimulatory activity of Syt7

Glucose-stimulated insulin secretion is triggered by

intracellular Ca2+, a second messenger. It has been

established that Syt7 serves as the primary Ca2+ sensor

during this process. When the blood glucose elevates,

Syt7 recruits the insulin secretory granules to the PM

Fig. 3. Dose dependence of EGCG activity in the SNARE-

dependent fusion reaction. EGCG was added to the reconstituted

fusion reaction at the indicated concentrations. Each fusion reac-

tion contained 5 lM t-SNAREs and 1.5 lM v-SNARE. Data are pre-

sented as a percentage of fusion inhibition at indicated

concentration of EGCG. Error bars indicate the SD. Data are pre-

sented as the mean � SD (n = 3 independent replicates).

Fig. 4. Epigallocatechin gallate blocks the formation of the trans-SNARE complex. (A) Diagram of the trans-SNARE formation assay. (B)

Reconstituted t- and v-SNARE liposomes were incubated at 4 °C for the indicated periods in the presence or absence of 10 lM EGCG

before 10-fold excess amount of inhibitory V2CD was added. The liposomes were subsequently solubilized and the t-SNAREs were precipi-

tated. The presence of FL VAMP2 in the precipitates was probed by western blotting, which was used as an indicator for the trans-SNARE

complex.
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and interacts with the SNARE proteins in a Ca2+-

dependent manner [25–27].
We then examined how EGCG influences membrane

fusion in the presence of Syt7 and Ca2+. We expressed

and purified recombinant full-length Syt7 protein and

reconstituted it to the v-SNARE liposomes (Fig. 6A).

In the lipid mixing assay, Ca2+ dramatically accelerated

the Syt7- and SNARE-mediated fusion kinetics

(Fig. 6B,C). Strikingly, the fusion rates in the presence

of Ca2+ were largely reduced by EGCG, suggesting that

EGCG can arrest the fusion reaction in the presence of

Syt7 and Ca2+ (Fig. 6B,C). Therefore, the inhibitory

function of EGCG is dominant over the stimulatory

activity of Syt7/Ca2+ in vesicle fusion, supporting that

EGCG is a negative regulator of SNARE-mediated

membrane fusion in insulin secretion.

Discussion

The incidence of insulin-based metabolic diseases, such

as type II diabetes and hyperinsulinemia, has increased

rapidly in the past decades [52]. As a result of minor

side effects and healthy resources, dietary polyphenol

drugs are currently attracting special attention [36].

EGCG is the most abundant polyphenol in green tea,

which can reduce the risk of diabetes and other meta-

bolic complications [41–43]. Insulin, the critical blood

glucose-lowering hormone, plays a central role in glu-

cose metabolism. How EGCG regulates insulin secre-

tion remains poorly understood.

Because of the complexity of the intracellular envi-

ronments, it is challenging to examine or screen mole-

cules targeting exocytosis in vivo. In the present study,

we aimed to dissect the insulin secretion pathway by

reconstituting insulin secretory vesicle fusion in vitro

using purified components. The SNARE and Syt7 pro-

tein composition and topology can be precisely con-

trolled in this defined fusion system. Regulators or

molecules can be directly added without the complica-

tions of other molecules naturally present in the cell,

allowing their kinetic effects on fusion to be causally

established [48].

Based on this in vitro reconstituted system, we

explored the role of EGCG on SNARE-dependent insu-

lin secretion. We found that EGCG can strongly sup-

press the dynamics of SNARE-mediated lipid mixing

and content mixing. The dose-dependent inhibitory

effect suggested that the fusion inhibition is solely

caused by EGCG. How does EGCG arrest the mem-

brane fusion? Using our previously developed trans-

SNARE assembly assay, we demonstrated that EGCG

efficiently blocks the zippering of the trans-SNARE

complex, which is formed by t- and v-SNAREs from the

opposed membrane. Hence, EGCG disrupts the trans-

SNARE assembly to inhibit the SNARE-dependent

membrane fusion.

Our data showed the inhibitory activity of EGCG is

compatible with a variety of v-SNARE isoforms, includ-

ing VAMP2, VAMP3 and VAMP8, consistent with the

physiological observation of these v-SNAREs support-

ing insulin secretion in vivo [53,54]. Because insulin secre-

tion is simulated under the regulation of Ca2+, we then

investigated how EGCG affects membrane fusion in the

presence of Syt7 and Ca2+. Interestingly, EGCG appar-

ently inhibits the fusion reactions under the stimulation

of Syt7/Ca2+, consistent with our conclusion that EGCG

inhibits insulin secretory vesicle fusion through the step

of trans-SNARE assembly.

Multiple studies demonstrated the onset of hyperin-

sulinemia in patients affected by metabolic syndrome

and the role of GTE in improving obesity, diabetes

and other metabolic syndromes [55,56]. In this work,

we characterized a new target of EGCG, one of the

main polyphenols in GTE, by presenting how EGCG

regulates SNARE-driven insulin secretion. On this

basis, supplementing GTE or EGCG as an adjuvant

in the diet is a helpful nutritional strategy in caring

for insulin-dependent metabolic disorders, including

hyperinsulinemia.

Materials and methods

Protein expression and purification

Recombinant t- and v-SNARE proteins were expressed in

Escherichia coli strain BL21(DE3) and purified by nickel

affinity chromatography, using a previously established

procedure [49,50,57]. The t-SNARE complex was composed

of untagged rat syntaxin-1 and mouse SNAP-25 with an N-

terminal His6 tag. Recombinant v-SNARE proteins had no

extra residues after the tags were proteolytically removed

by SUMO protease [49,50,57]. The full-length gene for Syt7

was cloned into a pET28a-based SUMO vector. Purified

His6-SUMO-Syt7 fusion proteins were digested by SUMO

proteases to remove the extra tags. SNAREs and Syt7 were

stored in a buffer containing 25 mM Hepes (pH 7.4),

400 mM KCl, 1% n-octyl-b-D-glucoside, 10% glycerol and

1 mM dithiothreitol.

Reconstitution of proteoliposomes

All of the lipids used in the present study were obtained

from Avanti Polar Lipids Inc. (Alabaster, AL, USA). For

t-SNARE reconstitution, 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphoethanolamine (POPE), 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphoserine (POPS) and cholesterol were
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mixed in a molar ratio of 60 : 20 : 10 : 10. For v-SNARE

reconstitution, POPC, POPE, POPS, cholesterol, N-(7-

nitro-2,1,3-benzoxadiazole-4-yl)-1,2-dipalmitoyl phos-

phatidylethanolamine (NBD-DPPE) and N-(Lissamine rho-

damine B sulfonyl)-DPPE (rhodamine-DPPE) were mixed

at a molar ratio of 60 : 17 : 10 : 10 : 1.5 : 1.5. SNARE

proteoliposomes were prepared by detergent dilution and

isolated on a Nycodenz (Axis-Shield, Dundee, UK) density

gradient [51,58]. Complete detergent removal was achieved

by overnight dialysis of the samples in Novagen dialysis

tubes against the reconstitution buffer [25 mM Hepes (pH

7.4), 100 mM KCl, 10% (vol/vol) glycerol and 1 mM dithio-

threitol]. To prepare sulforhodamine-loaded liposomes,

SNARE liposomes were reconstituted in the presence of

50 mM sulforhodamine B (Sigma, St Louis, MO, USA).

Free dye was removed by overnight dialysis, followed by

liposome flotation on a Nycodenz gradient. The protein/

lipid ratio was 1 : 200 for v-SNAREs and 1 : 500 for t-

SNARE liposomes.

Preparation of EGCG solution

Epigallocatechin gallate powder was dissolved in ddH2O to

obtain a 20 mM stock solution. For each experiment,

EGCG was diluted to the required concentration using

reconstitution buffer.

Lipid mixing assay

A standard lipid mixing reaction contained 5 lM t-

SNAREs and 1.5 lM v-SNARE. v-SNARE liposomes

labeled with NBD and rhodamine were mixed with t-

SNARE liposomes in the presence or absence of EGCG to

initiate fusion. The fusion reactions were conducted in a

96-well microplate at 37 °C [14,48]. NBD fluorescence (exci-

tation: 460 nm; emission: 538 nm) was measured every

2 min in a Synergy HT microplate reader (BioTek,

Winooski, VT, USA). At the end of the reaction, 10 lL of

10% CHAPSO was added to each sample. Fusion data

were presented as the percentage of maximum fluorescence

change. Full accounting of statistical significance was

included for each dataset based on at least three indepen-

dent experiments.

Content mixing assay

In the content mixing assays, unlabeled t-SNARE lipo-

somes were directed to fuse with sulforhodamine B-loaded

Fig. 5. The inhibition of fusion by EGCG is compatible with multiple v-SNAREs. (A) Illustrations of the liposome fusion pairs. (B) Lipid mixing

of the reconstituted fusion reactions. Each fusion reaction contained 5 lM t-SNAREs and 1.5 lM v-SNARE. The fusion reactions were mea-

sured using a FRET-based lipid mixing assay. (C) Initial lipid mixing rates of the liposome fusion reactions shown in (B). Data are presented

as a percentage of fluorescence change per 10 min. Error bars indicate the SD. Data are presented as the mean � SD (n = 3 independent

replicates). P values were calculated using two-way ANOVA with Tukey’s multiple comparisons test. **P < 0.01.
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v-SNARE liposomes in which sulforhodamine B fluores-

cence was inhibited by self-quenching. The fusion of the

liposomes led to the mixing of their contents and the

dequenching of sulforhodamine B fluorescence [49–51]. The
sulforhodamine B fluorescence (excitation: 565 nm; emis-

sion: 585 nm) was measured every 2 min. At the end of the

reaction, 10 lL of 10% CHAPSO was added to each sam-

ple. Fusion data were presented as the percentage of maxi-

mum fluorescence change. Full accounting of statistical

significance was included for each dataset based on at least

three independent experiments.

Trans-SNARE assembly assay

The trans-SNARE assembly assay was performed as

described previously [49–51]. Reconstituted t- and v-

SNARE liposomes were incubated at 4 °C for the indicated

periods in the presence or absence of EGCG before a 10-

fold excess amount of inhibitory GST-tagged V2CD was

added to block unpaired t-SNAREs. The liposomes were

subsequently solubilized by 1% CHAPSO and the t-

SNAREs were precipitated using nickel sepharose beads.

The presence of full-length VAMP2 in the precipitates was

probed by immunoblotting, which was used as an indicator

for the trans-SNARE complex formed between liposomes.

Syntaxin-1 probed by immunoblotting was used as an indi-

cator of t-SNAREs in the precipitates.

Statistical analysis

All data were presented as the mean � SD and were ana-

lyzed using PRISM, version 8.0.2 (GraphPad Software Inc.,

Fig. 6. Epigallocatechin gallate inhibits insulin secretory SNARE-dependent membrane fusion in the presence of Syt7 and Ca2+. (A) Illustra-

tions of the liposome fusion procedures. The t-SNARE liposomes containing syntaxin-1 and SNAP-25 were reconstituted using the lipid com-

position: 50% POPC, 20% POPE, 15% POPS, 10% cholesterol, 3% 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoinositol (POPI) and 2%

phosphatidylinositol-4,5-bisphosphate (PIP2). The v-SNARE liposomes containing VAMP2 and Syt7 were prepared using the lipid composi-

tion: 47% POPC, 20% POPE, 15% POPS, 10% cholesterol, 5% POPI, 1.5% rhodamine-DPPE and 1.5% NBD-DPPE. The v- and t-SNARE

liposomes were mixed with 10 lM EGCG in the presence of 0.2 mM EGTA and 100 mg�mL�1 Ficoll 70. The samples were incubated at

37 °C for 20 min. Subsequently, 1 mM CaCl2 (or 1 mM EGTA) was added, and the fusion reactions were monitored for 60 min. (B) Lipid mix-

ing of the reconstituted fusion reactions. The fusion reactions were measured by a FRET-based lipid mixing assay. (C) Initial lipid mixing

rates of the liposome fusion reactions shown in (B). Data are presented as a percentage of fluorescence change per 10 min. Error bars indi-

cate the SD. Data are presented as the mean � SD (n = 3 independent replicates). P values were calculated using two-way ANOVA with

Tukey’s multiple comparisons test. **P < 0.01; ****P < 0.0001.

2118 FEBS Open Bio 12 (2022) 2111–2121 � 2022 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Regulation of membrane fusion by EGCG M. Zhu et al.



San Diego, CA, USA). Statistical significance was calcu-

lated using one-way analysis of variance (ANOVA) or two-

way ANOVA. P < 0.05 was considered statistically signifi-

cant.
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