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Abstract

Mycobacterium tuberculosis (M.tb) causes tuberculosis (TB) and remains one of the leading

causes of mortality due to an infectious pathogen. Host immune responses have been impli-

cated in driving the progression from infection to severe lung disease. We analyzed longitu-

dinal RNA sequencing (RNAseq) data from the whole blood of 74 TB progressors whose

samples were grouped into four six-month intervals preceding diagnosis (the GC6-74

study). We additionally analyzed RNAseq data from an independent cohort of 90 TB

patients with positron emission tomography-computed tomography (PET-CT) scan results

which were used to categorize them into groups with high and low levels of lung damage

(the Catalysis TB Biomarker study). These groups were compared to non-TB controls to

obtain a complete whole blood transcriptional profile for individuals spanning from early
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stages of M.tb infection to TB diagnosis. The results revealed a steady increase in the num-

ber of genes that were differentially expressed in progressors at time points closer to diagno-

sis with 278 genes at 13–18 months, 742 at 7–12 months and 5,131 detected 1–6 months

before diagnosis and 9,205 detected in TB patients. A total of 2,144 differentially expressed

genes were detected when comparing TB patients with high and low levels of lung damage.

There was a large overlap in the genes upregulated in progressors 1–6 months before diag-

nosis (86%) with those in TB patients. A comprehensive pathway analysis revealed a potent

activation of neutrophil and platelet mediated defenses including neutrophil and platelet

degranulation, and NET formation at both time points. These pathways were also enriched

in TB patients with high levels of lung damage compared to those with low. These findings

suggest that neutrophils and platelets play a critical role in TB pathogenesis, and provide

details of the timing of specific effector mechanisms that may contribute to TB lung

pathology.

Introduction

Mycobacterium tuberculosis (M.tb), which causes tuberculosis (TB), remains one of the leading

pathogens that is responsible for human death [1]. Although estimates suggest that 23% of the

world’s population are infected with M.tb [1], most individuals are able to eradicate or control

the disease [2] and only 5–10% develop TB during their lifetime [1].

It is largely unknown why some M.tb-infected individuals progress to active TB, but an

over-active inflammatory response is considered an important factor contributing to lung

pathology [3, 4]. Rapid necrosis, associated with a delayed-type hypersensitivity reaction

against accumulated M.tb antigens [5], or an M.tb-mediated autoreactive response [4], is

thought to cause an inflammatory response that drives lung extracellular matrix (ECM)

destruction and cavity formation. This allows M.tb in the lung interstitium to access the air-

ways and be transmitted [6].

Neutrophils are strongly activated in response to M.tb infection [7, 8], although numerous

studies have shown they are ineffective at killing or controlling M.tb replication (for review see

[9]). Rather, the activation and infiltration of neutrophils at late stages of infection is associated

with TB pathogenesis [9–13]. Indeed, neutrophils are the predominant immune cell type pres-

ent in lung lesions and cavities of pulmonary TB patients and are associated with lung ECM

destruction and cavity formation [12, 14]. Neutrophils contain a diverse array of preformed

proteases in their granules including neutrophil collagenase and matrix metallopeptidase 8

(MMP8), which digest ECM in human lung [12] and MMP8 is the most prevalent MMP pres-

ent in the sputum of TB patients [15]. M.tb-induced MMP8 secretion is also associated with

the secretion of neutrophil extracellular traps (NETs); a process by which neutrophils release

their antimicrobial granule proteases, DNA and histones extracellularly in a type of pro-

grammed cell death named NETosis [16]. Collectively, these studies strongly implicate neutro-

phils in late stages of TB lung pathology including ECM destruction and cavity formation.

Whole blood transcriptomic studies have advanced our knowledge of the host response to

many diseases, including TB [11, 17–19]. Previous transcriptomics studies identified a number

of immune processes activated in TB patients including interferon (IFN)-signaling [11, 17,

20], myeloid cell inflammation [21], and the inflammasome and proinflammatory pathways

[17]. Two large cohort studies that monitored individuals at high risk for developing TB for up
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to two years before diagnosis generated whole blood transcriptional profiles for TB progressors

with the aim to develop predictive transcript-based risk signatures [22, 23]. Subsequently, data

from one of these studies, the South African adolescent cohort (aged 12–18 years) [23], was

analyzed to identify biological pathways and processes that are active during TB progression

[24, 25]. These studies found that type I IFN signaling and the complement cascade were the

main pathways activated at early stages of TB progression as observed in TB patients [24, 25]

and changes in functionally uncharacterized neutrophil and platelet gene modules occurred at

times closer to TB diagnosis [25]. Here we extended the prior analyses by jointly analyzing two

data sets and dissecting the neutrophil processes.

We performed a differential expression (DE) and comprehensive pathway analysis of

whole-blood RNA sequencing (RNAseq) datasets obtained from the Gene Expression Omni-

bus (GEO) [26]. The first set, GEO series GSE94438 (GC6-74 study), was generated from indi-

viduals for a period of up to two years prior to TB diagnosis [22]. The second data set, GEO

series GSE89403 (Catalysis TB Biomarker Study, hereafter the Catalysis study), compared TB

patients to healthy controls. Collectively, the data sets provide a full spectrum of host transcrip-

tional responses spanning from early infection stages to TB diagnosis. Our analysis focused on

identifying host responses that may contribute to the development of TB.

Results

Study groups and data quality

We performed a DE and comprehensive pathway analysis of whole-blood RNAseq data sets

obtained from the GEO.

The first data set included RNAseq data for TB progressors (GEO:GSE94438) and was gen-

erated as part of the Grand Challenges 6–74 (GC6-74) program. The program was a longitudi-

nal study of household contacts of newly diagnosed, sputum smear-positive TB cases in a high

TB-prevalence settings and included samples from four different African populations. A

detailed description of the study groups has been published previously [22, 23, 27, 28]. Con-

tacts diagnosed with TB within 3 months of recruitment were considered to have prior disease

and were excluded from the study, while those developing disease after this point were consid-

ered to have true incident TB and were included as cases. Due to the finite follow-up some of

the subjects classified as non-progressor might have had pre-clinical TB. Such subjects in the

“control” group would dilute the disease signals, possibly obscuring some insights, but would

not alter the fundamental findings.

Since the aim of the present study was to identify genes that are DE at different stages of TB

progression, the progressor samples were labelled according to the time the sample was col-

lected before their TB diagnosis. As an example, if a participant was diagnosed with TB 8

months after enrollment and they had samples collected at enrollment (time 0) and 6 months,

these samples would be classified as 8 and 2 months before diagnosis, respectively. The labelled

samples were subsequently placed into groups that corresponded to 19–24, 13–18, 7–12 and

1–6 months before TB diagnosis (longitudinal data for subjects who were diagnosed with TB

were aligned to the time of diagnosis and specimens taken before diagnosis were binned into

the aforementioned groups). The number of samples in each study group, and mean time

before TB diagnosis for each time point are listed in Table 1. For the GC6-74 study, all the TB

progressor groups were compared to the same non-TB control samples that were collected at

recruitment time. This ensured that any differences between the progressor groups were a

result of changes in their respective expression rather than changes in the baseline group.

The second data set used included a subset of RNAseq data from the South African Catalysis

study (GEO: GSE89403). Here, we only used RNAseq data from TB patients at diagnosis and the
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non-TB controls [27, 28]. This data set also contained positron emission tomography-computed

tomography (PET-CT) data for the TB patients which we used to categorise the patients (see

Methods for details) into groups with high (high PET scores) and low (low PET scores) levels of

lung damage. The primary analysis for the Catalysis study data set compared all TB patients to

controls. We additionally performed a number of PET-score based sub-analyses where patients

with high and low PET scores were individually compared to controls, and patients with high

and low PET scores were directly compared to identify differences between them.

The FastQC analysis revealed that the read quality was good with no adapter contamina-

tion, therefore, no trimming was performed. Mapping statistics revealed that for the GC6-

74 cohort, a mean of 47.5 million reads [(47.1, 47.9: 95% CI; 85.9% (95% CI: 85.7, 86.1)]

mapped uniquely to the human genome with 87.8% (95% CI: 87.7, 87.9) of these mapping

to genes. For the Catalysis cohort, a mean of 40.1 million reads [(39.4, 40.8: 95% CI; 88.6%

(88.3, 88.9: 95% CI)] mapped uniquely to the human genome with 88.8% (95% CI: 88.7,

88.9) mapping to genes.

Differential expression analysis

The edgeR DE analysis identified several significantly perturbed genes across the different

time points (Table 2). For the progressors in the GC6-74 study [23], there was a steady increase

in the number of DE genes detected at time points more proximal to TB diagnosis with only

five genes at 19–24 months, 278 at 13–18 months, 742 at 7–12 months and 5,131 at 1–6 months

before diagnosis. A total of 9,205 genes were DE in TB patients compared to controls (Catalysis

study). In the Catalysis sub-group analysis, in comparison to controls, a similar number of

genes were significantly DE in patients with high (9,211) and low (8,496) PET-scores

(Table 2). Notably, a total of 2,144 significantly DE genes were identified when directly com-

paring patients with high and low PET-scores confirming differences in transcriptional signa-

tures between TB patients with high and low levels of lung damage.

Table 1. Study groups.

GC6-74 Studya Catalysis Studyb

Timec before TB diagnosis in progressors

19–24 13–18 7–12 1–6 Controld TB Controle

N

Total 11 19 18 47 198 90 21

Male 3 7 8 20 81 55 8

Age

Mean (y) 24.2 25.5 27.9 29.0 27.5 34.3 33.4

SD 9.4 11.3 11.3 12.0 13.0 11.2 11.5

Time to diagnosis

Mean 21.5 16.1 9.2 4.2 NAf NA NA
SD 0.6 0.4 0.4 0.2

95% CI 20.4–22.6 15.3–16.8 8.3–10.1 3.8–4.6

aGEO series GSE94438
bGEO series GSE89403
cTime in months before diagnosis
dGC6-74 Controls: household contacts who did not develop TB
eCatalysis Controls: Other lung disease subjects
fNA, Not applicable

https://doi.org/10.1371/journal.pone.0278295.t001
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The DE results for all genes and time points are presented in S2 Table. There was substan-

tial overlap in the DE genes with 92% (445/492) of the genes upregulated 7–12 months before

diagnosis also being upregulated in the samples taken 1–6 months prior to TB diagnosis. Simi-

larly, 85% (2,365/2,791) of the genes upregulated 1–6 months before diagnosis in GC6-74

study subjects were also upregulated in Catalysis study TB patients (Fig 1A). The high level of

overlap in genes upregulated 1–6 months before diagnosis with those upregulated in TB

patients illustrates substantial homogeneity in the host response between the two cohorts and

provides support for the validity in their comparisons.

In the Catalysis study PET categorized sub-analysis, the TB high PET score group vs con-

trols shared 91% (3,818/4,200) while the TB low PET score group vs controls shared 94%

(3,957/4,200) of the upregulated genes identified in the complete analysis (Fig 1B). Of the 995

Table 2. Number of significantly differentially expressed (DE) genes (FDR<0.05) at each time point.

GC6-74 Studya Catalysis Study

Test group 19–24b 13–18b 7–12b 1–6b TBc PET highc PET lowc PET highd

Case N 11 19 18 47 90 24e 65e NA

DE Gene Count

Up 5 247 492 2,791 4,200 4,284 4,031 995

Down 0 31 250 2,340 5,005 4,927 4,465 1,149

Total 5 278 742 5,131 9,205 9,211 8,496 2,144

a Reference group: GC6-74 non-TB controls
b Months before diagnosis
c Reference group: Catalysis non-TB controls
d Reference group: Catalysis PET-low
e One TB patient in the Catalysis Study group did not have PET-CT data

https://doi.org/10.1371/journal.pone.0278295.t002

Fig 1. Venn diagram illustrating the overlap in significantly upregulated genes. A) Comparison of upregulated genes detected 7–12 and 1–6 months

before diagnosis and in TB patients. B) Comparison of upregulated genes detected in TB patients with high and low PET scores compared separately to

controls and high and low PET scores compared to each other. The numbers in parenthesis indicate the total number of upregulated genes for the

specific comparison.

https://doi.org/10.1371/journal.pone.0278295.g001
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genes that were upregulated when directly comparing the TB high PET score group to the TB

low PET score group, 95% (943/995) were upregulated when comparing the TB high PET

score group to controls and 78% (773/995) were upregulated when comparing the TB low PET

score group to controls. Thus, 773 genes that were upregulated when comparing the TB low

PET score group to controls, were further significantly upregulated in TB patients with high

PET scores compared to those with low PET scores.

Since the increased sample size at time points more proximal to TB diagnosis could be

responsible for the increased number of DE genes observed, we performed subsampling to

confirm that true biological differences were responsible for the increased number of genes.

The subsampling of the 1–6 months before diagnosis group revealed that on average 1,454

genes were upregulated across 1,000 iterations of 19 samples compared to 2,791 upregulated

genes detected with a sample size of 47 (S1 Fig). For the TB group, a mean of 3,510 genes were

upregulated across 1,000 iterations of 19 samples compared to 4,200 upregulated genes

detected with a sample size of 90 (S2 Fig). The higher mean number of upregulated genes

detected when subsampling both groups compared to the 13–18 (249; n = 19) and 7–12 (492;

n = 18) months before diagnosis groups (Table 2) indicated that the increased number of DE

genes observed was predominately a consequence of the time point. This is also supported by

almost double the number of genes detected in the 7–12 compared to the 13–18 months before

diagnosis groups which had similar sample sizes. The results also confirmed that larger sample

numbers improve statistical power and facilitate the detection of additional DE genes.

Gene Ontology (GO) and KEGG pathway analysis

Since only five genes were DE 19–24 months before diagnosis (S2 Table), the pathway analysis

was performed on the 13–18, 7–12 and 1–6 months before diagnosis time points and on TB

patients. The use of the weighted algorithm (weight01) in topGO identified the most specific

and thus informative GO terms including several not previously reported during TB progres-

sion. In addition, only pathways that had a minimum of 10 DE genes were considered. In sum-

mary, the pathway analysis of the upregulated genes identified several defense-related

pathways that were enriched early (13–18 months before diagnosis), remained elevated and

intensified, based on increased numbers of annotated genes, at time points more proximal to

TB diagnosis. Several additional processes that were specifically related to neutrophil and

platelet defense responses were first enriched 1–6 months before diagnosis and remained

enriched in TB patients.

A list of the GO and KEGG pathways significantly perturbed at different stages of TB pro-

gression is provided in S2 and S3 Tables. Here, in the main text, we focus on the induction of

neutrophil-mediated defenses and related pathways and processes since we consider these the

most likely drivers of disease progression.

Early (13–18 and 7–12 months before) pathway activation

The most enriched GO terms detected 13–18 and 7–12 months before diagnosis were associ-

ated with IFN signaling including “type I interferon signaling pathway” and “interferon-γ-

mediated signaling pathway” (Fig 2A).

One to six months before diagnosis

A total of 5,131 genes were significantly DE 1–6 months before TB diagnosis with respect to

household controls with 2,791 (54%) up-regulated (Table 2). The marked increase in the num-

ber of DE genes was notably accompanied by a corresponding enrichment in several effector

pathways that were not enriched at earlier time points documenting a strong and distinct
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activation of the host immune response at this time point. This response was dominated by a

strong enrichment in up-regulated genes that function in neutrophil-mediated immunity with

“neutrophil degranulation” [p<10-30, 222/464 (48%) annotated genes] being the most signifi-

cant and specific GO biological process (BP) term detected (Fig 2B). Other enriched pathways

related to neutrophil function included “neutrophil chemotaxis”, “Fc-gamma receptor signal-

ing pathway involved in phagocytosis” and “platelet degranulation”. Several terms related to

the production of reactive oxygen species (ROS) were also enriched including “positive regula-

tion of superoxide anion generation”, “respiratory burst”, “mitochondrial electron transport”

and “cellular oxidant detoxification”. The KEGG “NET formation” and “tuberculosis” disease

pathways were also enriched at this time point (Fig 2B). An illustration of the KEGG “NET for-

mation” pathway is presented in Fig 3A and 3B with fold-changes (log2) for significantly upre-

gulated genes displayed for the different time points.

Annotated neutrophil degranulation genes upregulated 1–6 months before diagnosis

included neutrophil integrin subunit beta 2 (ITGB2/LFA1), integrin subunit alpha M (ITGAM)

and integrin subunit alpha X (ITGAX) that form the transmembrane heterodimer integrin

receptors ITGAM/ITGB2 (mac-1) and ITGAX/ITGB2 that facilitate the transmigration of

neutrophils to infection sites [30] (Fig 4). The neutrophil granule transmembrane chemotactic

formyl peptide receptor (FPR) 1 and 2 that bind formyl-peptides derived from bacteria and

damaged host molecules and the CXCR1 and 2 receptors that bind the neutrophil chemotactic

and activation factors IL8 and CXCL7 (neutrophil-activating peptide-2, NAP2) were also

induced. Ligation of the G protein-coupled receptors FPR1 and 2, and CXCR1 and 2 induces

calcium signaling which regulates neutrophil migration, ROS synthesis and primes neutrophils

for further activation and the release of subsequent granules [31]. The genes encoding the anti-

microbial myeloid-related proteins (MRP), namely S100A8, S100A9, S100A11, and S100A12,

were also upregulated [16, 32].

Fig 2. GO annotations and KEGG pathways first enriched at (A) 13–18 and 7–12 months before diagnosis and (B) 1–6 months before diagnosis.

Radar plots illustrating proportions of DE genes in the gene sets at the indicated time points for selected pathways broadly related to neutrophil

function. All four time points [13–18, 7–12, and 1–6 months before, and at diagnosis (TB)] are shown in each plot to demonstrate that annotations

detected early persist and generally have more DE genes at later stages, although significance may decrease. The numbers in parenthesis represent the

total numbers of genes in the annotation gene set. Asterisks indicate nominal significance: ���,< 5e-15; �� < 5e-07; �,< 5e-04.

https://doi.org/10.1371/journal.pone.0278295.g002
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Fig 3. KEGG NET formation pathway illustrating the fold changes (log2) for significantly upregulated genes at

different time points. A) Gene expression as fold-change is indicated by a color block in the background rectangle or

each gene corresponding to the contrasts, 13–18, 7–12, 1–6 months before diagnosis and TB compared to their respective

controls (from left to right). B) As above but illustrating the significantly increased expression of genes in TB patients

with high PET-scores compared to those with low PET-scores. Figures rendered by the R Bioconductor pathview

package [29], on finite resolution raster images from KEGG.

https://doi.org/10.1371/journal.pone.0278295.g003
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Additional upregulated genes annotated to function in neutrophil degranulation include

those encoding components of the superoxide generating NADPH oxidase 2 (NOX2). This

included the transmembrane catalytic [cytochrome b-245 -alpha (CYBA) and -beta (CYBB)]

and cytosolic regulatory subunits [neutrophil cytosolic factor (NCF)1, 2 and 4 and the small G-

protein, RAC2 [33, 34]. The induction of genes encoding components of NOX2 along with the

enrichment of pathways involved in superoxide generation and the respiratory burst, is consis-

tent with the enrichment of FcγR mediated phagocytosis which activates NOX2 assembly [34,

35]. NOX2 generated ROS also induce the synthesis of NETs [36, 37].

The co-induction of “platelet degranulation” with “neutrophil degranulation”, first

observed 1–6 months before diagnosis, is consistent with the physical interactions and costi-

mulatory roles platelets and neutrophils share during immune responses [38, 39].

TB versus healthy controls

A total of 9,205 genes were DE in individuals with TB in contrast to the non-TB time zero

baseline group from the GC6-74 study, of which 4,200 (46%) were up-regulated (Table 2).

Fig 4. Heatmap of selected annotated neutrophil degranulation genes significantly upregulated 1–6 months

before diagnosis and in TB patients. The fold changes presented at 1–6 months before diagnosis (6mBf) are in

contrast to the non-TB time zero baseline group from the GC6-74 study. For the TB comparison, the 21 non-TB

individuals from the Catalysis study served as controls (see Table 1). Fold-changes for Catalysis TB-patients,

categorized with high and low PET scores, were also compared individually to controls and directly to each other to

identify differences between the categorized groups.

https://doi.org/10.1371/journal.pone.0278295.g004
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Similar to 1–6 months before diagnosis, there was a strong enrichment in pathways related to

neutrophil-mediated immunity with “neutrophil degranulation” [p<1x10-30, 305/464 (66%)

annotated genes] being the most significant and specific GO BP term detected (Fig 2A).

Approximately 95% (210/222) of the neutrophil degranulation (Fig 5A) and 97% (60/62) of

NET formation (Fig 5B). annotated genes that were upregulated 1–6 months before diagnosis

were also upregulated in TB patients. All the other enriched neutrophil related functions

observed 1–6 months before diagnosis were also enriched in TB patients.

Several additional terms related to neutrophil function were enriched in TB patients, but

not 1–6 months before diagnosis. This included the terms “leukocyte transendothelial migra-

tion”, “neutrophil extravasation”, “extracellular matrix disassembly”, “collagen catabolic pro-

cess”, “antibacterial humoral response”, “antimicrobial humoral immune response mediated

by antimicrobial peptide”, “platelet activation” and “platelet aggregation” (Fig 6).

It is interesting to note that the expression of several genes that encode neutrophil granule

antimicrobial peptides were only elevated in TB patients and not progressors (Fig 4). These

included myeloperoxidase (MPO), neutrophil elastase (ELANE), cathepsin G (CTSG), catheli-

cidin antimicrobial peptide (CAMP/LL37), lactotransferrin (LTF), defensin alpha 4 (DEFA4),

azurocidin 1 (AZU1), bactericidal/permeability-increasing protein (BPI), MMP8, MMP9, and

neutrophil gelatinase-associated lipocalin (NGAL). A number of these genes are also annotated

to function in other enriched pathways including NET formation and antimicrobial and anti-

bacterial humoral defense responses.

Catalysis PET-CT sub-analysis

Unsurprisingly, given the high level of overlap between the genes, the results of the pathway

analysis were very similar to those observed when comparing the complete TB group to con-

trols, with “neutrophil degranulation”, “platelet degranulation” and “NET formation” being

significantly enriched in both the TB-high-PET score group and the TB-low-PET score group

Fig 5. Venn diagram of the overlap in significantly upregulated genes that are annotated to function in: A) neutrophil degranulation, and B) NET

formation. Differentially expressed genes at 7–12 and 1–6 months before diagnosis and in TB patients in contrast to the non-TB time zero baseline

group from the GC6-74 study. The numbers in parenthesis indicate the total numbers of upregulated genes at the time point.

https://doi.org/10.1371/journal.pone.0278295.g005
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vs controls comparisons. Strikingly, these pathway were also enriched when directly compar-

ing the TB-high-PET score group to the TB-low-PET score group with neutrophil degranula-

tion [p = 8.1−19, 86/464 (19%)], platelet degranulation [p = 4.5−6, 21/105 (20%)] and NET

formation [p = 5.8−12 34/142 (24%), Table 3)], revealing that TB patients with increased lung

damage have an enrichment in upregulated genes that function in these pathways. Annotated

neutrophil degranulation genes that were significantly upregulated in TB patients with high

PET scores compared to those with low PET scores included MMP8, S100A12, S100A8,

S100A9, CAMP and PPBP (Fig 4).

Discussion

Our results revealed an early induction of IFN-related signaling at 18 months before diagnosis.

A strong induction of neutrophil and platelet degranulation and NETosis related genes was

detected 6 months before TB diagnosis and persisted in TB patients supporting a pathogenic

role of these responses in disease development. Although these processes have previously been

detected in patients diagnosed with active TB, here we document that they occur well before

diagnosis, indicating that they may be critical in mediating lung tissue destruction and pro-

gression from infection with M.tb to active TB.

Fig 6. Pathways first enriched in TB patients. Radar plot with symbols as in Fig 2. The full name for “Antimicrobial

Humoral Immune Response . . .” is “Antimicrobial humoral immune response mediated by antimicrobial peptide

(GO:0061844)”.

https://doi.org/10.1371/journal.pone.0278295.g006

Table 3. Pathways significantly enriched with upregulated genes when comparing TB patients with high PET-scores to TB patients with low PET-scores.

Pathway Total annotated genes Number Up % Up P-value Rank

Neutrophil degranulationa 464 86 18.5 1.2−18c 1

Platelet degranulationa 105 21 20 4.5−06c 8

NET formationb 142 34 23.9 5.8−12 2

aGO biological process
bKEGG pathway
cweight01.algorithm p-value

https://doi.org/10.1371/journal.pone.0278295.t003
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DE and pathway enrichment analysis revealed that an induction of the host defense

response, that is dominated by type I and II IFN signaling, was first detectable in whole blood

of TB progressors as early as 13–18 months before diagnosis. A progressive induction in the

intensity of the IFN response was observed as time points approached TB diagnosis with a dis-

tinct induction of neutrophil-mediated defense observed 1–6 months before diagnosis that

persisted and intensified in patients diagnosed with TB. Given that we examined transcrip-

tional responses in whole blood, changes observed are likely to result from signaling molecules

released from infected cells, most likely in the lungs, rather than through direct contact with

the pathogen. The signaling is likely to prime circulating leukocytes for activation in prepara-

tion for their recruitment to infection sites.

A unique and striking finding was the strong induction of specific neutrophil-mediated

defenses, including neutrophil degranulation, and NET formation, that are first observed 1–6

months before diagnosis (Fig 2B), maintained in TB patients and significantly enriched in TB

patients with high levels of lung damage compared to those with low level damage assessed by

PET-CT (S4 Table). The induction of neutrophil-mediated defenses is consistent with litera-

ture that associates neutrophil activation and infiltration with TB as well as pulmonary

destruction [9, 11, 13]. Neutrophils have been reported to be the predominant immune cell

type present in the sputum and at the site of infection in the lung [40], and are also the main

cell type infected with M.tb in sputum and lung cavities [14]. In addition, neutrophil markers

are associated with necrotic areas in granulomas [41] and excessive neutrophil infiltration is

associated with the softening of caseous lesions in the lung [5].

Although the neutrophil degranulation and NET formation processes are both enriched

1–6 months before diagnosis and in TB patients, the additional increase in the expression level

and induction of additional genes that function in these pathways in TB patients suggests a

sequential induction of neutrophil activation during the late stages of disease progression.

Genes induced 1–6 months before diagnosis encode neutrophil membrane integrins and che-

motactic receptors that mediate their adhesion and transmigration to infection sites as well as

components of NOX2 [42]. These genes are generally involved in the priming of neutrophils

in preparation for full activation at infection sites. In TB patients, there is a distinct induction

of genes that encode neutrophil granule proteins that function in ECM degradation including

MMP8 and MMP9 and those that encode numerous neutrophil azurophilic granule proteins

including MPO, ELANE, DEFA4 and BPI. The MPO, ELANE and PADI4 peptides play a criti-

cal role in NET formation, driving chromatin decondensation, cell rupture and the extracellu-

lar release of DNA [43–45]. The significantly higher induction of genes in patients with high-

PET scores compared to those with low-PET scores, including MMP8, links their increased

expression to increased lung damage.

The induction of genes that encode neutrophil granule proteins, including bactericidal gran-

ule enzymes, is intriguing since expression of these genes is typically high in neutrophils during

maturation when granule proteins are synthesized, and declines in mature cells [46, 47]. A

highly similar set of genes including AZU1, CAMP, CTSG, DEFA4, ELANE, LTF, and MPO is

activated and forms part of a co-expression module in isolated low-density granulocytes (LDG)

from systemic lupus erythematosus (SLE) patients and it is thought that LDGs are immature

neutrophils that have been released into the circulation during granulopoiesis [45, 48]. Elevated

LDG levels are correlated with disease severity in TB patients, but in vitro studies indicated

LDGs were generated from normal neutrophils after degranulation or NET formation [49, 50].

These studies, however, did not investigate whether the expression of genes encoding the gran-

ule proteins were elevated in these cells. Given our analysis is on whole blood which includes

multiple cell types, it is possible that the observed elevated expression of neutrophil related

genes is a result of an increase in the proportion of neutrophils in the blood. This, however,
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could only partially account for the observed increases since the expression of a number of

these genes including ELANE, DEFA4, BPI and LTF (Fig 4) are elevated> 4-fold (log2 FC> 2).

Since neutrophils already constitute 50% to 70% of all circulating leukocytes, an increase in

their abundance could not possibly account for the increased transcription observed. Neverthe-

less, the increased expression of neutrophil granule genes observed in this study may contribute

to tissue destruction and TB pathogenesis since pro-inflammatory LDGs have an enhanced

capacity to secrete NETs and granule peptides in TB and SLE patients [45, 50].

While M.tb has been shown to stimulate NET synthesis [51], NETs have a limited ability to

kill M.tb [52] and it has been suggested they rather provide a platform for extracellular M.tb
replication that facilitates pulmonary lesion growth and drives the transition to infectious TB

[9, 53, 54]. In TB patients’ plasma NET, MPO and ELANE levels are correlated with TB sever-

ity [55], while elevated serum levels of citrunillated histone H3, a NET biomarker, are associ-

ated with lung cavitation and poor treatment outcome [56]. A number of NET components,

including dsDNA, mitochondrial DNA, and granule proteinases function as immune-stimula-

tory molecules when released extracellularly [45] and have been identified as important drivers

of immune-pathogenesis in both infectious and non-infectious human diseases [57].

[61, 62] Given the early and sustained level of type I IFN signaling observed during TB pro-

gression, it is interesting to note that in TB susceptible mice, type I IFN signaling has been

shown to induce NETosis through activation of interferon α and β receptor subunit 1, which is

associated with enhanced mycobacterial growth at infection sites and enhanced TB pathogene-

sis [58]. The same study identified NETs in nectrotic lung lesions of TB patients that

responded poorly to treatment. Further, serum from patients with autoimmune disorders that

have elevated levels of type I IFNs, as well as exogenous IFN-α, has been shown to stimulate

neutrophil NET production in vitro suggesting that type I IFN prime neutrophils for NET pro-

duction [59–61]. In turn, self-DNA and antimicrobial peptides released with NETs, have been

reported to induce the chronic activation of plasmacytoid dendritic cells and secretion of type

I IFNs in SLE patients creating a positive feedback loop that prolongs the inflammatory

response [62]. The upregulated type I IFN signaling observed in this study that precedes neu-

trophil activation and NETosis, along with the above-mentioned studies, is consistent with

type I IFN signaling diving neutrophil activation and NETosis during TB progression and

enhancing TB pathogenesis.

The co-induction of platelet and neutrophil-mediated defense responses starting as early as

13–18 months before diagnosis is consistent with their established dependent roles during

immune responses [38, 39, 63]. The activation of platelet and neutrophil degranulation,

including the induction of platelet and neutrophil derived granule chemokines and membrane

proteins that mediate their co-migration and physical adhesion including P-selectin (SELP)

and CXCL7 (neutrophil-activating peptide-2 NAP2) from platelets and selectin P ligand
(SELPLG), CXCR1 and 2, and ITGB2/LFA1 from neutrophils is consistent with studies that

document their physical interactions during defense responses [38, 63]. Platelet-neutrophil

adhesion induces intracellular signaling cascades that activate many neutrophil antimicrobial

functions observed in this study including ROS production, phagocytosis and NETosis [39,

64]. Indeed, the neutrophil membrane integrin ITGB2/LFA1 is required to mediate neutro-

phil-platelet adhesion that drives NET release in human sepsis [64]. It has been suggested that

platelets function as a barometer, stimulating NET synthesis when bacterial levels exceed the

neutrophils’ capacity to control infection through alternative mechanisms [64, 65].

Platelet-neutrophil complexes are implicated in the pathogenesis of pulmonary inflamma-

tion and acute lung injury [39]. In TB patients, platelet numbers and activity are increased [66,

67] and the concentration of numerous platelet-derived mediators including P-selectin,

RANTES and PDGF was increased and correlated with levels of tissue-degrading MMPs 1, 7,
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8, and 9, in bronchoalveolar lavage samples [68]. The co-induction of platelet and neutrophil

functions that are first observed 1–6 months before diagnosis and further activated in TB

patients suggests a pathological role for these interactions in the late stages of TB development.

This is further supported by the increased induction of these pathways in TB patients with

high PET scores compared to those with low PET scores.

The current findings confirm and elaborate the findings of a previous study by Scriba et al.

[25] that identified the induction of uncharacterized neutrophil and platelet gene modules 6

months before TB diagnosis. Here, we identified specific processes that are mediated by these

cells, including neutrophil and platelet degranulation as well as NET formation that are acti-

vated 6 months before TB diagnosis. Our analyses additionally discovered that these processes

are further activated in individuals with TB and at an elevated level in TB patients with

increased lung damage. Collectively, these results support that the activation of these pathways

is linked to TB progression and increased lung damage in TB patients.

Conclusion

The distinct co-induction of neutrophil and platelet degranulation as early as 13–18 months

before diagnosis, NET formation 1–6 months before diagnosis, as well as their further activa-

tion in TB patients is consistent with these processes playing a critical role in the late stages of

disease progression. This is further supported by the enrichment in upregulated genes that

function in these pathways in TB patients with increased levels of lung damage. Platelet-neu-

trophil interactions are required for mediating their chemotaxis and recruitment to infection

sites and for NET synthesis [69]. NETs are associated with TB pathogenesis and are thought to

provide an extracellular platform for M.tb growth [53] while neutrophil granule enzymes

degrade the ECM of the lung [12]. Collectively, these responses can lead to rapid lesion growth

and tissue destruction that allows M.tb to disseminate into the airways [53]. The detectable

activation of these specific processes in whole blood around 6 months before TB diagnosis

makes them promising candidates for targeted therapeutic interventions that may limit lung

damage and prevent progression to active TB.

Methods

Study outline and data sources

The whole blood RNAseq data analyzed was obtained from two independent data sets.

The data for TB progressors were generated as part of the the Bill and Melinda Gates Foun-

dation GC6-74 program that was a longitudinal study of household members of newly diag-

nosed TB cases which was conducted across four African sites including South Africa, The

Gambia, Uganda and Ethiopia. In brief, when a newly diagnosed TB case was identified, indi-

viduals with whom they shared a house for a minimum period of three months were recruited

with the expectation that they would have been exposed (likely repeatedly) and infected with

M.tb and were, therefore, at high risk of developing TB. A total of 4,466 household contacts

were followed for two years and whole blood was collected at recruitment (time zero), 6 and

18 months thereafter for RNAseq. Further details of the study details have been described pre-

viously [22, 23]. The samples have been used in several previous publications for validation

and discovery of TB biomarkers [22, 23]. The raw RNAseq FASTQ files for the study were

downloaded from the GEO public database (accession number GSE94438).

The second data set used included a subset of RNAseq data from the South African Cataly-

sis study (GEO: GSE89403) which was a longitudinal study of resolution of lung inflammation

in TB cases. Here, we only used RNAseq data from TB patients at diagnosis and the non-TB

controls [27, 28] to enlarge the size of the sample of TB at diagnosis patients. The study
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recruited adult HIV-negative TB patients, whose diagnosis was confirmed with a sputum cul-

ture [27, 28]. Asymptomatic individuals that were recruited from the same community and

tested negative for TB on sputum and chest X-ray were used as controls. The results of 18-F

fluorodeoxyglucose (FDG) PET-CT scans from TB patients at enrollment were used to catego-

rize patients into groups with high and low levels of lung inflammation activity based on PET.

The metric used is a sum of total glycolytic activity index (TGAI) [27, 70] of all metabolically

active lesions and the products of the mean lesion intensities with the cavity volumes, abbrevi-

ated ComTGAI, and is correlated with levels of lung inflammation [27, 71] Patients were

dichotomized into low and high PET scores based on a threshold of 4,000 units at baseline.

Ethics statement

Both source studies (the GC6-74 study and the Catalysis TB Biomarker study) were performed

with ethical approvals and required written informed consent. For the GC6-74 study the fol-

lowing ethics approvals applied (as described in [23]): Stellenbosch University, South Africa,

Stellenbosch University Human Research Ethics Committee, N05/11/187; UK Medical

Research Council Unit, the Gambia, Joint Medical Research Council and Gambian Govern-

ment, SCC.1141vs2; Makarere University, Uganda, Uganda National Council for Science and

Technology, MV 715, and University Hospitals Case Medical Centre, 12-95-08; Armauer Han-

sen Research Institute, Ethiopia, Armauer Hansen Research Institute (AHRI)/All Africa Lep-

rosy, TB and Rehabilitation Training Center (ALERT), P015/10; and the University of Cape

Town, South Africa, University of Cape Town Human Research Ethics Committee (HREC),

013/2013. For the Catalysis TB Biomarker study, the ethical approval was from the Stellen-

bosch University, South Africa, Stellenbosch University Human Research Ethics Committee,

N10/01/013 (as described in [28]).

This study was performed with the following ethical approvals that are still current: Stellen-

bosch University, South Africa, Stellenbosch University Human Research Ethics Committee,

N05/11/187 and Stellenbosch University, South Africa, Stellenbosch University Human

Research Ethics Committee, N10/01/013.

RNAseq and quality control

The data used in the current study had been obtained with RNA extracted from whole blood

and sequenced on the Illumina HiSeq-4000 (GC6-74) and HiSeq-2000 (Catalysis) platforms

generating 50 bp stranded paired-end reads. We used the FastQC program (version 0.11.5)

[72] to assess the quality of the reads.

Read mapping

The Spliced Transcripts Alignment to a Reference (STAR) software (version STAR_2.5.3a)

[73] was used to map reads to the Ensembl [74] human genome primary assembly (version

GRCh38.89). The quantMode GeneCounts option was selected to generate raw genewise read

counts for each sample.

Differential expression analysis

The DE analysis was performed in R [75] using the edgeR (version 3.26.8) [76] Bioconductor

[77] package. Briefly, raw counts were filtered to remove genes with low expression, normal-

ized, and negative binomial generalized linear models were fitted. In addition to time before

diagnosis, sex and site were included as factors in the model matrix since they were observed
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to be responsible for the separation of principal component (PC)1 and PC2 based on multidi-

mensional scaling plots.

The linear model applied was:

Gene ¼ 0þ Timeþ sexþ site

In R syntax as: model.matrix(~ 0 +TimeBf+ sex + site), i.e., a model without an intercept

The quasi-likelihood F-test (QLF-Test) was used to determine significance and identify DE

genes. For the GC6-74 data set, all TB progressor groups were compared to the non-TB base-

line group (time 0). For the Catalysis data set, the TB patients were compared to non-TB con-

trols. TB patients categorized with high and low PET scores were also separately compared to

controls and directly to each other to identify differences. Significantly DE genes were selected

that had a false discovery rate (FDR) <0.05.

To determine the influence that the larger sample sizes [1–6 months before (n = 47) and TB

(n = 90) compared to 13–18 months before (n = 18) and 7–12 months before (n = 19), see

Table 1] had on the number of DE genes detected, the 1–6 months before diagnosis and TB

groups with larger samples were subsampled. These groups were subsampled 1000 times at a

sample size of 19 and a DE analysis was performed for each iteration.

Gene ontology and KEGG pathway analysis

The topGO [78] Bioconductor package was used to test for enrichments in any GO terms

[79] associated with the DE genes. The GO graph structure was generated using both the

“classic” and “weight01”, algorithms using the Fisher’s exact test to identify enriched

terms. In brief, the classic algorithm tests each GO category independently. The “weight01”

is the default algorithm used by the topGO package and essentially penalizes scores for

more general terms that share genes with more specific neighboring terms, weighting the

analysis for the identification of more specific and therefore informative ontologies.

“Weight01” is a mixture of two algorithms, “elim” which eliminates genes shared between

a node and its ancestor, and “weight” which weights genes locally as a function of the ratio

between child and ancestor nodes [78]. The weight01 mixture of the two algorithms mod-

erates the extremes of the two individual algorithms.

The kegga function in edgeR was used to perform a KEGG [80] pathway enrichment analy-

sis on the DE gene sets. The Bioconductor [77] pathview package [29] was subsequently used

to visualize gene expression on enriched KEGG pathway graphs.

Due to the extensive overlap of genes in the hierarchical GO categories, neither the topGO

or kegga programs correct for multiple hypothesis testing and recommend against it. We

therefore applied a stringent p-value cut-off of<5x10-4 to identify enriched pathways.

Supporting information

S1 Table. PET scores for the catalysis study specimens. The PET score (low-PET, high-PET

as defined in Methods) for the Catalysis study specimens used in the current study.

(XLSX)

S2 Table. List of differentially expressed genes at all time points. The statistical metrics pre-

sented for each comparison include: log2 fold change (log2FC), average log2 counts per mil-

lion (logCPM), quasi-likelihood F-statistic (F), p-value (PValue) and false discovery rate

(FDR). The non-TB time zero baseline group from the GC6 study were the control group for

all comparisons prior to TB diagnosis (i.e., 24, 18, 12 and 6 months before diagnosis) while the
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Catalysis study healthy controls served as the baseline for the TB comparison.

(XLSX)

S3 Table. Gene ontology (GO) enrichment analysis results for significantly upregulated

genes at all time points. The analysis was performed using the topGO R Bioconductor pack-

age. The statistical metrics presented for each process include: the total number of genes anno-

tated to the process (Total annotated), the number of genes that were significantly up (N up)

-regulated, the percent of total annotated that were up-regulated (% Up) and the number that

were expected by chance (Expected). The uncorrected Fisher’s exact test p-value (Pvalue) and

overall rank for over-representation of the GO term in the set using both the classic and

weight01 (W1) algorithms are presented.

(XLSX)

S4 Table. KEGG pathway enrichment analysis results for significantly differentially

expressed genes at all time points. The analysis was performed using the kegga function from

the edgeR R Bioconductor package. The statistical metrics presented for each pathway include:

the total number of genes annotated to the pathway (Total annotated), the number of genes

that were significantly up (N Up) or down (N Down) -regulated, the % of the total annotated

that were up (% Up) or down (% Down) -regulated and the uncorrected Fisher’s exact test p-

value (Pvalue) for up and down comparisons (P Up, P Down) for over-representation of the

KEGG pathway in the set.

(XLSX)

S5 Table. KEGG and gene ontology (GO) enrichment analyses for significantly differen-

tially expressed genes between low and high PET score groups for the terms and pathways

identified in the main analyses. The analyses were performed using the topGO and kegga

function from the edgeR R Bioconductor packages. The statistical metrics presented are as for

S2 and S3 Tables respectively.

(XLSX)

S1 Fig. Density plot of subsampling the 1–6 months before TB diagnosis sample numbers.

Subsampling was performed on the 1–6 month-before TB group to investigate the effect the

larger sample size (n = 47) had on the number of significantly up-regulated genes identified. A

total of 1000 differential expression analysis tests were performed using a sample size of 19

which is similar to the earlier 12 month before (n = 19) and 18-month before time points

(n = 18). The mean number of significantly up-regulated genes identified in the subsampling

was 1,436 (95% CI:120, 3,100). This number was lower than the 2,791 identified with the full

47 samples but far higher than the number identified in the 18 (249; n = 19) and 12 (492;

n = 18) months before diagnosis groups.

(TIF)

S2 Fig. Density plot of subsampling the TB group sample numbers. Subsampling was per-

formed on the Catalysis study TB group to investigate the effect the larger sample size

(n = 90) had on the number of significantly up-regulated genes identified. A total of 1000

differential expression analysis tests were performed using a sample size of 19 which is simi-

lar to the earlier 12 month before (n = 19) and 18-month before time points (n = 18). The

mean number of significantly upregulated genes identified in the subsampling was 3,485

(95% CI:2,719, 4,190). This was lower than the 4,391 identified with the full 90 samples but

far higher than the number identified in the 18 (249; n = 19) and 12 (492; n = 18) months

before diagnosis groups.

(TIF)
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