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A B S T R A C T   

In May 2022, monkeypox re-emerged as a rare zoonotic disease that is an important viral disease for public 
health. Monkeypox can be transmitted from animals to humans, between humans through close contact with an 
infected human, or with a virus stained substance. Through this paper, a new detection strategy based on 
artificial intelligence techniques is provided to early detect monkeypox patients. This strategy is called Human 
Monkeypox Detection (HMD) strategy and mainly consists of two main phases, which are; (i) Selection Phase 
(SP) and (ii) Detection Phase (DP). While SP tries to select the best features, DP tries to introduce fast and ac-
curate detection based on valid data from SP. In SP, an Improved Binary Chimp Optimization (IBCO) algorithm 
as a new feature selection algorithm is introduced to select valuable features before learning an Ensemble 
Diagnosis (ED) model as a new diagnostic algorithm in the next phase called DP. In fact, the proposed IBCO 
algorithm is a hybrid selection algorithm that includes both filter and wrapper methods. IBCO consists of a filter 
layer called Filter Selection Layer (FSL) and a wrapper layer called Wrapper Selection Layer (WSL). At first, 
monkeypox dataset is entered into FSL to quickly select meaningful features by using ‘m’ filter selection tech-
niques. Then, ‘m’ sets of selected features are fed into WSL to construct the initial population of Binary Chimp 
Optimization (BCO) algorithm to precisely choose the best set of features for the next phase (DP). Finally, the ED 
model will be correctly trained on the filtered data from FSL. This model consists of three diagnostic algorithms 
called Weighted Naïve Bayes (WNB), Weighted K-Nearest Neighbors (WKNN), and deep learning which are 
combined using a new weighted voting method to provide the best diagnostic results. The weighted values of 
WNB algorithm are determined by measuring the impact of each feature on the class categories while the Grey 
Wolf Optimization (GWO) algorithm is used to determine the weighted values of WKNN. Experimental results 
illustrated that the suggested feature selection algorithm called IBCO outperforms other modern feature selection 
methods and also the proposed ED model outperforms other modern diagnostic models. At the end, the HMD 
strategy gives the best results compared to other modern strategies with accuracy, precision, and recall values 
equal 98.48%, 91.1% and 88.91% respectively. Also, the HMD gives 92.56%,89.01%,88.01%,85.01%, 83.9%, 
and 5.4 s for micro-average precision, micro-average recall, macro-average precision, macro-average recall, F1- 
measure, and implementation time values respectively.   

1. Introduction 

Monkeypox is a rare zoonotic disease caused by monkeypox virus 
that belongs to the genus Orthopoxvirus in the family Poxviridae [1–5]. 
Two outbreaks of a pox-like disease appeared in colonies of monkeys 
preserved for research in 1958, hence, monkeypox was discovered [1]. 
In 1970, the first human patient of monkeypox was reported in the 
Democratic Republic of Congo and then the virus spread to other central 
and western countries in Africa [1]. Accordingly, the number of reported 

infected cases has increased. Although monkeypox virus has appeared 
since ancient times and no longer exists, the World Health Organization 
(WHO) and Centers for Disease Control and Prevention (CDC) have 
announced that the monkeypox virus has re-emerged now in May 2022 
[2–4]. WHO and CDC announce that monkeypox is a self-limited dis-
ease. Additionally, symptoms of monkeypox last from 2 to 4 weeks 
[2–4]. The symptoms of human monkeypox are fever, body aches, 
headache, lymphadenopathy (lymph nodes to swell), Pustular Rashes, 
and exhaustion [1,2,4]. Recently, the case-fatality ratio was about 3–6% 
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[4]. Early monkeypox detection is an essential process to reduce the 
spread of this infection around the world, isolate infected cases, and 
follow appropriate treatment of infected cases (see Table 4). 

Nowadays, Artificial Intelligence (AI) methods are used in many 
medical system applications such as end-to-end drug discovery and 
development, transcribing medical documents, patients diagnosis, pre- 
processing of medical data such as feature selection, and enhancing 
contact between physician and patient [6,7]. In fact, patients diagnosis 
and pre-processing processes based on AI techniques are the core of 
modern medical systems. That is because pre-processing techniques 
enable the medical system to filter data from useless data and diagnostic 
techniques can automatically diagnose patients without direct contact to 
medical staff. Thus, these techniques can reduce the efforts of medical 
staff, reduce patient waiting for examination, and reduce cost [6,7]. The 
importance of applying AI techniques to diagnose diseases is especially 
important in the event of a global pandemic resulting from new diseases 
that human expertise cannot diagnose with the required accuracy and 
speed. This may lead to a worsening of the health situation in the 
affected countries, threatening a catastrophe that the medical systems 
may be unable to absorb. Recently, serious and rapidly spreading dis-
eases and epidemics have begun to appear in the world, such as 
Covid-19 disease and other diseases that have begun to appear, such as 
monkeypox. Therefore, diagnostic methods using AI techniques for 
serious diseases, that may be difficult for a human to diagnose quickly 
and accurately, are very important for the early, rapid and accurate 
detection of the disease to limit its spread. 

Nowadays, many diagnostic models need to select the informative 
features before starting to diagnose patients for their correct class 
category [6–8]. Feature selection is a pre-processing of data that is used 
to provide valuable features that enables diagnostic models to perform 
well. Thus, feature selection process aims to prevent overfitting. Two 
main classes called filter and wrapper can be used to classify feature 
selection techniques [6,7]. To diagnose disease like monkeypox, diag-
nostic models based on AI such as neural network, fuzzy inference sys-
tem, Naïve Bayes, and Association Rules can be applied [6,7]. In fact, 
most researchers have diagnosed monkeypox patients based on Poly-
merase Chain Reaction (PCR) and manually. PCR test is fast, sensitive, 
and reliable but has the risk of getting false-negative and false-positive 
results. A negative PCR test result does not negate the possibility of 
monkeypox infection, so PCR test doesn’t capture all infections. Hence, 
PCR test should not be taken into account as the only criterion for 
diagnosing monkeypox cases. Additionally, manual diagnosis is accurate 
but time-consuming. On the other hand, automatic diagnosis based on 
AI techniques can provide fast and accurate results and can also prevent 
the spread of infection between humans. Accordingly, it is an important 
to introduce a new strategy based on AI techniques to accurately and 
quickly diagnose monkeypox patients based on blood tests rather than 
relaying only on PCR test. 

During this paper, a new Human Monkeypox Detection (HMD) 
strategy has been presented to give rapid and more precise detection of 
monkeypox patients. HMD includes two main phases, which are; SP and 
DP. After selecting the most effective features of monkeypox patients 
using a new selection method in SP, the diagnostic process will be per-
formed using a new ensemble diagnostic model in DP for early detection 
of monkeypox patients. The main objective of SP is to remove irrelevant 
features from the used dataset before beginning to learn the ED model in 
DP to enable it to introduce fast and precise diagnosis. 

• This paper provides two main contributions, which are; IBCO algo-
rithm as a new feature selection method in SP and ED model as a new 
diagnostic model in DP.  

• The first contribution called IBCO is a hybrid selection algorithm that 
composes of two layers, namely; FSL and WSL. The main idea of 
IBCO is that it can solve the problems of the original version of BCO 
algorithm by determining the population size and initial values of 

search agents using many filter selection methods through FSL before 
implementing the BCO in WSL.  

• Hence, many filter selection methods are used in FSL to quickly select 
different sets of features. Then, these sets of features is passed to WSL 
to produce the initial population of BCO algorithm for accurately 
selecting the best set of features. At the last, the best set of features is 
utilized to correctly learn the ED model as a new diagnostic model in 
DP to provide rapid and precise diagnosis.  

• The second contribution called ED model is a hybrid diagnostic 
model that contains three new and different algorithms called WNB 
using the effect of each feature on the class categories to calculate the 
weighted values, WKNN using GWO to calculate the weighted 
values, and deep learning that are combined using a new weighted 
voting method. While WNB is a modified probabilistic method, 
WKNN is a modified distance method and deep learning is a machine 
learning method which are combined to give accurate results.  

• WNB algorithm is a new diagnostic model that modifies the classical 
NB model to take in the consideration the effective impact of each 
feature on the classifier by calculating the weights of features. 

• WKNN algorithm is a new diagnostic model that modifies the clas-
sical KNN model to use the best value of K and the best weights of 
features obtained from the GWO algorithm before implementing 
KNN algorithm.  

• Long Short-Term Memory (LSTM) model as a deep learning structure 
is used to diagnose monkeypox patients.  

• Then, the results of WNB, WKNN, and LSTM are combined by a new 
weighted voting method called Confusion Based Voting (CBV) to 
accurately take correct decisions. 

Experimental results showed that the proposed IBCO can provide the 
best subset of features compared to other recent methods and also the 
proposed ED model can provide the best results compared to its com-
ponents based on the features selected by IBCO. Finally, the HMD 
strategy is superior other recently used strategies because it has the 
ability to give the best values of accuracy, precision, recall, micro- 
average, macro-average, F1-measure, and implementation time. 

The structure of this paper is organized as follows; segment 2 shows 
the problem definition but segment 3 provides the research motivation. 
Segment 4 reviews the previous research efforts about medical diag-
nostic techniques while the human monkeypox detection strategy will 
be discussed in segment 5. Segment 6 describes the experimental results 
while segment 7 depicts the conclusions and future directions. 

2. Problem definition 

As the world is trying to get back to normal ignoring new record 
numbers of Covid-19, a new threat has been suddenly emerged, which is 
already spreading in the world known as Human MonkeyPox (HMP). 
Although HMP, which is a zoonotic viral disease, occurs predominantly 
in the rainforests of central and western Africa, it has recently appeared 
in the United States in wild rodents imported from Africa. The only 
escape for any potential pandemic that may arise from an outbreak of 
monkeypox is the accuracy and speed of diagnosis, so that it can be dealt 
with in the appropriate way. Accordingly, it is of utmost importance to 
find a way to accurately diagnose patients to give them the appropriate 
treatment at the right time. 

However, there are many challenges to the accurate and rapid 
diagnosis of HMP, including; (i) HMP is clinically almost identical to 
ordinary smallpox as both belong to the same group of viruses called 
orthopoxviruses [9]. They have similar clinical presentation including 
headache, fever, flulike symptoms, malaise, back pain, and character-
istic rash, (ii) HMP is difficult to manage due to the limited knowledge of 
it among both patients and health staff as well as the huge lack of 
diagnostic tools and treatment protocols, (iii) the risk of the disease is 
not only limited to the advanced level of care that should be offered to 
the affected individuals but may also put other patients and health 
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personnel at risk of infection. This paper keeps raising attention to an 
urgent need for an AI based methodology for fast and accurate diag-
nosing the disease [9–14]. Fig. 1 depicts some considerations for HMP, 
where Fig. 1 (A) depicts 156 Occurrence locations of HMP into Central 
African (red), West Africa (blue), and unclassified (green) HMP geno-
types, on the other hand, Fig. 1(B) illustrates the Overall predicted 
distribution of HMP based on ecological niche modeling [15]. the model 
shows the high capacity and speed of spread that characterizes the 
disease. Dark shades indicate regions with the greatest model agreement 
in predicting HMP fit, while green dots indicate input occurrences used 
in model development [15]. Fig. 1(C) shows the number of recorded 
HMP cases per country (May 26, 2022) and where disease is endemic 
based of WHO recent reports, finally, Fig. 1(D) presents some cases of 
HMP patients and what does the disease look like on the skin of the 
infected people. 

3. Research motivation 

Currently, in light of the sudden emergence of infectious diseases 
that are rapidly spreading among humans, such as Covid-19 and mon-
keypox, it was necessary to find an early and rapid diagnosis of patients 
without contact with the medical staff. We are motived to work in this 
area of research to:  

• Introduce a complete diagnostic strategy for new and rapidly 
spreading infectious diseases.  

• Provide early and accurate diagnoses to new emerging diseases such 
as monkeypox based on AI and machine learning.  

• Prevent the spread of infection with newly emerged diseases by 
preventing direct contact between the patient and the medical staff.  

• Determine the appropriate treatment methods for the patient based 
on the correct diagnosis.  

• Reduce the risk of transmission of infection, whether from patients to 
non-patients or to the treating medical staff. 

4. The previous efforts 

The previous efforts about the diagnostic methodologies in medical 
systems will be discussed in this segment. In Ref. [9], four diagnostic 
models called Random Forest (RF), Naïve Bayes (NB), Support Vector 
Machine (SVM), and Decision Tree (DT) were used to early identify 
diabetes. Experimental results showed that RF outperformed SVM, NB, 
and DT based on using two different datasets where RF provided the 
maximum accuracy, recall, and F-measure values. Although RF proved 
its effectiveness for diagnosing diabetes, it has not been tested on 
monkeypox. Additionally, RF is based on the original dataset without 
initially selecting the most effective features. As depicted in Ref. [1], a 
Neuro-Fuzzy based technique was provided to early diagnose mon-
keypox patients. This technique combines the benefits of fuzzy logic and 
artificial neural network techniques. In fact, fuzzy logic gave 
Neuro-Fuzzy the ability to handle uncertainty while neural network 
gave Neuro-Fuzzy the learning capability. In experimental results, 
Neuro-Fuzzy can effectivity diagnose monkeypox patients but it lacked 
to use all symptoms in the input. It also lacks the use of feature selection 
approach before implementing the diagnostic algorithm to enhance its 
performance further. 

As introduced in Ref. [8], an Ensemble Learning based Genetic Al-
gorithm (ELGA) method was provided to early diagnose heart disease 
patients. ELGA method begins to select the most effective features and 
then diagnose heart disease. According to experimental results, ELGA 
provided the maximum accuracy value compared to other diagnostic 
models. Despite the benefits of ELGA, it has not been combined with 
many common diagnostic models, namely; NB, DT and SVM which may 
enable ELGA to improve its performance further. It also has not been 
tested on many different diseases such as breast cancer, lung cancer, 
Covid-19, and monkeypox. 

In [6], Distance Based Classification (DBC) strategy was introduced 
as a new diagnostic model to classify people vulnerability to Covid-19 
infection. In fact, the DBC strategy consists of three stages; outlier 
rejection, feature selection, and classification. Hybrid outlier rejection 
approach that includes standard division and enhanced particle swarm 
optimization methods was implemented to reject noise data. Hybrid 

Fig. 1. (A) 156 Occurrence locations of human monkeypox into Central African (red), West Africa (blue), and unclassified (green) monkeypox genotypes, (B) the 
Overall predicted distribution of HMP based on ecological niche modeling, (C) Number of recorded HMP cases per country (May 26, 2022) and where disease is 
endemic, (D) Some cases of HMP patients. 
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feature selection approach that includes chi-square and enhanced grey 
wolf optimization methods has been used to select valuable features. At 
the last, the filtered data has been passed to a diagnostic method called 
accumulative K-nearest neighbors to introduce fast and precise results. 
The description of experimental results showed that DBC provided the 
maximum accuracy and the minimum error and implementation time. 
Despite the benefits of DBC, it has not been combined with many heu-
ristics models such as fuzzy logic and deep learning. Additionally, DBC 
has not been tested on other diseases such as monkeypox. 

As mentioned in Ref. [7], a new diagnostic model called Covid-19 
Prudential Expectation (CPE) strategy has been provided to classify 
people vulnerability to Covid-19 infection. Outlier rejection, feature 
selection, and classification are the three main phases of CPE. Outlier 
rejection task was performed by executing improved grey wolf optimi-
zation algorithm while feature selection task has been performed by 
executing improved genetic algorithm. Finally, the filtered data has 
been passed to the statistical Naïve Bayes as a new diagnostic model to 
provide the best results. According to experimental results, CPE out-
performed other strategies because it achieved the best accuracy and 
execution time values. Despite the effectiveness of CPE, it has not been 
implemented on other diseases such as monkeypox. 

For the Diagnosis of Monkeypox Patients (DMP) in the UK, clinical 

features of humans monkeypox have been characterized in Ref. [16]. 
This study based on 197 patients who had confirmed monkeypox based 
on PCR test. All 197 patients were men with a mean age of 38 years and 
had mucocutaneous lesions whereby 111 patients had genital infection 
or 82 patients had infection in the perianal region. It is concluded that 
there are several clinical features of monkeypox in humans in the UK 
that can be used for the early diagnosis of monkeypox patients. Despite 
the accurate description and in-depth study of the characteristics of 
monkeypox patients, which help in the early and accurate diagnosis of 
patients, it takes a great deal of time for diagnosis. Therefore, it was 
better to rely on AI and machine learning methods for rapid and accurate 
diagnosis based on data collected from patients. Additionally, it is not 
sufficient to rely only the PCR test to diagnose patients. In Ref. [17], 
Monkeypox Diagnosis Process (MDP) in a sexual health center in Lon-
don, UK, depended on demographic and clinical features of the patients. 
Confirmed cases were detected using PCR test as 54 cases were infected 
with the monkeypox virus. Despite the careful examination of the 54 
cases, this process took a great deal of time with a small number of cases. 
Also, depending only on the PCR test reduced the efficiency of the 
diagnosis. Therefore, it is preferable to use AI techniques to make a quick 
and accurate diagnosis based on other characteristics in addition to the 
PCR test. 

Table 1 
The recent diagnostic strategies in medical system.  

Technique Description Advantages Disadvantages 

Four diagnostic models 
[9] 

Four diagnostic models called RF, NB, SVM, and DT 
were used to early identify diabetes. 

RF outperformed SVM, NB, and DT based on 
using two different datasets where RF 
provided the maximum accuracy, recall, and 
F-measure values.  

- RF has not been tested on monkeypox.  
- RF is based on the original dataset without 

initially selecting the most effective 
features. 

Neuro-Fuzzy [1] Neuro-Fuzzy based technique was provided to early 
diagnose monkeypox patients. This technique 
combines the benefits of fuzzy logic and artificial 
neural network techniques. 

It can effectivity diagnose monkeypox 
patients.  

- It lacked to use all symptoms in the input.  
- It lacks the use of feature selection approach 

before implementing the diagnostic 
algorithm to enhance its performance 
further. 

Ensemble Learning 
based Genetic 
Algorithm (ELGA) 
[8] 

ELGA was provided to early diagnose heart disease 
patients. ELGA method begins to select the most 
effective features and then diagnose heart disease. 

It provided the maximum accuracy compared 
to other diagnostic models.  

- It has not been combined with many 
common diagnostic models, namely; NB, DT 
and SVM which may enable ELGA to 
improve its performance further.  

- It has not been tested on many different 
diseases such as breast cancer, lung cancer, 
Covid-19, and monkeypox. 

Distance Based 
Classification (DBC) 
strategy [6] 

DBC was introduced to classify people vulnerability to 
Covid-19 infection. This strategy consists of three 
stages; outlier rejection, feature selection, and 
classification. 

It provided the maximum accuracy and the 
minimum error and implementation time.  

- It has not been combined with many 
heuristics models such as fuzzy logic and 
deep learning.  

- It has not been tested on other diseases such 
as monkeypox. 

Covid-19 Prudential 
Expectation (CPE) 
strategy [7] 

CPE has been provided to classify people vulnerability 
to Covid-19 infection. Outlier rejection, feature 
selection, and classification are the three main phases 
of CPE. 

It outperformed other strategies because it 
achieved the best accuracy and execution time 
values.  

- it has not been implemented on other 
diseases such as monkeypox. 

Diagnosis of 
Monkeypox Patients 
(DMP) [16] 

Clinical features of humans monkeypox for 197 
patients who had confirmed monkeypox based on PCR 
test were characterized to diagnose patients. 

It provided accurate description and in-depth 
study of the characteristics of monkeypox 
patients, which help in the early and accurate 
diagnosis of patients.  

- Diagnosis takes a long time.  
- Diagnosis is done manually instead of using 

AI techniques.  
- It only relies on PCR testing to find 

confirmed cases. 
Monkeypox Diagnosis 

Process (MDP) [17] 
In a sexual health center in London, UK, demographic 
and clinical features of the patients were used to 
diagnose infected cases. 

Careful examination of 54 cases was 
conducted to provide an accurate diagnosis.  

- Diagnosis process took a great deal of time 
with a small number of cases.  

- Depending only on the PCR test reduced the 
efficiency of the diagnosis.  

- It only relies on PCR testing to find 
confirmed cases. 

Diagnostic Method 
(DM) [18] 

Humans diagnosis based on clinical features of 7 
patients with monkeypox characterized in the UK 
between 2018 and 2021 was performed to accurately 
diagnose monkeypox patients. 

The good description of the patients’ condition 
and their diagnosis were provided.  

- This study suffers from a small number of 
samples,.  

- It also suffers from the lack of use of AI 
methods.  

- Additionally, it is not sufficient to rely only 
the PCR test to diagnose patients. 

Diagnose Monkeypox 
Individuals (DMI) 
process [19] 

Based on several demographic and clinical features 
such as gay or bisexual men, human 
immunodeficiency virus infection, the median age, 
sexual activity, rash, anogenital lesions, and mucosal 
lesions, diagnosis was performed. 

It can accurately diagnose monkeypox 
patients based on their clinical features.  

- It takes a long time for diagnosing patients.  
- Diagnosis is done manually but AI 

techniques were not used.  
- It only based on PCR testing to determine 

confirmed patients.  
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As described in Ref. [18], the Diagnostic Method (DM) based on 
clinical features of 7 patients with monkeypox characterized in the UK 
between 2018 and 2021 was performed to accurately diagnose mon-
keypox patients. PCR test was performed on all patients to identify 
confirmed cases of monkeypox. The clinical features included clinical 
data (such as symptoms and signs, complications of illness, demographic 
variables, and any antiviral treatments received) and laboratory results 
(such as monkeypox virus PCR results and routine biochemical tests). 
Despite the good description of the patients’ condition and their diag-
nosis, this study suffers from a small number of samples, as well as the 
lack of use of artificial intelligence methods. Additionally, it is not suf-
ficient to rely only the PCR test to diagnose patients. Between April and 
June 2022, 528 cases of monkeypox were diagnosed in 16 countries as 
presented [19]. To perform Diagnose Monkeypox Individuals (DMI) 
process, there are many demographic and clinical features mentioned in 
Ref. [19]. These clinical features included gay or bisexual men, human 
immunodeficiency virus infection, the median age, sexual activity, rash, 
anogenital lesions, and mucosal lesions. PCR test was used to confirm 
the infected cases. Despite the benefits of this diagnosis, it lacks the use 
of AI technology to deal with a large number of cases and also to give fast 
and accurate results. Also, depending only on PCR test is not sufficient. 
The recent diagnostic methodologies in medical systems are presented in 
Table 1. 

5. The human monkeypox detection (HMD) strategy 

This segment describes the HMD strategy for early detection of 

monkeypox patients. The HMD strategy attempts to quickly and accu-
rately diagnose patients who suffer from monkeypox. In fact, this 
strategy composes of two main phases which are named Selection Phase 
(SP) and Detection Phase (DP) as provided in Fig. 2. While SP aims to 
choose the most informative features in dataset without any useless 
features, DP aims to rapidly and accurately diagnose monkeypox pa-
tients depending on valid data from SP. Thus, feature selection task will 
be carried out at first to select valuable features and then the monkeypox 
detection model will be learned by valid dataset based on informative 
features to give the desired results. Feature selection algorithms can be 
categorized into two main classes called filter and wrapper [6,7]. 
Actually, filter techniques are faster than wrapper but less precise than 
wrapper [6,7]. 

Recently, optimization algorithms have been applied as wrapper 
selection algorithms to select valuable features [6,7,10]. Hence, a sig-
nificant amount of time can be consumed by optimization algorithms 
versus providing an accurate set of features. Accordingly, a new feature 
selection methodology, namely; Improved Binary Chimp Optimization 
(IBCO) algorithm will be provided as a hybrid method that include both 
filter and wrapper algorithms to quickly and carefully choose the best 
features. Accurate set of features selected from SP allows ED model as a 
new diagnostic model in DP to be learned correctly and thus can give fast 
and accurate results. In fact, the ED model is a hybrid diagnostic model 
consisting of three techniques, which are; WNB, WKNN, and deep 
learning that are combined together by a new weighted voting method 
used to provide the best diagnostic results. In WNB, weighted values are 
calculated by measuring the effect of each feature on the class categories 

Fig. 2. The human monkeypox detection (HMD) strategy.  
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while the GWO is used to determine WKNN weighted values. In the 
following sub-segments, the IBCO as a new feature selection method-
ology in SP and the ED model as a new diagnostic model in DP will be 
explained in details. 

5.1. Improved Binary Chimp Optimization (IBCO) algorithm 

In this segment, the details of the proposed IBCO algorithm as a new 
selection algorithm in the first phase of the provided strategy called SP 
will be described. The IBCO algorithm is a hybrid selection method that 
includes filter and wrapper algorithms to provide fast and accurate 
group of features. It consists of two layers called Filter Selection Layer 
(FSL) and Wrapper Selection Layer (WSL) as illustrated in Fig. 3. FSL 
aims to quickly choose group of valuable features while WSL aims to 
accurately select the best subset of features. In fact, Binary Chimp 
Optimization (BCO) algorithm as a wrapper algorithm can give correct 
results but it is time consuming [12]. In addition to the fact that BCO is a 
slow technique, it lacks the determination of the exact number of search 
agents “chimps” in the population and their initial values. Thus, IBCO 
aims to enhance the performance of BCO by using FSL as a quick layer 
before using it in WSL. In FSL, ‘m’ filter selection techniques will be 
applied in parallel and each technique will separately provide a set of 
selected features. After that, the sets of features selected by ‘m’ 

techniques in FSL will be passed to WSL as initial population of BCO. 
Hence, initial population of BCO consists of ‘m’ search agents that 
include initial values equal the sets of features selected by ‘m’ filter se-
lection techniques in FSL. Based on this initial population, BCO tries to 
quickly select an accurate set of features that can give a diagnostic model 
the ability to introduce quick and correct monkeypox diagnoses. 

The second difference between the original BCO and the IBCO is that 
the IBCO depends on a better fitness function that is the average accu-
racy value produced by many diagnostic methods learned on the same 
set of features in dataset to produce the fitness of each chimp in the 
population. Thus, the evaluation values for chimps in IBCO will be 
generated by using many diagnostic methods rather than using only 
specific one. The main aim of that is to achieve the generality of 
selecting useful features that can adapt to any diagnostic model. 
Implementing IBCO requires many sequential steps as shown in Fig. 3. 
At first, monkeypox dataset will be passed to ‘m’ filter selection tech-
niques in FSL to provide ‘m’ sets of selected features. Secondly, these sets 
of selected features will be used to generate the initial population of BCO 
in WSL. In fact, each chimp in the population will be represented in a q- 
dimensional space and also in a discrete form to represent a set of 
meaningful features in each chimp. Hence, each chimp’s length equals 
the same number of features in the monkeypox dataset where the bits of 
each chimp includes either ‘0’ or ‘1’ value; 0 = not selected features and 

Fig. 3. The steps of IBCO as a feature selection method.  
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1 = selected features. Then, the steps of BCO will be continued until 
stopping condition (the maximum iterations number) is reached. After 
generating initial population from FSL as showed in Fig. 3, chimps will 
be evaluated by using the fitness function in (1). 

FF(Hk)=

∑nd

j=1
Accj(Hk)

nd
(1)  

Where FF(Hk) represents the evaluation value of kth chimp, the accuracy 
value of jth diagnostic model based on the set of features in kth chimp is 
Accj(Hk). j represents an index to the used diagnostic models; j = 1,2, …., 
nd where their number is nd. To illustrate the idea, it is assumed that the 
population size is two (two chimps) and three diagnostic models (nd =
3) will be applied to assess the picked features in every chimp as 
depicted in Table 2. In Table 2, the used diagnostic models are SVM [6], 
Deep Learning Method (DLM) [20–22], and K-Nearest Neighbors (KNN) 
[13]. It is noted that the maximum accuracy values of SVM and DLM are 
presented in H1 while the maximum accuracy value of KNN is presented 
in H2. Hence, the best chimp is the first solution (H1) related on the 
average accuracy value to introduce a global solution because single 
diagnostic model cannot generally give the best set of features that can 
deal with any other diagnostic model (see Table 3). 

After all chimps in the population are evaluated and their fitness 
values are calculated, the four leaders (Hattack, Hbar, Hchas, and Hdriv) as 
the best solutions are determined. In the population, the positions of rest 
chimps (Hk) will be adjusted for the next iteration (t+1) based on the 
positions of leaders at the current iteration (t) by using (2-6) [12,14]. 

H→1(t+ 1)= H→attck(t) − Ah
̅→

1.Dh
̅→

attck , Dh
̅→

attck =

⃒
⃒
⃒
⃒Ch
̅→

1.H
→

attcker − mh ∗ H→k(t)
⃒
⃒
⃒
⃒

(2)  

H→2(t+ 1)= H→bar(t) − Ah
̅→

2.Dh
̅→

bar , Dh
̅→

bar =

⃒
⃒
⃒
⃒Ch
̅→

2.H
→

bar − mh ∗ H→k(t)
⃒
⃒
⃒
⃒ (3)  

H→3(t+ 1)= H→chas(t) − Ah
̅→

3.Dh
̅→

chas , Dh
̅→

chas =

⃒
⃒
⃒
⃒Ch
̅→

3.H
→

chas − mh ∗ H→k(t)
⃒
⃒
⃒
⃒

(4)  

H→4(t+ 1)= H→driv(t) − Ah
̅→

4.Dh
̅→

driv , Dh
̅→

driv =

⃒
⃒
⃒
⃒Ch
̅→

4.H
→

driv − mh ∗ H→k(t)
⃒
⃒
⃒
⃒

(5)  

H→k(t+ 1 )=
H→1 + H→2 + H→3 + H→4

4
(6)  

Where the current iteration number is t and the position of each chimp at 
t iteration is Hk (t). Additionally, the distance between a prey and the 
chimp (Hk) is Dh, the positions of the best four chimps are H1, H2, H3,and 
H4 respectively, and mh represents a chaotic value. In fact, mh includes 
value between [0,1] using quadratic map that refers to the effect of the 
agents’ sexual motivation that can be calculated by using (7). 

mh=H2
k − g , g = 1 (7) 

Coefficient vectors are Ah and Ch which are adjusted to determine 

the nearest solution to the optimal. For each leader, Ah and Ch will be 
calculated by using (8-11). 

Ah1 = |2 ∗ fh ∗ rh11 − fh|,Ch1 = 2 ∗ rh12 (8)  

Ah2 = |2 ∗ fh ∗ rh21 − fh|,Ch2 = 2 ∗ rh22 (9)  

Ah3 = |2 ∗ fh ∗ rh31 − fh|,Ch3 = 2 ∗ rh32 (10)  

Ah4 = |2 ∗ fh ∗ rh41 − fh|,Ch4 = 2 ∗ rh42 (11)  

Where fh is decreasing from 2 to 0 linearly. It can be calculated by using 
(12). 

fh= 2 − 2 ∗
( t

MT

)
(12)  

Where the maximum number of iterations represents MT and random 
factors between [0,1] which are calculated for each leader chimp are rh1 
and rh2 using (13-20) [12]. 

rh11 = u1d1 ∗ Rand( ), u1d1 = 1.95 −

⎛

⎝
2 ∗

(
t1

4

)

MT 1
3

⎞

⎠ (13)  

rh12 = u2d1 ∗ Rand( ), u2d1 =

⎛

⎝
2 ∗

(
t1

3

)

MT 1
3

⎞

⎠+ 0.5 (14)  

rh21 = u1d2 ∗ Rand( ), u1d2 = 1.95 −

⎛

⎝
2 ∗

(
t1

3

)

MT 1
4

⎞

⎠ (15)  

rh22 = u2d2 ∗ Rand( ), u2d2 =

(
2 ∗ (t3)

MT3

)

+ 0.5 (16)  

rh31 = u1d3 ∗ Rand( ), u1d3 =

(
− 3 ∗ (t3)

MT3

)

+ 1.5 (17)  

rh32 = u2d3 ∗ Rand( ), u2d3 =

⎛

⎝
2 ∗

(
t1

3

)

MT 1
3

⎞

⎠+ 0.5 (18)  

rh41 = u1d4 ∗ Rand( ), u1d4 =

(
− 2 ∗ (t3)

MT3

)

+ 0.5 (19)  

rh42 = u2d4 ∗ Rand( ), u2d4 =

(
2 ∗ (t3)

MT3

)

+ 0.5 (20)  

Where uniform distribution between [0,1] is Rand() and the dynamic 

Table 2 
Identify the best chimp depending on both every diagnostic model and the 
average accuracy value.  

Diagnostic model # Accuracy of every chimp The best chimp (Hattack) 

H1 H2 

D1 = SVM 0.75 0.7 H1 

D2 = DLM 0.9 0.7 H1 

D3 = KNN 0.8 0.9 H2 

Average accuracy 0.816 0.767 H1  

Table 3 
CM for WNB.   

Predicted Class Total 

A B 

Actual Class A 550 = 92% 50 600 
B 240 160 = 40% 400  

790 210 1000  

Table 4 
CM for WKNN.   

Predicted Class  

A B Total 

Actual Class A 370 = 62% 230 600 
B 180 220 = 55% 400  

550 450 1000  
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coefficients applied to determine the values of rh1 and rh2 are u1d1, u2d1, 
u1d2, u2d2, u1d3, u2d3, u1d4, and u2d4. In the population, it is assumed a 
probability of 50% to select between either the normal updating position 
method or the chaotic model (mh) to update the positions of chimps by 
using (21). 

Hk(t+ 1)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H1 + H2 + H3 + H4

4
, if ( y < 0.5)

mh , if ( y ≥ 0.5)

(21)  

Where a random value between [0,1] is y. In fact, a new position value 
for each chimp Hk in the population is generated in a continuous form 
but this form cannot be applied to choose meaningful features. Hence, 
the converting function called sigmoid function should be applied to 
transform the continuous value to binary value. Accordingly, every 
chimp’s position in the population; Hk= (Hk

1, Hk
2, …..,Hk

q) will be modi-
fied by implementing the sigmoid function to calculate new chimp’s 
position in a discrete form; Hbin_k= (H1

bin_k, H2
bin_k, …..,Hq

bin_k) by using (22) 
[6,7]. 

Hi
bin k(t+ 1)=

⎧
⎪⎪⎨

⎪⎪⎩

1 if RAND(0, 1) ≥ SG
(
Hi

k

)

0 Else
(22)  

Where the binary value of kth chimp in the next iteration t+1 at ith 
position is Hi

bin_k (t+1) and i is a pointer to the current position (feature); 
i = 1,2,3, …..,q. Random value between 0 and 1 is RAND(0,1) and the 
sigmoid function is SG(Hk

i ). In fact, SG(Hk
i ) refers to the probability of ith 

bit that includes one or zero value measured by applying (23) [6,7]. 

SG
(
Hi

k

)
=

1
1 + e− Hi

k
(23)  

Where e is the base of the natural logarithm. Related to Hi
bin_k (t+1) as a 

new position of every chimp in the population, the fitness value of every 
chimp is calculated by applying the fitness function in (1). The steps of 
BCO will be finished when the stopping condition is satisfied. At the last, 
the fittest chimp (H1 or Hattack) is the best solution and the algorithm is 
finished. Then, all bits that includes 1 in H1 are the most effective 

Fig. 4. The steps of Ensemble Diagnosis (ED) model.  
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features that will be used to enable the diagnosis model to correctly 
learned for providing quick and more accurate diagnosis. In other 
words, the filtered dataset without irrelevant features in the SP will be 
passed to the next phase of the provided strategy called DP to correctly 
learn the ED model in order to give quick and accurate diagnosis for 
monkeypox patients. The steps of IBCO algorithm are mentioned in al-
gorithm 1. 

Algorithm 1. Improved Binary Chimp Optimization (IBCO) Algo-
rithm.   

5.2. The proposed Ensemble Diagnosis (ED) model 

In this segment, the ED model as a new diagnostic model in the 
second phase of the HMD strategy called DP will be discussed in detail. 

The ED model is a hybrid model consisting of three diagnostic algo-
rithms called WNB, WKNN, deep learning implemented on the filtered 
dataset that is passed from the previous phase called SP without irrel-
evant features to be accurately diagnose monkeypox patients. The ED 
model aims to combine the results of these three diagnostic algorithms 
together through a new weighted voting method to provide more ac-
curate results. The steps of implementing this model are showed in 
Fig. 4. As presented in Fig. 4, the filtered monkeypox dataset will be 
divided into training, testing, validating dataset before starting to 
implement the ED model. Then, the ED model implementation sequence 
will be passed through four main stages called training, testing, vali-

dation, and voting stages. At the training stage, the three diagnostic 
algorithms; WNB, WKNN, and deep learning will be trained in parallel 
on the same training dataset. 

Secondly, these algorithms will be tested in parallel on the same 

Inputs: 

F= Set of input features in both training and testing dataset; F=f1 q.
R= (Dn,F); Training dataset.
E=(Q,F); Testing dataset.
q=|F|; No. of feature in dataset.
m=No. of filter techniques in FSL (or No. of chimps  in population of BCO in WSL).
H=H1 H2,, m; group of chimps in population.

Output: 

Subset= the selected features in the best chimp called attacker Hattack that introduces 
the maximum fitness value.

Steps: 

/******* Implement Filter Selection Layer (FSL) *******/

1: For each filter technique a m do
2: Set (a)
3: Next

/******* Implement Wrapper Selection Layer (WSL) *******/

4:

fh,rh1,rh2, mh
5: mh
6: fh
7: rh1 rh2 

Ah Ch Hattack Hbar, Hchas, Hdriv
8: Ah Ch

9: For each agent Hk H do
10:

11: Next

12:   Hattack = the 1st best (leader) chimp.
13:   Hbar = the 2nd best (leader) chimp.
14:   Hchas = the 3rd best (leader) chimp.
15:   Hdriv = the 4th best (leader) chimp.

Hattack Hbar, Hchas, Hdriv

16: For each agent Hk H do

17:             

18: Next

19:  For each agent Hk H do

20:            

21:  Next

Algorithm Parameters

F

R

Dn
E

Q
q
m

H

Subset

mh
rh1 and rh2

fh
t

MT
Ah and Ch

Hattack, Hbar, 
Hchas, and 

Hdriv.

H1, H2, H3, 
and H4.

HK(t+1)

FF(Hk)
Accj(Hk) jth

SG(Hk
i)

Hi
bin_k(t+1)

t+1

22: For each agent Hk H do

23:          

24:  Next
25:  If (T<MT) then
26:
27:   Else
28: Hattack Subset

29:  End If

Improved Binary Chimp Optimization (IBCO) 
Algorithm
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testing dataset during the testing stage. At the testing stage, the class 
categories will have different weight values according to each diagnostic 
algorithm, whether it is WNB, WKNN or deep learning. At the third stage 
called validation stage, each case in the validation dataset will be 
diagnosed by WNB, WKNN, and deep learning algorithms into different 
or similar class categories that have different weight values according to 
each diagnostic algorithm. In the fourth and final stage called voting 
stage, the weight value of the class category for each validate case will 
be passed from the three diagnostic algorithm to voting stage for 
determining the final diagnosis based on a new weighted voting method. 
In the next sub-segments, WNB, WKNN, deep learning, and weighted 
voting methods will be described in detail. 

5.2.1. The Weighted Naïve Bayes (WNB) algorithm 
In this segment, WNB is presented as an improved version of NB 

method to solve the NB problems. In fact, NB is a popular classification 
method that is characterized by simplicity and it can address real-time 
problems such as image and pattern recognition, medical diagnosis, 
and intrusion detection [23–25]. NB can give fast diagnoses rather than 
other diagnostic models and also it can be used for both small and large 
dataset. Additionally, NB has the ability to deal with the noise in the 
dataset as well as it is less sensitive to missing data [23–25]. Although 
NB is a sufficient technique for real-time applications such as medical 

diagnosis application, it is considered all features equal and independent 
during the diagnosis process. Hence, NB should be modified to depend 
on the effective impact of each feature on the classifier to give more 
accurate results. In this paper, WNB is provided as a modification of the 
classical NB that takes into account the weights of features. In the WNB, 
the diagnosis of each patient in the dataset can be performed based on 
the different weights of features where each feature has its own weight 
according to its effectiveness on the class category using (24). 

Diagnose(Ix)= argmax
cli∈cl

[

Probability(cli) ∗
∏p

j=1
Weightj ∗ Probability

(
fj
⃒
⃒cli

)
]

where Weightj ∈ R+

(24)  

Where Diagnose (Ix) is the diagnosis of patient Ix to the class category 
that give the highest probability value. Probability (cli) is the prior 
probability of the class cli while Probability (fj|cli) is the conditional 
probability of the feature fj according to the class cli. Additionally, 
weightj is the weight of the jth feature that represents the impact of this 
feature on the class category using (25). 

weightj =Acc
(
+fj

)
− Acc

(
− fj

)
(25) 

Fig. 5. The steps of implementing WKNN algorithm. 
Evaluation (Wi)=WKNN Accuracy(Wi) (26)    
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Where weightj is the weight of the jth feature, the accuracy of the NB 
method based on the existence of the feature fj in the feature set is Acc 
(+fj), and the accuracy of the NB method based on the absence of the 
feature fj from the feature set is Acc(-fj). 

5.2.2. The weighted K-nearest neighbors (WKNN) algorithm 
WKNN is provided in this segment as an improved version of tradi-

tional KNN method to treat the KNN problems. KNN is a popular and 
straightforward method that is simple and easy to understand and use. It 
is used in many real-world applications such as electrical load fore-
casting, patient diagnosis, and traffic management [13]. Although KNN 
is simple, it is a lazy learning technique, depends on the value of K, and 
does not take into account the weight of each feature because each 
feature has different impact on the classification. Thus, KNN should be 
modified to use the best value of K and the best weights of features to 
provide the best classifications. In this paper, WKNN is presented as a 
new diagnostic algorithm based on using the optimal value of K and the 
best weight value for each feature obtained from the GWO algorithm 
before learning KNN algorithm. There are many steps to implement 
WKNN algorithm as shown in Fig. 5. The GWO will be implemented to 
select the best weight values for the features and the best K value and 
then the WKNN will be implemented on these best values. At first, initial 
population of GWO will be generated where each wolf includes weights 
of features and K value. Then, each wolf in the population will be 
evaluated using (26).Where Evaluation (Wi) is the evaluation value of ith 
wolf and WKNN_Accuracy(Wi) is the accuracy of implementing WKNN 
algorithm based on the values of genes in ith wolf. The best three wolves; 
Wα, Wβ, and Wδ as leaders will be decided based on the high accuracy 
values. Depending on the position of these three wolves, the other 
wolves in the population including Omega (ω) will modify their position. 
Coefficient vectors AW and CW for the leaders must be calculated before 
starting to modify the positions of wolves in population using (27) and 
(28) [6,26]. 

AW̅→=

⃒
⃒
⃒2 ∗ aW̅→∗ ran̅→

1 − aW̅→
⃒
⃒
⃒ (27)  

CW̅̅→= 2 ∗ ran̅→
2 (28)  

Where ran̅→
1 and ran̅→

2 are random vectors in [0,1]. The encircling coef-
ficient that is used to balance the tradeoff between exploration and 
exploitation is aW̅→.In fact, aW̅→ is linearly decreasing from 2 to 0 over 
iterations using (29) [6,26]. 

aW̅→= 2 − 2 ∗

(
itr

M itr

)

(29)  

Where the number of iterations is itr and the maximum number of it-
erations is M_itr. After calculating the coefficient vectors AW and CW for 
the leaders, each wolf (e.g., ith wolf) in population can modify its po-
sition in the next iteration (itr+1) based on Wα, Wβ, and Wδ by using (30) 
[6,26]. 

W→i(itr+ 1 )=
W→1 + W→2 + W→3

3
(30)  

Where the positions of Wα, Wβ, and Wδ are W→1,W
→

2, and W→3 respectively 
based on the current wolf (Wi). In fact, W→1, W→2, and W→3 can be calculated 
as in (31-33) [6,26]. 

W→1 = W→α − AW̅→1 D→α (31)  

W→2 = W→β − AW̅→2 D→β (32)  

W→3 = W→δ − AW̅→3 D→δ (33)  

Where the position of the leaders wolfs at iteration itr are W→α, W→β, and 

W→δ. A
→

1, A→2, and A→3 are calculated using (27) and D→α, D→β, and D→δ are 
calculated using (34-36) [6,26]. 

D→α =

⃒
⃒
⃒
⃒CA̅→

1.W
→

α − W→i

⃒
⃒
⃒
⃒ (34)  

D→β =

⃒
⃒
⃒
⃒CA̅→

2.W
→

β − W→i

⃒
⃒
⃒
⃒ (35)  

D→δ =

⃒
⃒
⃒
⃒CA̅→

3.W
→

δ − W→i

⃒
⃒
⃒
⃒ (36)  

Where C→1, C→2, and C→3 are calculated as in (28). Based on W→i(itr+1 ) as 
a new position of every wolf in population, the evaluation function will 
be implemented on every wolf using (26). Then, these steps continue 
until the maximum number of generations is reached. In the end, the 
algorithm terminates and the weights of features and the K value given 
in the best wolf Wα will be used as the best values to implement the steps 
of the WKNN algorithm to diagnose monkeypox patients. The imple-
mentation steps of WKNN are similar to the traditional KNN method but 
have a different distance method in which the WKNN distance depends 
on the weights of features. Additionally, WKNN is based on a predefined 
value of K but KNN is based on undefined value. In the WKNN algorithm, 
each testing case is passed through many steps to be diagnosed. In step 1, 
the distance between each testing case and each training case is calcu-
lated by using Euclidean distance in weighted form as presented in (37). 

Distance(TE, TR)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑q

i=1
Mi(TEi − TRi)

2

√

(37)  

Where Distance(TE,TR) is the distance between the testing case TE and 
the training case TR. q is the number of features in the filtered dataset, Mi 
is the weight of ith feature, TEi is the value of ith feature at the testing 
case TE, and TRi is the value of ith feature at the training case TR. In step 
2, the nearest k of neighbors which give the lowest distance between the 
testing case and everyone of training cases are assigned. In step 3, the 
diagnostics of k neighbors are used to determine the final diagnosis of 
the testing case by voting. 

5.2.3. Deep learning algorithm 
In this segment, Long Short-Term Memory (LSTM) model as a deep 

learning structure used to diagnose monkeypox patients will be 
described in detail. LSTM is an evolution of Recurrent Neural Network 
(RNN) to solve the gradient vanishing and exploding problem by 
replacing the hidden vectors from RNN with memory cells equipped 
with gates [20–22]. Thus, LSTM represents a special type of RNN that 
has the ability to learn long-term dependencies. It also can by default 
remember information for long periods of time. Accordingly, LSTM is a 
popular deep learning tool because it has the ability to learn from 
sequential data [20–22]. LSTM is a sufficient model for several real-time 
applications such as sequence-to-sequence predictions, medical diag-
nosis, various tagging problems, language modeling, and classification 
of sentences. In this paper, the designed model is based on a 
many-to-one LSTM structure to handle multi-label diagnostics as shown 
in Fig. 6. 

According to Fig. 6, the input dataset that contains values of ‘p’ 
features is passed to ‘p’ LSTM cells where the cell state (ci) and the 
current output state (hi) of ith LSTM are used as inputs for the next LSTM 
or (i+1)th LSTM. In other words, the outputs of each LSTM are used as 
inputs to the next LSTM and then the last LSTM gives the definitive 
diagnosis. Each LSTM cell consists of three gates called input, forget, and 
output gates used to update the output value and maintain the cell state 
as illustrated in Fig. 7. These gates are intended to control the flow of 
information from one cell state to another. To give a decision to control 
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the flow information, sigmoid activation (σ) is used by all three gates. In 
fact, information does not change in cell state but it can be added or 
omitted via each gate. The input values that should be used to change 
the cell state are determined by the input gate. The useless information 
that should be omitted from the cell state is determined by the forget 
gate while the amount of output is determined by the output gate 
[20–22]. 

To construct the LSTM, three main steps are required. Initially, LSTM 
begins to identify undesired information and then remove it from the 
cell by the forget gate. In the forget gate, current input (fi) and previous 
output (hi-1) in the cell state (ci-1) are used to give output (xi) between 
zero and one. Completely forget the information is represented by one 
while completely retaining it is represented by zero. In the second step, a 
decision about storing information in the current cell state (ci) is pro-
vided by the input gate by multiplying its output (ti) with the output of 
tanh activation layer (c̃i). In the third and final step, the flow of fraction 

of information(hi) in the current cell state (ci) is provided at the output 
of LSTM cell by the output gate by combining its output (oi) with the 
output of another tanh activation layer. The operation of these three 
gates in an LSTM cell for giving output (hi) in cell state (ci) can be 
mathematically represented using (38-43) [20–22]. 

xi = σ((wx ∗ hi− 1)+ (wx ∗ fi)+ bx) (38) 

Fig. 6. A many-to-one LSTM structure for multi-label diagnostics.  

Fig. 7. The structure of LSTM cell.  

Table 5 
CM for deep learning.   

Predicted Class Total 

A B 

Actual Class A 220 = 37% 380 600 
B 270 130 = 32% 400  

490 510 1000  
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ti = σ((wt ∗ hi− 1)+ (wt ∗ fi)+ bt) (39)  

c̃i = tanh((wc ∗ hi− 1)+ (wc ∗ fi)+ bc) (40)  

ci =(xi ∗ ci− 1) + (ti ∗ c̃i) (41)  

oi = σ((wo ∗ hi− 1)+ (wo ∗ fi)+ bo) (42)  

hi = oi ∗ tanh ci (43)  

Where wx, wt, wc, and wo are the weight matrices. bx, bt, bc, and bo are bias 
factors for different gates of LSTM cell. 

5.2.4. The weighted voting method 
During this segment, Confusion Based Voting (CBV) is provided as a 

new weighted voting method for combining the ensemble classifier (see 
Table 5). Based on the validation dataset, the Confusion Matrices (CMs) 
of the applied three classifier of the ensemble called WNB, WKNN, and 
Deep Learning are illustrated in tables (3, 4, and 5) respectively. The 
general accuracy for WNB, WKNN, Deep Learning are; 71%, 59%, and 
35% as depicted from such figures. On the other hand, Table 6 presents 
the output of classifying a new case depending on the used three clas-
sifiers. Based on the majority voting, if class B gets two votes and class A 
votes gets one vote only, the target class will be class B. However, class A 
gets a weight of 0.92 and class B gets 0.55 + 0.32 = 0.87 based on CBV. 
Accordingly, the input case belongs to class A. 

6. The description of experimental results 

Through this segment, the HMD strategy that includes SP and DP will 
be implemented to early detect monkeypox cases. The implementation 
of HMD starts with the implementation of the IBCO algorithm as a 
feature selection method in SP to determine a valuable set of features. 
Then, the valid dataset without useless features is passed to ED as a 
diagnostic model in DP to give fast and more accurate diagnosis. In fact, 
ED model is a hybrid model that includes three methods called WNB, 
WKNN, and LSTM as a Deep Learning technique which are combined 
using a new weighted voting method called CBV. During this imple-
mentation, the fitness function of BCO depends on using SVM [6], DLM 
[20–22], NB [9], and KNN [13] to calculate the average accuracy of 
them. Three main scenarios will be followed to implement the HMD 
strategy. During the first scenario, the proposed IBCO algorithm will be 
tested and compared to other modern selection algorithms using NB 
algorithm as a standard method [9]. 

In the second scenario, WNB, WKNN, LSTM, and the combined 
model called ED will be tested and their results will be compared. In the 
third scenario, the HMD strategy that includes both the proposed IBCO 
as a new feature selection method and ED model as a diagnostic method 
will be implemented and compared to other modern strategies. This 

work is based on the use of monkeypox dataset that classifies patients 
into two classes called “Positive” as an infected case and “Negative” as 
an uninfected case [27]. In fact, negative or uninfected case does not 
mean health case but he/she does not suffer from monkeypox infection 
but may suffer from other diseases or not. The performance of the used 
methods can be calculated by using recall, accuracy, and precision 
measurements based on confusion matrix as presented in Table 7 [6,7]. 
Various formulas of confusion matrix are summarized in Table 8. The 
dataset is divided into 10 equal parts based on10-fold cross-validation. 
Training sets are represented in 9 of parts while a testing set is repre-
sented in the other part. Actually, 70% of the used dataset has been 
assigned as training data while 30% has been assigned as testing data. 
The values of used parameters are mentioned in Table 9. 

6.1. The used hardware and software 

The proposed HMD strategy has been implemented using hardware 
and software tools. The used hardware tools are Dell machine with 8 GB 
RAM and 1 TB hard disk while the used software tools are windows 
operating system and MATLAB_R2021b_win64. Based on the MATLAB 
libraries, the implementation codes for the used techniques are repre-
sented in m-files. Thus, the components of HMD, which are; IBCO, WNB, 
WKNN, LSTM, and CBV were established as source codes in m-files. In 
MATLAB, the original versions of the used methods are available as open 
source m-files codes. During this work, these m-files were downloaded 
and then modified to be new versions provided in this paper. Initially, 
the used dataset in spreadsheet (Excel sheet) has been read in the 
MATLAB and then stored in a matrix (m-dimensional vector). This 
dataset has been entered into IBCO code that consists of two m-files 
where the first m-file contains the filter selection methods that passes 
their results as initial population values in the second m-file that con-
tains BCO algorithm. The dataset was filtered from irrelevant features 
and only includes the selected features. The filtered dataset was passed 
to three m-files include WNB, WKNN, LSTM algorithms. Diagnosis 

Table 6 
ED with confusion based voting.  

Classifier Predicted class Vote for Class 

A B 

WNB A 0.92 0.40 
WKNN B 0.62 0.55 
Deep Learning B 0.37 0.32  

Table 7 
Confusion matrix which depicts how diagnostic on cases.   

Diagnosed Label 

Positive Negative 

Known Label Positive True Positive (TP) False Negative (FN) 
Negative False Positive (FP) True Negative (TN)  

Table 8 
Confusion matrix formulas.  

Measure Formula Meaning 

Precision TP/(TP + FP) The percentage of positive diagnostics 
those are already correct. 

Recall TP/(TP + FN) The percentage of positive diagnostics 
that were diagnosed as positive. 

Accuracy (TP + TN)/(TP + TN + FP 
+ FN) 

The percentage of diagnostics those are 
correct. 

Macro- 
average 

∑c
i=1Pi/c “for Precision” The average of the precision and recall 

of the system on different c classes. ∑c
i=1Ri/c “for Recall” 

Micro- 
average 

(TP1 + TP2)/(TP1 + TP2 
+ FP1 + FP2) “for 
Precision” 

the summation up to the individual true 
positives, false positives, and false 
negatives of the system for different 
classes and the apply them to get the 
statistics. 

(TP1 + TP2)/(TP1 + TP2 
+ FN1 + FN2) “for Recall” 

F1- 
measure 

2*PR/(P + R) The weighted harmonic mean of 
Precision and Recall.  

Table 9 
The values of the used parameters.  

Parameter Description Applied value 

MT The maximum iterations number in BCO 100 
Rand () Uniform distribution value in BCO Random (0 ≤

Rand () ≤ 1) 
Y The random value to choose between the chaotic 

model or the normal adjusting position method 
Random (0 ≤ y ≤
1) 

K The closed number of neighbors 1 < K < 5 
r1 and r2 Two independent random numbers Random (0 ≤ r1, 

r2 ≤ 1) 
aW Linearly decrease [2,0] 
M_itr The maximum number of iterations for GWO 100  
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results from these three algorithms were passed to CBV m-file to define 
the final diagnosis. 

6.2. The monkeypox dataset description 

Monkeypox dataset is an internet data collected from 6-5–2022 to 
19-9-2022 [27]. This dataset is a blood test dataset collected from pa-
tients of different ages and genders in different regions in different 
countries such as Nigeria, Spain, UK, etc. Monkeypox dataset contains 
500 cases who were classified into two class categories called “Positive” 
and “Negative”. While the positive cases are patients with monkeypox, 
the negative cases are patients without monkeypox. In fact, negative 
case does not mean health case but he/she does not have monkeypox but 
may or may not have other diseases. This dataset was collected from 
patients suffering from different diseases, which are; monkeypox, acne, 
alopecia, normal, psoriasis, and small pox as shown in Fig. 8 that is a 
snapshot of monkeypox dataset. Monkeypox is a class category of pos-
itive cases but normal is a class category of negative cases who are health 
cases. On the other hand, acne, alopecia, normal, psoriasis, and small 
pox are classes of negative cases who are uninfected with monkeypox 
but suffer from other diseases. In fact, this dataset consists of 47 features 
that include demographic features and features of laboratory blood tests 
as presented in Table 10. These features are used to describe causative 
conditions based on the blood test that gives each patient’s status. In 
fact, the selected features after applying IBCO are 34. According to the 
500 cases in the dataset, 296 of them had monkeypox as presented in 
Table 11. In fact, monkeypox dataset was divided into 350 cases as a 
training set of data and 150 cases as a testing set of data. 

6.3. Testing the Improved Binary Chimp Optimization (IBCO) algorithm 

Through this segment, IBCO will be executed as a new feature se-
lection algorithm and compared to other modern selection methods to 
ensure its effectiveness in identifying valuable features in the mon-
keypox dataset. These selection methods are Genetic Algorithm (GA) 
[8], Improved Genetic Algorithm (IGA) [7], Adjusted Brain Storm 
Optimization (ABSO) algorithm [28], Hybrid Feature Selection Method 
(HFSM) [6], and BCO [12]. After implementing these feature selection 
methods, the NB is used as a diagnostic model to be trained on the 
filtered dataset using the selected features from each feature selection 
method separately and then it will be tested to calculate the diagnostic 

efficiency according to each selection method [9]. Accuracy, precision, 
and recall calculations are illustrated in Figs. 9-11. Implementation time 
measurement also is provided in Fig. 12. Actually, IBCO provides the 
best performance values, thus, it outperforms other methods. 

Figs. 9-11 show that IBCO outperforms GA, IGA, ABSO, HFSM, and 
BCO as it introduced 98.05% accuracy value that represents the 
maximum value at number of training data = 350. At the maximum 
number of training dataset, the accuracy values of GA, IGA, ABSO, 
HFSM, BCO, and IBCO are 62.4%, 65.65%, 76.05%, 83.74%, 90.1%, and 
98.05% respectively. Based on these results, it is noted that GA gives the 
lowest accuracy value while IBCO outperforms all methods because it 
gives the highest accuracy. Additionally, IBCO provides the maximum 
precision and recall values equal 89.16% and 90.09% respectively. The 
precision values of GA, IGA, ABSO, HFSM, and BCO are 62.12%, 65%, 
73%, 82.5%, and 84.06% respectively but their recall values are 58.2%, 
64.99%, 78%, 86%, and 87.9% at the maximum number of training 
data. From these measurements, it is noted that GA provides the worst 
results while IBCO provides the best results. 

According to implementation time in Fig. 12, it is noted that IBCO 
takes a short execution time but GA takes a long execution time with 
values reach to 2.51 s and 8.2 s respectively at the number of training 
data = 350. In fact, BCO is faster than GA, IGA, ABSO, and HFSM but 
slower than IBCO as it takes 3.1 s to be executed. Hence, IBCO can 
determine valuable features that can accurately diagnose monkeypox 
patients. At the last, it is concluded that the performance of IBCO 
method is superior to GA, IGA, ABSO, HFSM, and BCO. Based on 
experimental results, the second best feature selection method after 
IBCO is BCO algorithm because it can provide the maximum accuracy, 
precision, and recall values and the minimum implementation time. 
Thus, IBCO can improve the diagnostic performance more than BCO 
because IBCO can solve two main problems of BCO which are the 
number of search agents in population and the initial values of each 
search agents are were randomly generated. This solution is provided by 
using FSL that contains ‘m’ of filter methods which give the BCO ‘m’ of 
search agents which include the selected features from filter methods as 
initial values of these ‘m’ agents. 

At the end, the selected features from GA = {Age, Transmission rank, 
Smallpox vaccination history,Fever, Dysuria, Myalgia, headache, Approxi-
mate maximum number of concurrent lesions, Monkeypox viral DNA 
detected in Blood, Day of illness treatment commenced, AST level, Duration 
of hospitalization with monkeypox, Outcome of monkeypox infection}. The 

Fig. 8. A snapshot of monkeypox dataset.  
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selected features from IGA = {Transmission rank, HIV, hepatitis B, and 
hepatitis C status, Fever, Dysuria, Myalgia, headache, Monkeypox viral DNA 
detected in Blood, Day of illness treatment commenced, AST level, Hemato-
crit, Arthralgia, Outcome of monkeypox infection }. The selected features 
from ABSO = {Sex, Transmission rank, HIV, hepatitis B, and hepatitis C 
status, Dysuria, Bleeding/discharge per rectum, Myalgia, headache, Mon-
keypox viral DNA detected in Blood, Monkeypox viral DNA detected in Nose 
or throat swab, Day of illness treatment commenced, Hematocrit, AST level, 
Arthralgia, RT-PCR, Outcome of monkeypox infection}. The selected fea-
tures from HFSM = {Age, Transmission rank, HIV, hepatitis B, and hepatitis 
C status, Dysuria, Bleeding/discharge per rectum, Myalgia, headache, 
Monkeypox viral DNA detected in Blood, Monkeypox viral DNA detected in 

Nose or throat swab, Oropharyngeal manifestations, Hematocrit, AST level, 
ALT level, RT-PCR, Outcome of monkeypox infection}. The selected fea-
tures from BCO = {Age, Transmission rank, HIV, hepatitis B, and hepatitis C 
status, Dysuria, Bleeding/discharge per rectum, Monkeypox viral DNA 
detected in Blood, Monkeypox viral DNA detected in Nose or throat swab, 
Oropharyngeal manifestations, Sore throat, Chills, WBC counts, Hematocrit, 
Platelet count, Sodium level, Potassium level, AST level, ALT level, RT-PCR, 
Outcome of monkeypox infection}.The selected features from IBCO are 
presented in the last column in Table 10. Accordingly, monkeypox 
dataset with the best subset of features selected from IBCO will be passed 
to the next segments to train and then test the proposed ED model on the 
correct dataset without irrelevant features. 

Table 10 
Descriptions about the features of Monkeypox.  

Feature Normal Range Selected 
Feature 

Age (>2) – Yes 
Sex (Male/Female) – No 
Transmission rank – Yes 
Country of acquisition – No 
Smallpox vaccination history – No 
HIV, hepatitis B, and hepatitis C status 

(Negative/Positive) 
Negative Yes 

Fever (Yes/No/None) No Yes 
Rectal pain or pain on defecation (Yes/No/ 

None) 
No Yes 

Dysuria (Yes/No/None) No Yes 
Bleeding/discharge per rectum (Yes/No/ 

None) 
No No 

Conjunctivitis (Yes/No/None) No Yes 
Oropharyngeal manifestations – Yes 
Back pain (Yes/No/None) No Yes 
Myalgia (Yes/No/None) No Yes 
headache (Yes/No//None) No Yes 
Sexually transmitted infections – No 
Lymphadenopathy (Yes/No/None) No Yes 
Approximate maximum number of 

concurrent lesions 
– Yes 

Distribution of lesions – Yes 
Complications of illness  No 
Monkeypox viral DNA detected in Blood 

(Yes/No/None) 
No Yes 

Monkeypox viral DNA detected in Nose or 
throat swab (Yes/No/None) 

No Yes 

Monkeypox viral DNA detected in Urine 
(Yes/No/None) 

No Yes 

Antivirals received – No 
Day of illness treatment commenced – No 
Complications of treatment – No 
Duration of hospitalization with 

monkeypox (days) 
– No 

Sore throat (Yes/No/None) No Yes 
Chills (Yes/No/None) No Yes 
White Blood Cell (WBC) count, cells/mm3 400–9000 Yes 
Hematocrit, % For men (39–49) & 

For woman (35–45) 
Yes 

Platelet count * 109 platelets/L. 150–400 Yes 
Sodium level, mmol/L 136–145 Yes 
Potassium level, mmol/L 3.5–5.0 Yes 
Blood urea nitrogen level, mg/dL 10–20 Yes 
Creatinine level, mg/dL <1.5 Yes 
Calcium level, mmol/L 9–10.5 Yes 
Total bilirubin level, mg/dL 0.3–1 Yes 
Aspartate aminotransferase (AST) level, 

U/L 
0–35 Yes 

Alanine aminotransferase (ALT) level, U/L 0–35 Yes 
Alkaline phosphatase (ALP) level, U/L 40–140 Yes 
Arthralgia 6.7–15.8 Yes 
Albumin level, mg/dL 3.5–5.5 Yes 
Hospitalized (Yes/No/None) – No 
Date_confirmation – No 
Reverse transcription polymerase chain 

reaction (RT-PCR) (Yes/No/None) 
– Yes 

Outcome of monkeypox infection – No  

Table 11 
Distribution of people in dataset based on infection.  

Criteria Value/Description 

Total number of 
cases 

Monkeypox 
Patients 

Normal 
People 

Cases with other 
Diseases 

297 95 108 
Type of other 

Diseases 
Acne Alopecia Psoriasis 
18 9 15 
small pox other 
29 37 

Sex  Male Female 
Monkeypox 152 145 
Normal 48 47 
Other 
Diseases 

57 51  

Fig. 9. Accuracy of selection techniques using NB.  

Fig. 10. Precision of selection techniques using NB.  
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6.4. Testing the Ensemble Diagnosis (ED) model 

In this segment, ED model will be tested against its components 
which are WNB, WKNN, and deep learning algorithm called LSTM to 
ensure the effectiveness of the combined model called ED is higher than 
its component separately. At first, the monkeypox dataset after selecting 
the most significant features using IBCO will be divided into training, 
testing, and validation datasets. Then, WNB, WKNN, LSTM, and ED will 
be trained by using the same training dataset. After that, these algo-
rithms will be tested by using the same testing dataset. Finally, these 

algorithms will be validated by using validation dataset to measure their 
performance metrics which are accuracy, precision, and recall as pre-
sented in Figs. 13-15. Additionally, the implementation time measure-
ment is provided in Fig. 16. In fact, ED model gives the best results, 
hence, it is superior WNB, WKNN, and LSTM. 

According to figures (13 → 15), ED model outperforms WNB, WKNN, 
and LSTM with accuracy values reach to 98.48%, 64%, 66.01%, and 
80.99% respectively at the maximum value at number of training data =
350. On the other hand, WNB algorithm introduced the lowest accuracy 

Fig. 11. Recall of selection techniques using NB.  

Fig. 12. Implementation time of selection techniques using NB.  

Fig. 13. Accuracy of different diagnostic models.  

Fig. 14. Precision of different diagnostic models.  

Fig. 15. Recall of different diagnostic models.  

Fig. 16. Implementation time of different diagnostic models.  
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value while ED model outperforms all methods because it gives the 
maximum accuracy value. According to precision and recall measure-
ments, ED model provides the maximum precision and recall values 
equal 91.1% and 88.91% respectively. WNB, WKNN, and LSTM algo-
rithms provide precision values reach to 63.12%, 67.2%, and 80.04% 
respectively but their recall values are 58%, 66.5%, and 83.25% at the 
maximum number of training data. From these calculations, it is noted 
that WNB algorithm provides the worst results while ED model provides 
the best results. 

In Fig. 16, LSTM model takes a short execution time but ED takes a 
long execution time with values reach to 3.5 s and 5.4 s respectively at 
the maximum number of training data. In fact, WKNN algorithm is faster 
than WNB and ED but slower than LSTM model as it takes 4.25 s to be 
executed but WNB takes 5.2 s. It is noted that ED model requires a large 
diagnostic time because it has to wait for the decision-making time of the 
three classifiers. Therefore, the time of ED diagnosis is the highest time 
taken from the three classifiers, in addition to the voting time. However, 
this time spent does not affect the efficiency of the diagnostic system, as 
the goal of diagnostic systems is the efficiency of diagnosis and not the 
time taken for diagnosis, in addition to the combined time for the three 
classifiers is small and can be neglected in the case of diagnosis. Hence, 
ED model can accurately diagnose monkeypox patients because it 
combines three different algorithms to insure the maximum diagnose 
accuracy. These three algorithms are WNB as a probabilistic classifier, 
WKNN which combined a distance based classifier (traditional KNN) 
with one of the most effective bio-inspired optimization technique, 
which is GWO, and LSTM which the most recently used machine 
learning method and introduces excellent results. Finally, it is concluded 
that the performance of ED model is superior to WNB, WKNN, and 
LSTM. In the next segment, the proposed HMD strategy that includes 
IBCO to select the best subset of features and ED model as a diagnostic 
model to provide accurate diagnosis will be tested against many recent 
strategies. 

6.5. Testing the human monkeypox detection (HMD) strategy 

In this segment, HMD strategy will be executed and compared to 
other modern diagnostic strategies to ensure that HMD can provide fast 
and accurate diagnosis. These strategies are RF [9], Neuro-Fuzzy [1], 
ELGA [8], DBC [6], CPE [7], and Ensemble Diagnosis Strategy (EDS) 
[29]. In fact, HMD strategy takes many steps to be implemented where it 
begins with implement IBCO as a new feature selection method. After 
that, ED model is applied depending on valid data without useless fea-
tures to give a quick and correct results. Based on Table 8, accuracy, 
precision, recall, micro-average precision, micro-average recall, 
macro-average precision, macro-average recall, and F1-measure calcu-
lations are illustrated in figures (17→24). In fact, micro-average preci-
sion, micro-average recall, macro-average precision, macro-average 

recall, and F1-measure will be used to measure the performance of al-
gorithms based on unbalanced data. The implementation time mea-
surement also is provided in Fig. 25. At the end, the diagnosing time 
according to testing dataset is illustrated in Fig. 26 to prove the 
computational efficiency of the proposed HMD strategy against other 
strategies. Actually, HMD provides the best performance values, thus, it 
outperforms other strategies. 

Fig. (17-24) show that HMD outperforms RF, Neuro-Fuzzy, ELGA, 
DBC, CPE, and EDS as it introduced the best results at the number of 
training data = 350. In Fig. 17, HMD algorithm provides the maximum 

Fig. 17. Accuracy of monkeypox diagnostic strategies.  

Fig. 18. Precision of monkeypox diagnostic strategies.  

Fig. 19. Recall of monkeypox diagnostic strategies.  

Fig. 20. Micro_average precision of monkeypox diagnostic strategies.  
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accuracy value while RF provides the minimum value with values 
98.48% and 85.26% respectively at the maximum number of training 
data. Additionally, the accuracy values of Neuro-Fuzzy, ELGA, DBC, 
CPE, and EDS are 88.12%, 90.9%, 92.3%, 94.25%, and 95% respec-
tively. According to precision and recall results in Figs. 18 and 19, it is 
noted that HMD introduces the maximum precision and recall values 
reach to 91.1% and 88.91% respectively at the number of training data 
= 350. In fact, RF, Neuro-Fuzzy, ELGA, DBC, CPE, and EDS provide 
precision values reach to 62.5%, 64.5%, 70%, 75.25%, 83%, and 90% 
respectively at the number of training data = 350. On the other hand, 
these strategies provide recall values in the same order reach to 61%, 

65%, 68.01%, 73.02%, 80.05%, and 87% respectively. From these 
measurements, it is noted that RF provides the worst results while HMD 
provides the best results. The reason is that RF is implemented on the 
original dataset without selecting informative features before starting to 
be learned but HMD begins with selecting the best subset of features 
using IBCO before learning the diagnostic model. Additionally, EDS can 
provide the best results after HMD. 

In Figs. (20-24), micro-average, macro-average, and F1-measure are 
measured to test the ability of diagnostic strategies to handle unbal-
anced data and provide the best performance. As presented in Fig. 20, 
HMD gives the maximum micro-average precision value but RF gives the 

Fig. 21. Micro_average recall of monkeypox diagnostic strategies.  

Fig. 22. Macro_average precision of monkeypox diagnostic strategies.  

Fig. 23. Macro_average recall of monkeypox diagnostic strategies.  

Fig. 24. F1-measure of monkeypox diagnostic strategies.  

Fig. 25. Implementation time of monkeypox diagnostic strategies.  

Fig. 26. Diagnosing time of diagnostic strategies.  
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minimum value with values 92.56% and 59.99% respectively. The 
micro-average precision of Neuro-Fuzzy, ELGA, DBC, CPE, and EDS are 
68.9%, 75.25%, 79.85%, 83.65%, and 90.32% respectively at the 
maximum number of training data. Micro-average recall values in 
Fig. 21 are 60.85%, 62.6%, 65.8%, 75%, 80.25%, 85.9%, and 89.01% 
for RF, Neuro-Fuzzy, ELGA, DBC, CPE, EDS, and HMD respectively at the 
number of training data = 350. Thus, RF provides the minimum micro- 
average recall value while HMD provides the maximum value. Fig. 22 
shows that the maximum macro-average precision is provided by HMD 
while the minimum value is provided by RF with values reach to 88.01% 
and 62% respectively at the number of training data = 350. The macro- 
average precision of Neuro-Fuzzy, ELGA, DBC, CPE, and EDS reach to 
66.01%, 68.5%, 77.25%, 80.65%, and 83.6% respectively. Hence, the 
best macro-average precision is provided by HMD but the worst value is 
provided by RF. The macro-average recall of HMD is the maximum value 
but the minimum value is given by RF at the number of training data =
350 as shown in Fig. 23. The macro-average recall of RF, Neuro-Fuzzy, 
ELGA, DBC, CPE, EDS, and HMD are 54%, 59.5%, 67.5%, 72.85%, 
77.68%, 80% and 85.01% respectively. 

In Fig. 24, F1-measure of RF, Neuro-Fuzzy, ELGA, DBC, CPE, EDS, 
and HMD are 64%, 68.85%, 71.85%, 76.9%, 80.65%, 82%, and 83.9% 
respectively at the maximum number of training data. Based on 
Figs. (17-24), the proposed HMD strategy outperforms other diagnostic 
strategies because it provides the maximum accuracy, precision, recall, 
micro-average, macro-average, and F1-measure values. In fact, it is 
noted that EDS outperforms other strategies after HMD strategy. As 
shown in Fig. 25, the implementation time of HMD takes a long 
execution time but RF takes a short execution time with values reach to 
5.4 s and 3 s respectively at the number of training data = 350. As 
presented in Fig. 26, the diagnosing time of HMD is larger than other 
strategies. The diagnosing time of RF, Neuro-Fuzzy, ELGA, DBC, CPE, 
EDS, and HMD are 1.8, 2.7, 2.9, 3, 3.2, 3.2, and 3.24 s respectively at the 
maximum number of testing data = 150. Accordingly, EDS can provide 
the best results and takes a long execution time after HMD strategy. 
Hence, HMD can accurately diagnose monkeypox patients which con-
sumes a long execution time but this time was neglected compared to 
accurate diagnosis. At the last, it is concluded that the performance of 
HMD method is superior to RF, Neuro-Fuzzy, ELGA, DBC, CPE, and EDS. 

7. Conclusions and future directions 

The main core of this paper is to provide a robust strategy using AI 
techniques to accurately detect monkeypox patients to limit the spread 
of the virus. Hence, Human Monkeypox Detection (HMD) strategy has 
been introduced for early detection of infected persons quickly and 
accurately. This strategy includes two main phases called Selection 
Phase (SP) and Detection Phase (DP). In SP, monkeypox dataset has been 
filtered from useless features using Improved Binary Chimp Optimiza-
tion (IBCO) algorithm that combines two layers called Filter Selection 
Layer (FSL) as a quick layer and Wrapper Selection Layer (WSL) as an 
accurate layer. After eliminating irrelevant features as possible in FSL 
using many filter methods, sets of features provided by these filter 
methods have been passed to WSL to accurately choose the useful fea-
tures. The filtered dataset without any irrelevant features has been 
passed to DP to correctly learn Ensemble Diagnosis (ED) model to 
accurately diagnose monkeypox patients. ED model is a hybrid model 
that consists of Weighted Naïve Bayes (WNB), Weighted K-Nearest 
Neighbors (WKNN), and deep learning which are combined using a new 
weighted voting method to introduce the best diagnostic results. 

Experimental results illustrated that the suggested IBCO as a new 
feature selection outperformed other selection techniques using NB al-
gorithm as a standard diagnostic model. Additionally, the HMD strategy 
gives the best measurements compared to other strategies in terms of 
accuracy, precision, recall, micro-average, macro-average, F1-measure, 
implementation time, and diagnosing time. The HMD strategy provided 
98.48%, 91.1% and 88.91% for accuracy, precision, and recall values at 

the number of training data = 350. Additionally, the micro-average 
precision, micro-average recall, macro-average precision, macro- 
average recall, F1-measure, and implementation time of HMD strategy 
are 92.56%, 89.01%, 88.01%, 85.01%, 83.9%, and 5.4 s respectively at 
the number of training data = 350. At the number of testing data = 150, 
diagnosing time of HMD is 3.24 s. Thus, it is concluded that the HMD is 
superior other strategies because it provided the maximum accuracy. On 
the other hand, HMD provided the maximum execution time but this 
time was neglected compared to accurate diagnosis. According to future 
directions, the proposed HMD strategy should be tested on a large 
dataset and also should be tested on different datasets. Outlier rejection 
layer should be added to the proposed HMD strategy to reject noise data 
before learning ED model for improving the performance of this 
strategy. 
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