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Abstract 
The molluscan phylum is characterized by the radula, used for the gathering and processing of food. This structure can 
consist of a chitinous membrane with embedded rows of teeth, which show structural, chemical, and biomechanical adap-
tations to the preferred ingesta. With regard to the chemical composition of teeth, some taxa (Polyplacophora and Patel-
logastropoda) were extensively studied, and high proportions of incorporated iron, calcium, and silicon were previously 
reported. However, outside these two groups, there is an immense lack of knowledge about the elemental composition 
of radular teeth. The here presented work aims at shedding some light on the radular composition by performing energy-
dispersive X-ray spectroscopy (EDX) on six non-patelliform gastropod species (Anentome helena, Cornu aspersum, 
Lavigeria nassa, Littorina littorea, Reymondia horei, and Vittina turrita), with the focus on the ontogeny of the elemental 
composition. Proportions of elements, which are not part of chitin and other purely organic molecules, were documented 
for overall 1027 individual teeth of all ontogenetic radular stages, i.e., for the building zone, the maturation zone, and the 
working zone. We detected that the proportions of these elements increased from the building to the maturation zone. 
However, from the maturation to the working zone, two general trends are visible: either the proportions of the elements 
increased or decreased. The latter trend could potentially be explained by the acidic pH of the gastropod saliva, which 
awaits further investigations.
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Introduction

Food gathering and processing in most molluscs is enabled 
by the radula, a thin chitinous membrane with transversal 
and longitudinal rows of embedded teeth. Each tooth serves 
as an actual interface between the organism and its ingesta 
(food, minerals, biofilms, plants, and feeding substrates such 

as stone or sand) and becomes worn during foraging actions 
(Runham and Thornton 1967; Shaw et al. 2010; Krings and 
Gorb 2021a; Krings et al. 2021a). As consequence, teeth and 
membranes are continuously produced by under and overlain 
epithelia in the posterior “building zone” or “radular sac” and 
become maturated in the “maturation zone” before they enter 
the anterior “working zone,” where teeth actually interact 
while feeding (e.g., Runham 1963; Runham and Isarankura 
1966; Mackenstedt and Märkel 2001).

Adaptations to trophic preferences have been previously 
reported for (1) the general tooth morphology (e.g., 
Crampton 1977; Steneck and Watling 1982; Jensen 1997; 
Nishi and Kohn 1999; Duda et al. 2001; Rintelen et al. 2004; 
Ekimova et al. 2019; Krings 2020; Krings et al. 2020b, 
2021a, 2021b, 2021c; Mikhlina et al. 2020; also in the tooth 
anchorage with the membrane: Krings et al. 2020a), (2) the 
arrangement of teeth within the membrane and the resulting 
tooth-tooth interactions (Solem 1972; Hickman 1980, 
1984; Morris and Hickman 1981; Padilla 2003; Herrera 
et al. 2015; Krings et al. 2020b, 2021d, 2021e, 2021f), and  
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(3) tooth material properties (e.g., hardness and elasticity) 
(Lu and Barber 2012; Grunenfelder et al. 2014; Barber 
et  al. 2015; Herrera et  al. 2015; Ukmar-Godec et  al. 
2017; Krings et al. 2019a, 2021e; Krings 2020; Pohl et al. 
2020; Gorb and Krings 2021; Stegbauer et al. 2021). The 
properties measured can either result from the architecture 
of the organic components (matrix of alpha chitin with 
associated proteins), e.g., fiber orientation and/or density, 
the folding or bounding conditions of chitin, and/or the 
incorporation of inorganic components as e.g., iron, 
silicon, and calcium (e.g., Weaver et  al. 2010; Wang 
et al. 2013; Grunenfelder et al. 2014; Herrera et al. 2015; 
Ukmar-Godec 2016; Pohl et  al. 2020; Stegbauer et  al. 
2021; Krings et al. 2022a, 2022b; for reviews, see Brooker 
and Shaw 2012; Faivre and Ukmar-Godec 2015; Joester 
and Brooker 2016; Kisailus and Nemoto 2018; Moura and 
Unterlass 2020). In some species, possessing very hard and 
stiff teeth, i.e., Patellogastropoda and Polyplacophora, very 
high proportions of silicon and iron are incorporated in the 
tooth cusps, which is an adaptation to loosening algae from 
stones (e.g., Lu and Barber 2012; Grunenfelder et al. 2014; 
Barber et al. 2015; Herrera et al. 2015; Ukmar-Godec et al. 
2017; Pohl et al. 2020; Stegbauer et al. 2021; Krings et al. 
2022a). In many molluscan taxa, however, teeth seem to 
be rather more chitinous and less mineralized, even though 
some of these species, e.g., the paludomid gastropods from 
Lake Tanganyika and surrounding river systems, also 
forage on algae attached to rocks (Krings et al. 2022b).

Only very few studies on the composition of radular 
teeth outside the limpet and chiton realm were conducted 
(e.g., Troschel 1863; Sollas 1907; Jones et al. 1935; Til-
lier and Cuif 1986; Macey et al. 1997; Cruz et al. 1998; 
Krings et  al. 2022b). Thus, the inorganic content of 
the larger, species-rich molluscan orders (e.g., Hetero-
branchia, Caenogastropoda, Neritimorpha, etc.) remains 
enigmatic. To shed some light on the elemental compo-
sition, we performed elemental analyses using energy 
disperse X-ray spectroscopy (EDX, EDS) on radulae 
from six non-patelliform gastropod species (the caeno-
gastropods Anentome helena, Lavigeria nassa, Littorina 
littorea, and Reymondia horei; the heterobranch Cornu 
aspersum; and the neritimorph Vittina turrita), overall, on 
1027 individual teeth. The data on the elemental compo-
sition of the working zone was published before (Krings 
et al. 2022b), and here we present data on the ontogeny 
of the elemental composition of the building and matura-
tion zones. In general, we detected that the proportions 
of the elements that are not part of chitin and other purely 
organic molecules increased from the building to the mat-
uration zone. However, we detected two patterns from 
the maturation to the working zone: either the elemental 
proportions increased or decreased.

Materials and methods

Species and specimens

The results of the elemental analyses presented in this work 
were obtained from the same specimens studied in our previ-
ous paper, in which we described the elemental composition 
of the radular working zones (Krings et al. 2022b). Individu-
als of Anentome helena (von dem Busch 1847) (Caenogas-
tropoda), Cornu aspersum (Müller 1774) (Heterobranchia), 
and Vittina turrita (Gmelin 1791) (Neritimorpha) were bought 
from online pet shops in 2018, 2019, and 2020. Littorina lit-
torea (Linnaeus 1758) (Caenogastropoda) was collected at the 
North Sea, at Husum, Germany, in autumn 2019. Lavigeria 
nassa (Woodward 1859) and Reymondia horei (Smith 1880) 
(both Caenogastropoda) were collected in Lake Tanganyika; 
L. nassa in Zambia (08°29′23″S, 30°28′46″E) on 09/09/2016 
and R. horei in Tanzania (Kigoma) on 02/26/1995. Speci-
mens are either inventoried at the Museum für Naturkunde 
Berlin (ZMB) or the Zoological Museum Hamburg (ZMH), 
which is now part of the Leibniz Institute for the Analysis of 
Biodiversity Change (LIB): L. nassa, ZMH 119369/999, R. 
horei, ZMB 220.147, V. turrita, ZMH 154753, L. littorea, 
ZMH 154633, C. aspersum, ZMH 150005, and A. helena 
(ZMH 122792). All specimens were initially preserved in 
70% ethanol.

A. helena forages on other gastropods, fish eggs, shrimps, 
and carrion (Bogan and Hanneman 2013; Strong et al. 2017), 
L. littorea on fleshy macroalgae from rocks (Watson and 
Norton 1985; Imrieet al. 1990; Olsson et al. 2007; Lauzon-
Guay and Scheibling 2009), L. nassa on algae from rocks 
(Bourguignat 1885, 1888; Moore 1903; Leloup 1953; Brown 
1994; personal comment from the collector Heinz Büscher), 
R. horei on algae from rocks (Bourguignat 1885, 1888; Coul-
ter 1991; Bandel 1997; West et al. 2003; personal comment 
from the collector Heinz Büscher), V. turrita on algae from 
solid substrates, but also porous ingesta (Eichhorst 2016), 
and C. aspersum on various plant types (www. cabi. org/ isc/ 
datas heet/ 26821).

Overall, we studied four adult individuals of similar shell 
size per species. For this purpose, specimens were dissected, 
and each radula was extracted and carefully freed from sur-
rounding tissues by tweezers. Then, the radulae were cleaned 
in an ultrasonic bath for 2–20 s, and each radular membrane 
was attached to one glass object slide with double-sided adhe-
sive tape.

Documentation and categorization of the radular 
zones

All radulae were first documented with the Keyence Digi-
tal Microscope VHX-7000 (KEYENCE, Neu-Isenburg, 
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Germany), and radular zones were defined. The building 
zone (zone 1) is always the most posterior radular area, with 
fragile membranes and teeth that are often curled up, cov-
ered by secreting epithelia, and densely packed. The working 
zone (usually zone 3; in Vittina turrita and Littorina littorea, 
it is defined as zone 4) is always the anterior area, used for 
feeding and not covered by epithelia. Zone 2, the matura-
tion zone, is situated between these two zones and is also 
covered by secreting epithelia. For V. turrita and L. littorea, 
we defined two maturation zones between the building and 
working zone (zones 2 and 3), as their radulae are quite 
long. For the completeness of this paper, we included some 
scanning electron microscopy (SEM) images from previous 
studies, where we described the radular morphology of the 
species studied in detail (Krings et al. 2019b, 2021a, 2021b, 
2021d, 2021e; Scheel et al. 2020; Krings 2020; Krings and 
Gorb 2021b).

Elemental analysis

After documentation of the external micromorphology of 
radulae using SEM, two radulae per species were chosen for 
EDX analysis (these are the same specimens as previously 
analyzed in Krings et al. 2022b). Here, the radulae were first 
removed from the adhesive tape with 70% ethanol. Then, 
radulae were again taped with double-sided adhesive tape to 
glass object slides, but now the outer teeth of one side were 
attached (see Krings et al. 2022a, 2022b for details). Each 
radula was air-dried and surrounded by a small metallic ring, 
which was filled with epoxy resin (RECKLI EPOXI WST, 
RECKLI GmbH, Herne, Germany). After polymerization at 
room temperature, the object slide and tape were removed. 
Samples were polished with sandpapers of different rough-
ness until sections of the outer teeth were on display. Then 
they have smoothed with aluminum oxide polishing powder 
suspension of 0.3-μm grain size (PRESI GmbH, Hagen, Ger-
many) on a polishing machine (Minitech 233/333, PRESI 
GmbH, Hagen, Germany). Afterward, they were cleaned in 
an ultrasonic bath for 5 min and coated with platinum (Pt, 
5 nm-thick layers). The elemental composition of the larg-
est possible area per tooth (point measurements were per-
formed, not elemental mappings) was examined employing 
the SEM Zeiss LEO 1525 (One Zeiss Drive, Thornwood, 
NY) equipped with an Octane Silicon Drift Detector (micro 
analyses system TEAM, EDAX Inc., NJ, USA) always using 
an acceleration voltage of 20 keV and the same device set-
tings (e.g., exposure time, the opening of the lens, etc.) as in 
previous studies on radular elemental composition (Krings 
et al. 2022a, 2022b, 2022c). Before the analysis of a sample, 
the device was always calibrated with copper (Cu).

The proportions of H (hydrogen), C (carbon), N (nitro-
gen), O (oxygen), Pt (platinum), Al (aluminum), Ca (cal-
cium), Na (sodium), Mg (magnesium), Si (silicon), P 

(phosphorus), S (sulfur), Cl (chlorine), K (potassium), F 
(fluorine), Cu (copper), and Fe (iron) were measured, if 
detected. The atomic ratios (atomic %) were received with 
two positions after the decimal point; lower proportions 
were not detectable with this method. We did not discuss 
the following elements, as they are either the elemental 
basis of chitin/proteins (H, C, N, and O), the coating (Pt), 
or the polishing powder (Al and O).

After analysis of the outer teeth, each sample was again 
polished and smoothed until the next tooth type or longi-
tudinal row was on display; cleaning procedures and EDX 
analyses were again performed. Every step was repeated 
until all target teeth were measured. In the past study 
(Krings et al. 2022b), we already presented the results of 
the radular working zone. The results from all immature 
radular zones are new. Overall, we performed and analyzed 
1027 individual point measurements (one point measure-
ment per tooth, thus 1027 teeth were studied) from 12 
specimens (Fig. 1).

Statistical analyses

With JMP Pro, Version 14 (SAS Institute Inc., Cary, 
NC, 1989–2007), mean values and standard deviations 
were calculated for EDX results. We summed the values 
from both specimens per species because the elemen-
tal compositions of individual radulae did not differ 
significantly in most cases (see Supplementary Fig. S1 
and Supplementary Table S1). Shapiro–Wilk W-tests for 
testing normality were conducted. When the data was 
not normally distributed, a Kruskal–Wallis test was car-
ried out. Pairwise comparisons were performed with the 
Wilcoxon method.

Results

Radular morphology and types

The caenogastropod Anentome helena (Fig. 2) possesses a 
stenoglossan radula with one central tooth flanked to each side 
by one lateral tooth. The heterobranch Cornu aspersum (Fig. 3) 
has an isodont radula with one central tooth and 60–70 lateral 
and ~ 80 marginal teeth. The caenogastropods Lavigeria nassa 
(Fig. 4), Littorina littorea (Fig. 5), and Reymondia horei (Fig. 6) 
have a taenioglossan radula with one central tooth flanked on 
both sides by one lateral and two marginals. The neritimorph 
Vittina turrita (Fig. 7) possesses a rhipidoglossan type of radula 
(special type “neritimorph”) with one central tooth, followed by 
two lateral teeth (lateral tooth I and II) and numerous marginal 
teeth (~ 40 teeth) on each side.
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Whole radulae

In all specimens studied, we found Ca, Mg, Na, P, S, and Si 
(Fig. 1). Cl was determined in most species but not in Cornu 
aspersum. Fe was detected in Anentome helena, Littorina 
littorea, Reymondia horei, and Vittina turrita, but not in C. 
aspersum and Lavigeria nassa. K was present in L. littorea, 
R. horei, and V. turrita, Cu only in R. horei, and F only in 
L. littorea.

The highest proportion of all elements in the whole radula 
was found in A. helena, followed by L. littorea, V. turrita, R. 
horei, C. aspersum, and finally, L. nassa (see Fig. 1).

Ontogenetic zones

Elements detected

In most cases, the individual elements studied are already 
present in the building zone (zone 1) (Figs. 8 and 9). How-
ever, in zone 1, the following elements were not detected: 

F in Littorina littorea, Fe and K in Reymondia horei, K in 
Vittina turrita, and Na in Lavigeria nassa. They seem to be 
first secreted in zone 2.

In general, if an element was detected in a species, it 
was always present in the maturation zone, except for Na in 
Cornu aspersum, as it was only abundant in zone 1, and Si 
in Anentome helena, as it was not detected in zone 2 (Figs. 8 
and 9). In most cases, the presence of the individual ele-
ments persisted in the working zone. However, no Fe was 
determined for this zone in A. helena, no K in V. turrita, and 
no Mg and P in C. aspersum.

Elemental proportion comparison between zones

In general, we detected two contrary trends regarding the 
chemical composition of the distinct radular ontogenetic 
zones (Fig. 10). In all studied radulae, the elemental pro-
portions increased from the posterior building zone (zone 1) 
to the maturation zone (zone 2 in Anentome helena, Cornu 
aspersum, Lavigeria nassa, and Reymondia horei; zones 2 
and 3 in Littorina littorea and Vittina turrita). Then either 

Fig. 1  A Proportions of elements, in atomic percent, per mollusc spe-
cies. For values and quantity of measurements, see Supplementary 
Table  2. B–D Summary of previous studies on the elemental com-
position of B Cornu aspersum (element detected [X], and weight 

% after ashing from Sollas 1907; atomic % by EDX from Krings 
et al. 2019a), C Littorina littorea (element present [X] and weight % 
after ashing from Sollas 1907), and D the neritid Nerita atramentosa 
(weight % by EDX from Macey et al. 1997)
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the proportions increased further (pattern A) from the matu-
ration to the working zone or they decreased (pattern B). 
Pattern A was detected in C. aspersum, L. nassa, and R. 
horei. Pattern B was found in A. helena and V. turrita. In L. 
littorea, we detected only a slight decrease. These patterns 
are, in general, detectable for every element studied, except 
for Si in A. helena and C. aspersum.

Comparison between species

In Anentome helena, the lateral teeth contained more ele-
ments than the central ones (Fig. 2). Additionally, Fe was 
detected in the building and maturation zones but absent in 
the working zone. In Cornu aspersum, however, the inner 
teeth contain the highest proportions of elements; Ca was 
the most abundant element (Fig. 3). For Lavigeria nassa, 
the highest contents were detected for the centrals, followed 
by the laterals, the inner, and finally the outer marginals. 
The proportions increased strongly in the maturation zone 
(Fig. 4). Littorina littorea possesses the longest radula stud-
ied, and its elemental content increased gradually from the 
building zone to maturation zone 3 (Fig. 5). Here, also the 
central teeth have the highest proportions of elements, fol-
lowed by the laterals, and finally the marginals. Reymondia 
horei is the only species analyzed that contained Cu (Fig. 6). 
In Vittina turrita, very small proportions of P, S, and Ca are 
present in the working zone (Fig. 7).

Discussion

Previous studies on the elemental composition

Most previous analyses were either focused on the presence 
or abundance of specific elements in the whole radula, deter-
mined by, e.g., ashing, acid treatment or mass spectrometry 
(for non-patelliform gastropods, see Troschel 1863; Sollas 
1907; Jones et al. 1935; for Patellogastropoda, see Troschel 
1863; Sollas 1907; Jones et al. 1935; Shaw et al. 2008; for 
Polyplacophora, see Jones et al. 1935; Shaw et al. 2008; 
Emmanuel et al. 2014) or on the detailed composition of the 
dominant lateral teeth in the working zone of Polyplacoph-
ora (van der Wal 1989; Evans et al. 1992; Lee et al. 2003; 
Brooker et al. 2006; Weaver et al. 2010; Gordon and Joester 
2011; Grunenfelder et al. 2014; Herrera et al. 2015; Pohl 
et al. 2020; Stegbauer et al. 2021; for reviews, see Brooker 
and Shaw 2012; Faivre and Ukmar-Godec 2015; Joester 
and Brooker 2016; Kisailus and Nemoto 2018; Moura and 
Unterlass 2020).

By EDX analyses, the proportions of individual elements 
in a defined area can be identified, but not the specific bond-
ing and structure of molecules. However, from the presence 
of the elements and by comparing our results with past 

studies on radular chemistry, we previously proposed that 
the following elements are potentially part of the following 
molecules or minerals (see Krings et al. 2022b). Elements of 
types 1–5 probably stiffen and harden the chitinous radular 
teeth.

Type 1: Characterized by the presence of Fe. Potentially 
present in the form of magnetite, as documented in polypla-
cophoran, or goethite, found in limpets (e.g., Lowenstam 
1962, Kirschvink and Lowenstam 1979, Lowenstam and 
Weiner 1989, Huang et al. 1992, Han et al. 2011, Wang 
et al. 2013, Ukmar-Godec 2016, Nemoto et al. 2019, and 
McCoey et al. 2020). Fe was detected in the caenogastro-
pods Anentome helena, Littorina littorea, Reymondia horei, 
and the neritimorph Vittina turrita—but only as traces. As it 
was, however, quite consistently identified in the teeth of L. 
littorea and V. turrita, it might play a (small) role in increas-
ing the stiffness or hardness of their teeth—in contrast to 
the Polyplacophora and Patellogastropoda with very high 
proportions. The results from our analyses indicate that the 
epithelium surrounding zone 1 already secretes Fe in A. 
helena, L. littorea, and V. turrita, whereas in R. horei, Fe 
is incorporated first in zone 2. In the heterobranch Cornu 
aspersum and the caenogastropod Lavigeria nassa, it was 
not detected. Potentially, the incorporation of Fe is ancestral 
to the Gastropoda, especially since Patellogastropoda con-
tains high proportions and were reduced during evolution; 
this statement is, however, rather speculative and requires a 
broader taxon sampling.
Type 2: Characterized by the presence of Mg and Ca. 
Elements are potentially involved in the protein pack-
ing, increasing the density of chitin fibers and thus the 
material stiffness, as documented in limpet teeth (Ukmar-
Godec et al. 2017). Mg and Ca were detected in all spe-
cies—thus this type seems to be ancestral to all Gastrop-
oda. For the heterobranch C. aspersum, we did not detect 
Mg in the working zone, which could indicate that this 
element might be lost in this species. In all species, Mg 
and Ca are already present in zone 1, which indicates 
that here the epithelium already secretes these elements.
Type 3: Characterized by the presence of Ca, P, Cl, and/
or F. These elements (Ca:P:Cl/F) are potentially part of 
apatite, either fluorapatite,  Ca5[F|(PO4)3], or chlorapatite, 
 Ca5[Cl|(PO4)3], as previously described for radular teeth 
of polyplacophorans (e.g., Lowenstam 1967, Brooker 
et al. 2001, Brooker and Macey 2001, Brooker et al. 2003, 
Shaw et al. 2008, and Shaw et al. 2009). Ca in connec-
tion with P, Cl, and/or F was determined in A. helena, 
R. horei, V. turrita, L. nassa, and L. littorea. For these 
species, elements are already present in zone 1, which 
again indicates that the tissues here secrete P, Cl, F, and 
Ca. For the heterobranch, C. aspersum, Ca, and P are 
also present from zone 1 on; however, we did not find 
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F or Cl, so potentially, these elements are not bonded in 
form of apatite.
Type 4: Characterized by the presence of Si. Poten-
tially present in the form of silica, as documented in 
limpet teeth (e.g., Hua and Li 2007, Faivre and Ukmar-
Godec 2015). In all species studied, we detected Si, so 
potentially the incorporation in the teeth is ancestral.  

However, it was determined to be present only with small 
proportions, indicating that this inorganic content might 
not have a high influence on the mechanical properties 
of teeth. In every species, we found that Si is already 
present in zone 1.
Type 5: Characterized by the presence of Cu. This ele-
ment was previously reported for cephalopod teeth 
(Krings et al. 2022b) and is potentially also involved in 
the hardening of teeth. We here determined Cu in the cae-
nogastropod Reymondia horei, present from zone 1 on.
Type 6: The presence of Na, K, and S can be related to the 
protein bonding (e.g., Creighton 1997 and Harding 2002; 
for proteins in radulae, see Nemoto et al. 2012). These 
elements were also detected in all species from zone 1 on, 
as chitin is always associated with proteins in Mollusca.

Regarding the ontogenetic changes in the proportions 
of elements, the dominant lateral teeth of Polyplacophora 

Fig. 2  Summarized results for Anentome helena (Caenogastropoda). 
A Light microscopy image of the whole radula with highlighted 
distinct ontogenetic zones (zone 1 = building zone, zone 2 = matura-
tion zone, and zone 3 = working zone). B Proportions of individual 
elements in atomic percent per zone and tooth type (for means, SD, 
N, and statistics, see Supplementary Tables 2 and 3). C Shell habi-
tus from one analyzed individual (taken from Krings et  al. 2022b). 
D SEM image of unused teeth of one individual (taken from Krings 
et al. 2022b). Scale bars: A, 200 µm; C, 5 mm; D, 40 µm. CT, central 
tooth; LT, lateral tooth. Figures  2, 3, 4, 5, 6, and 7 are at different 
scales; for comparison at the same scale, see Supplementary Figs. 2, 
3, and 4)

◂

Fig. 3  Summarized results 
for Cornu aspersum (Hetero-
branchia). A. Light microscopy 
image of the whole radula with 
highlighted distinct ontogenetic 
zones (zone 1 = building zone, 
zone 2 = maturation zone, and 
zone 3 = working zone). B Pro-
portions of individual elements 
in atomic percent per zone and 
tooth type (for means, SD, N, 
and statistics, see Supplemen-
tary Tables 2 and 3). C Shell 
habitus from one analyzed indi-
vidual (taken from Krings et al. 
2022b). D, E. SEM images of 
unused teeth of one individual, 
D central and lateral teeth, and 
E marginal teeth (taken from 
Krings et al. 2019b). F Light 
microscopy image of marginal 
teeth. Scale bars: A, 1 mm; C, 
15 mm; D, E, 10 µm; F, 40 µm. 
IT, inner teeth; OT, outer teeth. 
Figures 2, 3, 4, 5, 6, and 7 are at 
different scales; for comparison 
at the same scale, see Supple-
mentary Figs. 2, 3, and 4)
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(Kim et al. 1986; Macey and Brooker 1996; Lee et al. 2000; 
Brooker and Macey 2001; Brooker et al. 2003) and Patel-
logastropoda (Runham et al. 1969; Liddiard et al. 2004; Hua 
and Li 2007) were usually in the focus of research, except for 
one study on all teeth in the chiton Lepidochitona cinerea 
(Krings et al. 2022a). No study, to the best of our knowledge, 
has been conducted on the ontogenetic development of the 
elemental composition of radular teeth in non-patelliform 
gastropods before.

Overall, we detected here that the presence, distribution, 
proportions, and ontogeny of elements during radular ontog-
eny differs between species. This indicates that the general 
elemental composition of radular teeth as well as the biomin-
eralization processes during ontogeny could be rather unique 
for each taxon (see also Brooker and Macey 2001; Krings 
et al. 2022a, 2022b). With regard to the genetics underpin-
ning radular ontogeny, little is known as well. Alkaline phos-
phatase, ParaHox gene Gsx, and a Lophotrochozoa-specific 

Fig. 4  Summarized results for 
Lavigeria nassa (Caenogas-
tropoda). A Light microscopy 
image of the whole radula with 
highlighted distinct ontogenetic 
zones (zone 1 = building zone, 
zone 2 = maturation zone, 
and zone 3 = working zone). 
B Proportions of individual 
elements in atomic percent per 
zone and tooth type (for means, 
SD, N, and statistics, see Sup-
plementary Tables 2 and 3). C 
Shell habitus from one analyzed 
individual (taken from Krings 
et al. 2022b). D SEM image of 
unused teeth of one indi-
vidual (taken from Krings et al. 
2021e). Scale bars: A, 400 µm; 
C, 20 mm; D, 30 µm. CT, cen-
tral tooth; IMT, inner marginal 
tooth; LT, lateral tooth; OMT, 
outer marginal tooth. Figures 2, 
3, 4, 5, 6, and 7 are at different 
scales; for comparison at the 
same scale, see Supplementary 
Figs. 2, 3, and 4)
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chitin synthase with a myosin motor domain were found to 
be expressed during radular ontogeny (Samadi and Steiner 
2010; Hohagen and Jackson 2013; Hilgers et al. 2018). 
As we detected for our species, most elements seem to be 
constantly secreted from zone 1 to zone 2 (or zone 3 for 
L. littorea and V. turrita), and the epithelia secreting the 
teeth seem to have a similar gene expression within each 
species. As, however, elemental contents differ between 
species, genes are potentially expressed differently during 

radular ontogeny in the taxa; this should be investigated in 
the future.

Even though some previous studies were conducted for 
the same or closely related species (for Cornu aspersum, 
see Sollas 1907 and Krings et al. 2019a; for Littorina lit-
torea, see Sollas 1907 and Jones et al. 1935; for the neritid 
Nerita atramentosa, see Macey et al. 1997), results cannot 
be directly compared as the applied techniques strongly 
differed between studies (see Fig. 1). For example, Sollas 

Fig. 5  Summarized results for 
Littorina littorea (Caenogas-
tropoda). A Light microscopy 
image of the whole radula with 
highlighted distinct ontogenetic 
zones (zone 1 = building zone, 
zone 2 = maturation zone 1, 
zone 3 = maturation zone 2, and 
zone 4 = working zone). B, C 
SEM images of unused teeth 
of one individual (taken from 
Scheel et al. 2020), B unused 
teeth from the posterior working 
zone, and C immature teeth 
from the building zone. D Light 
microscopy image of zone 3. E 
Shell habitus from one analyzed 
individual (taken from Krings 
et al. 2022b). F Proportions of 
individual elements in atomic 
percent per zone and tooth 
type (for means, SD, N, and 
statistics, see Supplementary 
Tables 2 and 3). Scale bars: A, 
1 mm; B–C, 80 µm; D, 40 µm; 
E, 12 mm. CT, central tooth; 
LT, lateral tooth; MT, marginal 
tooth. Figures 2, 3, 4, 5, 6, and 
7 are at different scales; for 
comparison at the same scale, 
see Supplementary Figs. 2, 3, 
and 4)
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Fig. 6  Summarized results for 
Reymondia horei (Caenogas-
tropoda). A Light microscopy 
image of the whole radula with 
highlighted distinct ontogenetic 
zones (zone 1 = building zone, 
zone 2 = maturation zone, 
and zone 3 = working zone). 
B, C SEM images of unused 
teeth of one individual (taken 
from Krings et al. 2021e), B 
central and lateral teeth, and C 
marginal teeth. D Proportions 
of individual elements in atomic 
percent per zone and tooth 
type (for means, SD, N, and 
statistics, see Supplementary 
Tables 2 and 3). E Shell habitus 
from one analyzed individual 
(taken from Krings et al. 
2022b). Scale bars: A, 200 µm; 
B–C, 30 µm; E, 10 mm. CT, 
central tooth; IMT, inner mar-
ginal tooth; LT, lateral tooth; 
OMT, outer marginal tooth. 
Figures 2, 3, 4, 5, 6, and 7 are at 
different scales, for comparison 
at the same scale, see Supple-
mentary Figs. 2, 3, and 4)
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(1907) executed protocols including ashing, acid treat-
ments, boiling, staining, or diffusion columns. She found 
in C. aspersum specimens (termed Helix aspersa in Sollas 
1907), collected during spring, that the radula contains 35% 

 P2O5 (weight %). In specimens collected during winter, she 
detected 33% Si (weight %) and an abundance of Ca (no % 
is given) using her methodology. Employing EDX, Krings 
et al. (2019a) detected Si and Ca in C. aspersum, both in 

Fig. 7  Summarized results for 
Vittina turrita (Neritimorpha). 
A Light microscopy image of 
the whole radula with high-
lighted distinct ontogenetic 
zones (zone 1 = building zone, 
zone 2 = maturation zone 1, 
zone 3 = maturation zone 2, 
and zone 4 = working zone). 
B Proportions of individual 
elements in atomic percent per 
zone and tooth type (for means, 
SD, N, and statistics, see Sup-
plementary Tables 2 and 3). C 
Shell habitus from one analyzed 
individual (taken from Scheel 
et al. 2020). D SEM image of 
unused teeth of one speci-
men (taken from Krings et al. 
2021a). Scale bars: A, 500 µm, 
C = 30 mm, D = 100 µm. IMT, 
inner marginal tooth; LT I, lat-
eral tooth I; LT II, lateral tooth 
II; OMT, outer marginal tooth. 
Figures 2, 2, 4, 5, 6, and 7 are at 
different scales; for comparison 
at same scale, see Supplemen-
tary Figs. 2, 3, and 4)
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proportions > 1% (atomic %). For L. littorea radulae, Sollas 
(1907) detected 16%  P2O5 (weight %) and the presence of 
Ca, Fe, and Mg. Jones et al. (1935) specifically tested for 
Fe and Si by ashing and acid treatment, but could not detect 
both elements in L. littorea. For N. atramentosa, Macey et al. 
(1997) determined by EDX very high proportions (weight 
%) of Cl, and smaller proportions of Ca, Mg, S, K, Si, and P. 
All elements detected previously were also detected in this  

study. As however, we employed a different method, the 
quantitative results cannot be compared directly. In addition, 
specifically for Si, the elemental content of radulae could be 
potentially directly related to the food obtained (i.e., plants 
with or without Si). This could explain the low proportions 
of Si in the maturation zone of the here studied C. asper-
sum individuals (Fig. 9) and also the diverging results from 
Sollas (1907). However, this awaits further investigations, 

Fig. 8  Proportions of individual 
elements, in atomic percent, 
per mollusc species and radular 
zone (zone 1 = building zone, 
zone 3 in most species, and 
zone 4 in Littorina littorea and 
Vittina turrita = working zone). 
For values and quantity of 
measurements, see Supplemen-
tary Table 2
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especially since for the plant-consuming gastropods, stud-
ied here, no detailed records about the plant species eaten 
exist.

The ontogeny of elements in the radula

As stated before, we detected two general trends in the 
ontogeny of elements from the maturation to the working 
zone: either the increase of the proportions (pattern A; in 
Cornu aspersum, Lavigeria nassa, and Reymondia horei) 
or they decrease (pattern B; in Anentome helena, Littorina 

littorea, and Vittina turrita). We could not determine an 
ecological or phylogenetic signal, but such a determination 
would, however, require a broader taxon sampling.

In previous studies, an increase followed by more or lesser 
pronounced plateaus in the elemental proportions of the work-
ing zone was detected in some polyplacophoran and limpet 
radulae (Polyplacophora: for Acanthopleura, see Lee et al. 
2000; and Brooker et al. 2003; for Acanthopleura, Ischnochiton, 
Onithochiton, and Plaxiphora, see Brooker and Macey 2001; 
Patellogastropoda: for Patella, see Runham et al. 1969). A 
decrease in the elemental content was previously determined as 

Fig. 9  Proportions of individual 
elements, in atomic percent, 
per mollusc species and radular 
zone (zone 1 = building zone, 
zone 3 in most species, and 
zone 4 in Littorina littorea and 
Vittina turrita = working zone). 
For values and quantity of 
measurements, see Supplemen-
tary Table 2
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well (for the limpet Notoacmea, see Hua and Li 2007). Some-
times the picture seems to be rather puzzling: in the chiton Cla-
varizona, the concentration of Fe, zinc (Zn), and K decrease 
in the working zone, whereas Ca, P, F, Na, S, and Cl remain 
constant (Kim et al. 1986). In the chiton Cryptoplax, most ele-
mental proportions, e.g., Fe, P, K, and Si, were found to remain 
more or less constant in the outer tooth rows, whereas Ca, Mg, 
Na, Al, and S content in the tooth cores decreased (Macey and 
Brooker 1996). For the patellogastropod Patelloida, the Fe 
content decreased in the tip of the anterior cusps and the pos-
terior region of the posterior cusps, whereas it increased in the 
anterior region of the anterior cusp (Liddiard et al. 2004). For 
this species, the content of Si increased in the posterior region 
of the posterior cusp (Liddiard et al. 2004). In our previous 
study on the elemental ontogeny of the chiton Lepidochitona 
cinerea, we detected that the Fe content remained constant in 
the working zone, whereas the proportions of Ca decreased 
(Krings et al. 2022a).

Decreasing biomineral composition is a sign of chemi-
cal wear, which is part of the decay and potentially the loss 
of proper functionality. This decrease could be explained 
by a potential elution of elements by either surrounding 
water or saliva. The saliva has been previously found to be 
slightly or highly acidic in gastropods (e.g., Moura et al. 
2004), especially in carnivorous gastropods (Houbrick 
and Fretter 1969; Fänge and Lidman 1976; Morton 1990, 
2015), as the acidic fluid is used for extraintestinal diges-
tion. This could potentially explain the decrease from the 
maturation to the working zone in the radula of Anen-
tome helena, as this species is also carnivorous feeding on 
other snails (e.g., Bogan and Hanneman 2013; Strong et al. 

2017). In addition, the acid saliva could also be used when 
foraging on lime-containing items needed for the construc-
tion of the shell. Another content of saliva is enzymes, 
e.g., aminopeptidase (Moura et al. 2004), which could 
potentially also damage the tooth structure and promote 
the elution of elements. However, in all species, the pH 
and the composition of the saliva are unknown. The saliva 
effect on the elemental composition of radular teeth in 
ontogeny awaits further investigations in the future.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00114- 022- 01829-2.
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