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Abstract
Objective. Federated learning (FL) is a computational paradigm that enables organizations to
collaborate onmachine learning (ML) and deep learning (DL) projects without sharing sensitive data,
such as patient records, financial data, or classified secrets.Approach.Open federated learning
(OpenFL) framework is an open-source python-based tool for trainingML/DL algorithms using the
data-private collaborative learning paradigmof FL, irrespective of the use case. OpenFLworkswith
training pipelines built with bothTensorFlow and PyTorch, and can be easily extended to otherML
andDL frameworks.Main results. In thismanuscript, we presentOpenFL and summarize its
motivation and development characteristics, with the intention of facilitating its application to
existingML/DLmodel training in a production environment.We further provide recommendations
to secure a federation using trusted execution environments to ensure explicitmodel security and
integrity, as well asmaintain data confidentiality. Finally, we describe thefirst real-world healthcare
federations that use theOpenFL library, and highlight how it can be applied to other non-healthcare
use cases. Significance.TheOpenFL library is designed for real world scalability, trusted execution, and
also prioritizes easymigration of centralizedMLmodels into a federated training pipeline. Although
OpenFL’s initial use casewas in healthcare, it is applicable beyond this domain and is now reaching
wider adoption both in research and production settings. The tool is open-sourced at github.com/
intel/openfl.

1. Introduction

In the last decade, artificial intelligence (AI)hasflourished due to greater access to data (Paullada et al 2020).
Training robustmachine learning (ML) and deep learning (DL)models require large quantities of diverse
training data to ensure robustness and generalizability to unseen out-of-sample data (Zech et al 2018,
Mårtensson et al 2020). However, accessing the requisite amounts of diverse data remains challenging because of
various technical (storage, bandwidth), regulatory, or privacy concerns (Sheller et al 2020).

Federated learning (FL) is a computational paradigm that enables organizations to collaborate onML/DL
data science projects, without sharing sensitive information, such as patient records (protected health
information),financial transactions, or protected secrets (McMahan et al 2017, Sheller et al 2019, Yang et al
2019, Rieke et al 2020, Sheller et al 2020). The basic premise behind FL is that theAImodelmoves tomeet the
data, instead of the datamoving tomeet themodel that represents the current paradigm formulti-site
collaborations (figure 1).

Ourmotivation for this work is two-fold: To lower the barrier for international collaboration, and to enable
access to unprecedented and diverse datasets without violating existing privacy laws, such as theHealth
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Insurance Portability andAccountability Act of theUnited States (Annas et al 2003) and theGeneral Data
ProtectionRegulation of the EuropeanUnion (Voigt andVon 2017). By achieving this goal, particularly in
healthcare applications, FL has the promise to address health disparities, under-served populations, and rare
diseases, by gaining knowledge fromdata coming from institutions that were not able to participate in such
collaborative studies before. Literature has shown thatML/DLmodels trained using FL can achieve comparable
levels of performance asmodels trained using a centralized learning approach (McMahan et al 2017, Sheller et al
2019, Suzumura et al 2019, Sheller et al 2020, Baid et al 2022).

The contribution for this presentedwork is the open federated learning (OpenFL, github.com/intel/openfl)
library introduced here as an open-source, python-based framework for trainingML/DL algorithms using the
data-private collaborative learning paradigmof FL. Section 2 describes the design and use ofOpenFL, with the
intention of facilitating its application to existingML/DLmodel training in a production environment.

Figure 1.Collaborative learningworkflows. (A) indicates the current paradigm for collaborative learning by sharing the local patient
data at a centralized location. (B) and (C) showFL approaches for collaborative learningwithout sharing any local data.
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Section 2.4 further provides recommendations to secure a federation and howTrusted Execution Environments
(TEEs) can ensure explicitmodel security and integrity, as well asmaintain data confidentiality. Section 3
highlights the first real-world applications of theOpenFL library to train consensusML/DL in the domain of
cancer research and beyond. Finally, sections 4 and 5 concludewith some discussion and future directions for
the presentedwork.

2.Methods

2.1. Synopsis
OpenFL allows developers to trainMLmodels on the nodes of remote data owners (i.e. collaborators). TheML
model is trained on the hardware at the collaborator node. The data used to train themodel remains at the
collaborator node at all times; only themodel weight updates andmetrics are shared to themodel owner. A FL
plan is used to describe the configuration andworkflow. This FL plan is shared among all nodes in the federation
to define the rules of the federation.OpenFL adopts the terminology of FL plan coined by Bonawitz et al (2019),
though asOpenFL has been designed for a different trustmodel (multi-institutional), theOpenFL plan is agreed
upon by all parties before theworkload begins, as opposed to the design in Bonawitz et al (2019)which delivers
the FL plan at runtime (as befits that system’s design goals). The high-level workflow is shown in figure 2. Note
that onceOpenFL is installed on all nodes of the federation and everymember of the federation has a valid PKI
certificate, all that is needed to run an instance of a federatedworkload is to distribute theworkspace to all
federationmembers and then run the command to start the node (e.g.,fxaggregatorstart/fx
collaboratorstart). In other words,most of thework is setting up an initial environment (figure 2: steps
1–4) on all of the federation nodes. After the setup, subsequent experiments can be launched quickly after
workload redistribution.

2.2. Software components
Figure 3 shows the software components of theOpenFL library. The code is open-source, written in Python, and
distributed via pip5, conda, andDocker packages.

Every site participating in a collaborative network ( federation)will need to have information on the
predefined federation plan (FL Plan), theMLmodel code, and the local dataset. The coordination and execution
of a given federation is defined by the FL plan. The FL plan is definedwithin a text file (i.e. YAML6), which is
sharedwith all the participants of a given federation. It defines the federation settings, such as batch size, IP
address, and rounds to train anAImodel. It also specifies the remote procedure calls for the given federation

Figure 2.Ahigh-level overview of open federated learning (OpenFL). Note that onceOpenFL is installed on all collaborating nodes of
the federation and everymember of the federation has a valid PKI certificate, all that is needed to run an instance of a federated
workload is to distribute theworkspace to all federationmembers and then run the command to start the node.

5
https://pypi.org/project/openfl/

6
https://yaml.org/
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tasks. The FL plan andmodel code aremanually sharedwith each participant, prior to the initiation of the
federation using an export command in theOpenFL command line interface (CLI). A complete description of
these steps and commands to execute can be found in the library’s technical documentation7.

When the participants start the federation, theOpenFL backend allows the collaborator node to send
requests via remote procedure calls to the aggregator to askwhich task it should execute next. Tasks are key
workload steps, e.g.,MLmodel training and validation, and are defined in the FL plan. In this way, the
aggregator can dynamically choosewhich task to assign to each collaborator, but as the tasks are predefined,
cannot send arbitrary commands to the collaborators.Moreover, the dependencies required for the
collaborator’s task to execute are sent over the network as numpy arrays, and transformed into the updated
model weights immediately before the training or validation function is scheduled to execute.When the
collaborators have completed their tasks, collaborators report the updatedmodel weights (and aggregated
metrics, such asmodel accuracy and local dataset size) to the aggregator. The aggregator then combines the
updates received from the collaborators into a global consensusmodel, as described by the algorithm specified in
the FL plan. The collaborators then retrieve theweights of the new global consensusmodel from the aggregator
for an additional round of tasks (figure 1). This process continues until all rounds have been completed as
specified in the FL plan.

The primary rationale for the design choices in this procedure is to establish trust andmaintain security,
whilemaking it easier for IT security admins to evaluate the code that will execute within their network. The
distribution of both the FL plan and source code gives participants a comprehensive view into the code that can
be executed on theirmachine, and the RPC calls are specifically defined to limit what can be sent across the
network. This design lays the foundation for themethods described in sections 2.3 and 2.4, including the use of
mTLS for encrypting the network traffic of all parties, and howTEEs can bring hardware-backed code
confidentiality and integrity to a federation.

Current examples are artificial neural networks trained using either TensorFlow (Abadi et al 2016), PyTorch
(Paszke et al 2019), orMXNet (Chen et al 2015). OtherMLmodel libraries and neural network training
frameworks can be supported through an extensiblemechanism.

2.3. Federated learning topologies
(Rieke et al 2020)describes the twomajor different federation topologies, (i) FL using an aggregation server, a
hub-and-spoke/‘star’ architecture where collaborating sites sharemodel updates to a central server for
combination, and (ii) FL using a peer-to-peer connection, where each collaborator either sends themodel
updates to each other concurrently (i.e. ‘swarm learning’Warnat-Herresthal et al 2021) or iteratively
(‘Institutional Incremental Learning’happenswhen each collaborator passes weights around once, ‘Cyclic

Figure 3.TheOpenFL software components. The collaborator contains the federation plan (FL Plan),MLmodel, and local dataset.
These components are created by the developer (orange). TheOpenFL backend (blue) connects the collaboratorwith the aggregator
node via amutual TLS connection. TheOpenFL backend (blue) on the aggregator sends remote procedure calls to the collaborator
and receivesmodel andmetric updates (green) for aggregation.

7
https://openfl.readthedocs.io/en/latest/running_the_federation.html#aggregator-based-workflow
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Institutional Incremental Learning’ is process of doing the transfermultiple times Sheller et al 2020). For the
sake of clarity, thismanuscript focuses of FL using an aggregation server.

Figure 4 shows the architecture for theOpenFL network topology based on an aggregation server. Each
participant in the federation is defined as either a collaborator or an aggregator node. A collaborator node
contains the dataset that is owned by that participant. The hardware of that collaborator node is used to train the
MLmodel locally. The dataset never leaves the collaborator node. An aggregator node is a compute node that is
trusted by each collaborator node. Collaborator nodes connect directly to the aggregator node in a star topology.
The collaborator nodes connect to the aggregator node through remote procedure calls (gRPC8Wang et al 1993)
via amutual transport layer security (mTLS) (Dierks et al 1999)network connection. Sensitive information such
as tasks,model and optimizer weights, and aggregatedmetrics pass between the collaborator and the aggregator
nodes over this encrypted channel.

2.4. Security
FL addresses issues of the current paradigm formulti-institutional collaborations based on data pooling, due to
its nature to share onlymodel updates across collaborating institutions.However, it introduces newprivacy,
security, and confidentiality challenges for bothAImodel developers and data owners/collaborators (Kairouz
et al 2019).More specifically, AImodel developersmaywish to protect theirmodel intellectual properties (IP) as
themodel gets trained in decentralized environments, while data owners/collaborators would like to ensure that
their data cannot be extracted by inspecting themodel weights over federated rounds. OpenFL design prioritizes
key security concepts such as narrow interfaces, code reuse, open-source code, simplified information security
reviews, and code design fit for running on trusted compute hardware, such as a TEE.

2.4.1. PKI certificates
OpenFL usesmutual transport layer security (mTLS) connections9 (Dierks andRescorla 2008). To establish the
connection, a valid public key infrastructure certificate (Albarqi et al 2015) signed by a trusted certificate
authority,must be provided by all participants. OpenFL provides amethod for creating a trusted certificate
authority (fromwithin the federation’s collaborating sites), and generating X.509 (Albarqi et al 2015) certificates,
but thismechanism is only intended fornon-production testing, such as academic research. In production
environments (for example, whenmultiple institutions areworking together andmay not jointly trust an
internal CA), it is recommended that an external certificate authority generates the PKI certificates. The
minimum recommended certificates areRSA SHA-384 3072-bit orECDSA secp384r. Notably, gRPC
connections default to the best ciphersuite available, which is TLS 1.3with ECDHE-RSA-AES256-GCM-
SHA384.

2.4.2. Trusted execution environments
TEEs offer hardware basedmemory encryption that isolate specific application code and data inmemory and
enforces access to it with hardware. For FL, the three key security properties required in a TEE are (1)
confidentiality of the execution tomitigate attacks such as copyingmodel IP out ofmemory as the training
process executes, (2) integrity of the execution tomitigate attacks that alter the behavior of the code, and (3)
remote attestation of the execution, wherein a TEE can provide somemeasurements as a proof for the initial

Figure 4.TheOpenFL network topology. The federation is a star topologywith two types of nodes: collaborators and aggregators. The
data of a collaborator remains within that node for local training. The dataset never leaves the collaborator node. Instead,model
updates from each collaborator node are sent to an aggregator node so that they can be combined into a global consensusmodel. The
globalmodel is returned to the collaborator nodes for a further round of local training. Collaborators connect with the aggregator
through remote procedure calls overmutual TLS connections.

8
https://grpc.io/

9
https://en.wikipedia.org/wiki/Mutual_authentication
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execution state to a remote relying party to attest the TEE itself is interacting with the intended code on the
intended hardware (Kairouz et al 2019). Recent hardware solutions can provide these three security properties at
near native speed, supportingmemory (RAM) sizes necessary for training largeDLmodels. Several keyOpenFL
researchers alsoworked on Intel SecureGuard Extensions (Intel SGX), and henceOpenFL is natively designed to
properly leverage TEEs.

InOpenFL, all applications (including collaborators and aggregator) are executed in a distributedmanner
for exchanging theML/DLmodel information to help improve the training performance. As such, bothML
models and distributed data silos need to be protected during training. Leveraging TEE forOpenFL helps protect
bothmodel IP and data privacy. Typically, extensivemodifications are required to allow the execution of theML
training code inside a TEE that increases development efforts in a user’s application. To address this additional
required effort, Gramine (orGramine SGX) (Tsai et al 2017) is developed as a lightweight, open-source library
OS for running unmodified user applications inside Intel SGX, thereby allowing users to runOpenFL code
seamlessly without anymodifications.We think that this execution of unmodified applications in the enclave
will greatly increase the usability for application developers to benefit from security features, such as integrity
and confidentiality. Instructions to runOpenFLwith Intel SGXusingGramine are outside the scope of this
manuscript, and can be found in its documentation10.

2.5. Running a federation
The training process begins when each collaborator establishes a secure connection to either a central
aggregation server (in the case of federated aggregation using a server) orwith each other (in case of swarmor
cyclic weight transfer). Once the secure connection is established, the initialmodel weights are passed to the
collaborating sites. Collaborating sites can then begin training the same network architecture on their local data
for a predefined number of epochs, and sharemodel updates with either each other, or the central aggregation
server (depending on the FL topology). Once all the individual submitted updates are combined in the global
consensusmodel, the latter gets sent back to each collaborating site to continue their local training. Each such
iteration is called a ‘federated round’. The number of federated rounds and epochs to train can be defined in the
learning plan.

OpenFL has twomethods for developing federations: the PythonAPI and thefxCLI. TheCLI is considered
the better path for scaling federations within a production environment. The PythonAPI is easier to understand
for the data scientist who is workingwithOpenFL for the first time.Nevertheless, theOpenFL tutorials and
demos should allow users to quickly grasp bothmethods11.

3.Use cases

3.1. The real-world federated tumor segmentation initiative
The FederatedTumor Segmentation (FeTS) initiative, led by theUniversity of Pennsylvania, describes an
ongoing development of the largest international federation of healthcare institutions aiming at gaining
knowledge for tumor boundary detection from ample and diverse patient populationswithout sharing any
patient data (Baid et al 2021, Pati et al 2022a). To facilitate this initiative, a dedicated open-source platformwith a
user-friendly graphical user interface was developed (Pati et al 2022b). This platform seeks: (i) bringing state of
the art pre-trained segmentationmodels of numerous algorithms (Pati et al 2021b) and label fusion approaches
(Pati andBakas 2021) closer to clinical experts and researchers, thereby enabling easy quantification of new
radiologic scans and comparative evaluation of new algorithms, and (ii) allowingmulti-institutional
collaborations via FL by leveragingOpenFL, to improve these pre-trainedmodels without sharing patient data,
thereby overcoming legal, privacy, and data-ownership challenges. FeTS has been initially deployed towards the
task of detecting the boundaries of brain tumor sub-compartments, for themost commonmalignant brain
tumor (i.e. glioblastoma) but still a rare disease based on its incidence rates, by utilizing data from n= 71 clinical
sites spread all around theworld (figure 5).

3.2. Thefirst computational challenge on federated learning
International challenges have become the de facto standard for benchmarking computational analysismethods,
including those designed for the healthcare domain.However, the actual performance of even thewinning
algorithms on ‘real-world’ clinical data often remains unclear, as the data included in these challenges are usually
acquired in very controlled settings at few institutions. The seemingly obvious solution of just collecting

10
https://github.com/intel/openfl/blob/develop/openfl-gramine/MANUAL.md

11
https://openfl.readthedocs.io/en/latest/running_the_federation.notebook.html
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increasinglymore data frommore institutions in such challenges does not scale well due to privacy and
ownership hurdles.

Thefirst computational challenge ever proposed for FL, was the FeTS 2021 challenge12 that focused on
benchmarkingmethods for both the federated training and the federated evaluation of tumor segmentation
models (Pati et al 2021a), andwas conducted in conjunctionwith themedical image computing and computer
assisted interventions (MICCAI) conference. Specifically, the FeTS 2021 challenge uses clinically acquired,
multi-institutionalMRI scans from the international brain tumor segmentation (BraTS) 2020 challenge (Menze
et al 2014, Bakas et al 2017, 2018), as well as from various remote independent institutions included in the
collaborative network of the FeTS real-world federation (section 3.1). The challenge focuses on the construction
and evaluation of a consensusmodel for the segmentation of intrinsically heterogeneous (in appearance, shape,
and histology) brain tumors, namely gliomas. Compared to the BraTS challenge, the ultimate goal of the FeTS
challenge is divided into the following two tasks:

(i) Task 1 (‘Federated training’) aims at effective weight aggregation methods for the creation of a consensus
model given a pre-defined segmentation algorithm for training, while also (optionally) accounting for
network outages.

(ii) Task 2 (‘Federated evaluation’) aims at robust segmentation algorithms, given a pre-defined weight
aggregationmethod, evaluated during the testing phase on unseen datasets from various remote independent
institutions of the collaborative network of the fets.ai federation.

OpenFL enabled innovation on aggregation via amodular API for implementing custom aggregation
algorithms.

3.3. Predicting acute respiratory distress syndrome&death inCOVID-19 patients
MontefioreHealth System represents one of the largest integrated care delivery systems inNewYork. It
comprises 11 hospitals, distributed across the poorest (Bronx,NY) andmost affluent (Westchester County, NY)
communities of theUnited States.

Early in theCOVID-19 pandemic (March–May 2020) theMontefioreHealth SystemusedOpenFL to
simultaneously assess data from its network hospitals to optimize the sample size necessary to develop, validate,
and deploy a clinically reliableDLmodel (using long short termmemory-LSTMmodels) to predict the
likelihood of acute respiratory distress syndrome, aswell as death inCOVID-19 patients hospitalized in the
intensive care unit. Themodel was deployed and integrated to the routine clinical workflows, in order to provide
real-timemonitoring, triaging, and clinical decision support to critical care units across the complete health
system, by helping identify the highest risk patients (and thosewith deteriorating health status) hours in advance
of an irreversible terminal event.

The results demonstrated validation of themodel for accuracy, and timeliness compared to traditional
centralized learning, emphasizing the identical learning capabilities and accuracy of the privacy preserving FL,

Figure 5.The collaborative network of thefirst FeTS federation.

12
https://www.med.upenn.edu/cbica/fets/miccai2021/
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butwith additional benefit of agility,more privacy,more confidentiality,more security, scalability,
representativeness, and portability of themodels tomuch larger patient populations, and designed to not
compromise the privacy of protected health information.

3.4. Understanding the physiological effects of radiation exposure on astronauts
Scientists fromNASAs Frontier Development Lab (FDL) are using FL to study astronaut health to help better
understand the physiological effects of space radiation on humans. UsingOpenFL, FDL scientists have created a
first-of-its-kind biomarker detection algorithm for cancer that uses data on the effects of radiation on humans
andmice. The astronaut health teamproved rodent radiation data can be used as a homologue of human
radiation data, which is used to train the human algorithm. The causalMLmethod tackles the researchers
scientific challenge tomore accurately predict the genes that will be affected by radiation, some relating to cancer
and others to immunity response.

This research leveragedOpenFL onGoogle CloudPlatform, tomake it possible to train and combineCRISP
2.0models (Causal Relation and Inference Search Platform) from institutions such asNASA,MayoClinic, and
NASAsGene Lab, withoutmoving/sharing the data to a centralized location. This was crucial because even
though each organization had the necessary right to use the data, the data was private and the cost of transmitting
data that could be generated aboard a spacecraft was high.With the use ofOpenFL, researchers were able to
initialize a federated experiment with an ensemble of causal inferencemethods (represented by a collection of
linear and nonlinear invariant riskminimizationArjovsky et al 2019models) pre-trained onmouse data, select
the highest variance human genes and respectivemouse homologues across collaborator dataset distributions,
and conductmore than 30 rounds of federated training. Finally, CRISP 2.0was used to output results for further
analyses and insights. Using strong overlap in the top-50 features in the federated cross-organism analysis, the
study found the previously unidentified gene SLC8A3 as a potential causal target for further research
(O’Donoghue et al 2021).

3.5.Highlighted tutorials for potential applications
While some of the first real world use cases that leveragedOpenFL originated inmedical imaging and healthcare
applications, the underlying framework is designed for broader applicability and to support novel DL research.
Because ofOpenFL’s built-in support for TensorFlow and PyTorch, OpenFL can easily support higher level DL
frameworks and applications, such as those focusing onDL transformers (Wolf et al 2019), keyword spotting
(Baevski et al 2020, Yang et al 2021), and synthesis (such as generative adversarial networks). A special use case is
that of anomaly detection, which has important applications in industrial cases, where it can be used to robustly
and accurately detect defects in themanufacturing process. OpenFL allows federation of awell-known
application for this purpose, the PatchSVDDalgorithm (Yi andYoon 2020).

4.Discussion

In thismanuscript we have introduced the open federated learning (OpenFL, github.com/intel/openfl), an
open-source software library for FL. AlthoughOpenFLwas originally developed as part of a collaborative project
between Intel Labs and theUniversity of Pennsylvania on FL for healthcare, it continues to be developed for
general-purpose real-world applications by Intel and the open-source community inGitHub13.

Kaushal et al (2020) recommend that researchers need greater access to large and diverse datasets, in order to
generate accuratemodels (Kaushal et al 2020).Without this greater access, they argued, AImodelsmay also have
inherent biases and perpetual inequalities. For example, Larrazabal et al (2020) demonstrated that introducing a
gender imbalancewhile training convolutional neural networkmodel to detect disease from chest x-rays
resulted in poor performance on the underrepresented gender (Larrazabal et al 2020). This potential for bias is
not limited to the healthcare sector. Buolamwini andGebru (2018) demonstrated that a lack of diversity in
training data can lead to significant racial bias in facial detection algorithms. Coston et al (2019) described the
harmful effects as a covariate shift in riskmodels for the financial sector (Coston et al 2019).

FL is an attractive approach to training AI on large, diverse datasets requiring data privacy (Suzumura et al
2019, Rieke et al 2020). Although there is no inherent guarantee that accessingmore data translates to accessing
better data, it is certainly a step in the right direction toward improving accuracy and reducing bias in AI
algorithms. It should be stressed that it is the greater access to data that gives FL an advantage over centralized
learning, rather than any inherent algorithmic improvement. Sheller et al previously showed that FL can achieve

13
https://github.com/intel/openfl
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similar accuracy as centralized learning, butmay be superior to similar collaborative learning techniques and to
training on data from a single institution (Sheller et al 2019, 2020).

The current paradigm for developingDL andMLmodels in a collaborative healthcare setting currently lacks
diversity in data, posing a risk of creating and continuing harmful biases on how algorithms are developed and
trained. These gaps can lead to continued health disparities and inequities for underrepresented communities.
TheNational Institutes ofHealth (NIH) has several programs that aim to increase the availability of data of
populations underrepresented in biomedical research. Specifically, theNIHAll of Us14 program aims to recruit
participants for underrepresented communities.More than 80%of the core participants represent populations
historically underrepresented in biomedical research.NIH’sAll of Us takes a centralized data approachmaking
longitudinal clinical, genomics, survey, wearable, and survey data available to researchers via the researcher
workbench15. Recently, theNIHhas also taken a federated data approach to address the availability of diverse
data and address health disparities. TheNIH’s artificial intelligence/machine learning consortium to advance
health equity and researcher diversityAIM-AHEAD program16will provide federated access to electronic health
record data, image data, and social determinants of health. The federated infrastructure will enable researchers
develop, and enhanceAI/MLalgorithms, as well as apply AI/MLapproaches to address health inequities and
disparities. This direction is designed to encompassmore improved healthcare, prevention, diagnoses, and
treatments, as well as facilitate intervention and implementation strategies.

The FL concept introduced in this paper is what is implicitly known in the literature as horizontal federated
learning (HFL). In theseHFL types of federations, each collaborating site collaborates by sharing the knowledge
of their local data in the learning process of a global consensusmodel.While data are different across the
collaborating sites, they share both type and format, and are expected to be normalized tofit the samemodel.
However,HFL is not the onlyway to implement FL pipelines. Vertical federated learning (VFL) is another
variant that is quickly rising for its increasedflexibility (Wei et al 2022).WithVFL the collaborating sites can
contribute to a federation by sharing different types of data, vertically partitioned. Thismeans that each
collaborating site is providing just a subset of the information required tofit themodel. For example, a hospital
mightwant to collaboratewith the dentist, pharmacies, and physiotherapist associations, to have a broader
clinical understanding of the shared patients. In this case, each collaborating site would only be sharing some
features of thefinal descriptor, implicitly augmenting the security of the paradigm.WhileOpenFL can support
the complex data pre-processing required for VFL, it currently lacks the flexibility to delegate interdependent
tasks across federation participants.

From this perspective, VFL represents a limitation of the current version ofOpenFL. Another potential
limitation is represented by the application scenario. OpenFL can be a goodmatch for FL pipelines among
collaborating sites with hub-and-spoke topologies, where having a central aggregation unit does not represent
an issue. Thismight not be the case of a smart environmentmade of edge devices that work as independent
entities connected to the samemeshed network, through an all-to-all communication schema.WhileOpenFL
can be deployed through containers, and usedwith standard libraries and open-source frameworks (e.g., Keras,
TensorFlow, PyTorch) that can be deployed to edge devices, it is currently not able to support an all-to-all
aggregationmechanism.OpenFLwas originally designed for synchronous FL pipelines. However, in large scale
deployments, synchronous FL can be problematic because some collaboratorsmay periodically become
unresponsive ormay take substantially longer to deliver that round’smodel contributions due to slower
hardware or larger datasets. This problemmotivates further exploration into federation that permit
asynchronous updates.

As the future outlook forOpenFL, taking into consideration that FL is still a relatively new concept with
rapidly evolving developments and advancements, it is our preference to be driven by community requirements
thatwill benefit either research or industrial applications. For example, depending on the attraction that VFL
might gain, we intend to extend the currentOpenFL capabilities accordingly, withmodules needed to
implement it. As currently planned immediate future directions, wewould like to extend the training beyondDL
algorithms, by adding the functionality of running federations based on traditionalML approaches.While the
current version ofOpenFL is already designed towelcome such changes, itmight not be immediately accessible
to end-users. Another feature wewould like to include concerns fine grained control over tasks that run on
specific infrastructures, e.g., the opportunity to have custom aggregator tasks. In addition, enhancing the
communication options by opening the FL scenarios to asynchronous updates could enrichOpenFL.

14
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5. Conclusion and future outlook

Wehave introduced the open federated learning (OpenFL, github.com/intel/openfl) library, as a production
ready FL package that allows developers to trainMLmodels on the nodes of remote data owners/collaborating
sites. TheOpenFL interfacemakes it easy for data scientists to port their existingMLmodels, whether in
TensorFlow, PyTorch,MXNet, or some otherML framework, into a distributed training pipeline. Although
OpenFL’s initial use case was in healthcare, the library is designed to be agnostic to the use case, industry, andML
framework, which contributed in being adopted by companies because of its unique focus on security. The
development ofOpenFL has benefited significantly from its external collaborations, and bymaking the project
open-sourcewe hope that it will continue to be shaped by thewider FL community in new and exciting avenues.
Our goal withOpenFL is not to compete with other FL open-source software efforts, but to inter-operate and
collaborate towards providing a comprehensive solution for data-private collaborative learning.

Our ambition is that federations, such as the FeTS Initiative17, will not serve as ad hoc collaborations for
specific research efforts, but will serve as permanent collaborative networks for researchers in healthcare and
biological research, and also generalize to thefinancial, industrial, and retail industries tomore effectively train,
deploy,monitor, and update their AI algorithms over time.
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